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Abstract 

In this paper, we propose an approach for identifying curatable articles from a large pool.  Our system 
currently considers three parts of an article as three individual representations of the article, and utilizes two 
domain-specific resources to reveal the deep knowledge contained in the article in order to generate more 
representations of the article.  Cross-validation is employed to find the best combination of representations and 
an SVM classifier is trained out of this combination.  The cross-validation results and results of the official 
runs are listed.  The experimental results show overall high performance. 

1 Introduction 

Organism Database plays a crucial role in genomic and proteomic research.  It stores the up-to-date profile of each 
gene of the species interested.  For example, the Mouse Genome Database (MGD) provides essential integration 
of experimental knowledge for the mouse system with information annotated from both literature and online 
sources (Bult et al., 2004).  The Mouse Gene Expression Database (GXD) provides information about expression 
profiles in different mouse strains and mutants (Hill et al., 2004).  The Tumor Gene Database (TGDB) 
(http://www.tumor-gene.org/TGDB/tgdb.html) provides a standard set of facts (e.g., protein size, biochemical 
activity, chromosomal location, etc.) about all known cancer-causing mutations; proto-oncogenes and tumor 
suppressor genes.  FlyBase (http://flybase.org) is a database for information on the genetics and molecular biology 
of the insect family Drosophila (Drysdale et al., 2005).  To provide biomedical scientists with easy access to 
complete and accurate information, curators have to constantly update databases with new information.  Published 
literature written in natural languages has long been the main source of information because of its high accuracy.  
With the rapidly growing rate of publication, it is impossible for database curators to read every published article.  
However, since current fully-automated curation systems have not met the strict requirement of high accuracy and 
recall, database curators still have to read some (if not all) of the articles sent to them.  Therefore, the 
classification of biological literature is an important research topic.  It will be very helpful if a triage system is 
able to correctly identify the curatable or relevant articles in a large number of biological articles. 

Text classification systems are originally designed to classify documents to different categories.  Most 
approaches to text classification are based on statistical natural language processing (Manning and Schutze, 1999).  
In the past, text classification mainly focused on general domains.  Recently, several attempts have been made to 
classify documents from biomedical domain (Hirschman et al., 2002).  When classifying biological articles, 
statistical classification systems usually need a training set of documents, e.g. MEDLINE1, in order to build a 
classification model.  Couto et al. (2004) used the information extracted from related web resources to classify 
biomedical literature.  They validated it by testing it on the KDD 2002 Cup challenge: bio-text task (Yeh et al., 
2002).  Hou et al. (2005) used the reference corpus to help classifying gene annotation.  They generated the 
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predicted Gene Ontology terms (Camon et al., 2003).  The extraction of keywords related to classification 
documents is also helpful with classification tasks.  For example, Andrade and Valencia (1998) and Shatkey et al. 
(2000) mainly detected words related to function.  Pouliot et al. (2001), Xie et al. (2002), Lee et al. (2004) and 
Perez et al. (2004) found keywords related to GO terms.  It shows that many researchers are interested in 
biological text classification problems (Hersh et al., 2004). 

In this paper, we propose an approach for identifying curatable articles from a large pool.  The rest of this 
paper is organized as follows.  Section 2 presents the overview of our system architecture.  In Section 3 we 
describe our methods in detail.  The results achieved by the proposed methods are shown and discussed in Section 
4.  Finally, we express our main conclusions in Section 5. 

2 Architecture Overview 

Figure 1 shows the overall architecture of our system for the categorization task.  For each full-text training article, 
we first preprocess the article and extract several parts from it.  Each of the extracted parts is considered a 
representation of this article.  In this task, we considers three parts of an article, which are (1) title and abstract, (2) 
MeSH terms assigned to this article and (3) figure and table captions.  With the help of domain-specific 
knowledge, we process the three parts and obtain more representations of an article, while the original three 
representations are kept.  The three original representations are denoted as Abstract, MeSH and Caption in the 
rest of this paper.  In the model selection phase, we perform feature ranking on each representation of an article 
and employ cross-validation to decide the number of features to be kept.  Moreover, we use cross-validation to 
obtain the best combination of all the representations.  Finally, a support vector machine (SVM) (Vapnik, 1995; 
Hsu et al., 2003) classifier is obtained. 

3 Methods 

3.1 Document Preprocessing 

In the preprocessing phase, we perform acronym expansion on the articles, remove the remaining tags from the 
articles and extract three parts of interest from each article.  Abbreviations are often used to replace long terms in 
writing articles, but it is possible that several long terms share the same short form, especially for gene/protein 
names.  To avoid ambiguity and enhance clarity, the acronym expansion operation replaces every tagged 
abbreviation with its long form followed by itself in a pair of parentheses.  An example of this operation is shown 
in Figure 2, where a tagged abbreviation “IP3” will be replaced with “inositol trisphosphase (IP3)”. 

3.2 Using Domain-Specific Knowledge 

With the help of domain-specific knowledge, we can extract the deep knowledge from a piece of text written in 
natural language.  For example, with a gene name dictionary, we can identify the gene names contained in an 
article.  Moreover, by further consulting organism databases, we can get the properties of the genes occurred in 
the article.  Two domain-specific resources are exploited in this task.  One is the Unified Medical Language 
System (UMLS) (Humphreys et al., 1998) and the other is a list of tumor names obtained from Mouse Tumor 
Biology Database (MTB)2. 
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UMLS contains a very large dictionary of biomedical terms – the UMLS Metathesaurus and defines a 

hierarchy of semantic types – the UMLS Semantic Network.  Each concept in the Metathesaurus contains a set of 
strings, which are variants of each other, and belongs to one or more semantic types in the Semantic Network.  
Therefore, given a string, we can obtain a set of semantic types to which it belongs.  For each part of an article 
extracted during preprocessing, we obtain another representation of the article by gathering the semantic types 
found in the part of the article.  Consequently, we got three more different representations of an article after this 
step.  They are denoted as AbstractSEM, MeSHSEM and CaptionSEM. 

We use the list of tumor names only on the Tumor subtask.  We first tokenize all the tumor names and stem 
each unique token, where the tokenization operation considers a sequence of successive alphanumeric characters as 
a token.  With the resulting list of unique stemmed tokens, we use it as a filter to remove the tokens not in the list 
from the Abstract and Caption representations, which produce representations AbstractTM and CaptionTM. 
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Figure 1. System Architecture 

It is presently unclear how these receptors 
could selectively mediate cAMP responses to 
sugars and <GLOSREF 
RID="G3">IP<INF>3</INF></GLOSREF> 
responses to artificial sweeteners. 

It is presently unclear how these receptors could
selectively mediate cAMP responses to sugars and 
inositol trisphosphate (IP<INF>3</INF>) responses 
to artificial sweeteners. 

Figure 2: An Example of Acronym Expansion Operation. 



3.3 Model Selection 

As mentioned above, we have several representations for an article.  In this section, we explain how feature 
selection is done for each representation and how the best combination of the representations of an article is 
obtained.  In the following paragraphs, the word “token” refers to different concepts, depending on the 
representations of an article.  A token is a stemmed sequence of consecutive alphanumeric characters for the 
Abstract, MeSH, Caption, AbstractTM and CaptionTM representations.  For the AbstractSEM, MeSHSEM 
and CaptionSEM representations, a token is a semantic type. 

For each representation, we first rank all the tokens in the training documents via the chi-square test of 
independence.  Assuming the ranking perfectly reflects the effectiveness of the tokens in classification, we then 
decide the number of tokens to be used in classification by 4-fold cross-validation.  In cross-validation, we use the 
well-known bag-of-word model with TF*IDF (term frequency inverse document frequency) weighting.  Each 
feature vector is normalized to a unit vector after weighting.  We adopt SVMs as our classification system and set 
C+ to ur * C- because of the relatively small number of positive examples, where C+ and C- are the penalty 
constants on positive and negative examples in SVMs.  After cross-validation, we obtain the optimal number of 
tokens and the corresponding SVM parameters C- and gamma, a parameter in the radial basis kernel.  In the 
following paragraphs, Abstract30 denotes the Abstract representation with top-30 tokens, CaptionSEM10 
denotes CaptionSEM with top-10 tokens, and so forth. 

After feature selection is done for each representation, we try to find the best combination of the 
representations by a simple algorithm, where combining two or more representations is achieved by simply 
concatenating the feature vectors.  Therefore, under a combined model of N representations, each article is 
represented as an N-unit long feature vector.  The algorithm is described below. 

 
Given the candidate representations with selected features, e.g. Abstract10, Caption10 and Mesh30, we 
start with an initial set containing some or zero representation.  For each iteration, we add one 
representation to the set by picking the one that enhances the cross-validation performance the most.  The 
iteration stops when we have exhausted all the representations or adding more representation to the set 
doesn’t improve the cross-validation performance. 
 
In the categorization task, we run the algorithm twice.  We first start with an empty set and obtain the best 

combination of the basic three representations, e.g., Abstract10, Caption10 and Mesh30.  Then, starting with this 
combination, we attempt to incorporate the three semantic representations, e.g., Abstract30SEM, Caption10SEM 
and Mesh30SEM, and obtain the final combination.  Instead of using this algorithm to incorporate the 
AbstractTM and CaptionTM representations, we use them to replace their unfiltered counterparts Abstract and 
Caption when their cross-validation performance is better. 

4 Results and Discussions 

Table 1 lists the individual cross-validation result (in NU measure) of each representation for each subtask.  For 
subtask Allele, the Caption representation performs the best among the basic representations, while AbstractSEM 
performs the best among the semantic representations.  For subtask Expression, we can see that captions in 
articles play an important role in identifying relevant documents, which agrees with the finding by the winner of 
KDD CUP 2002 task 1 (Regev et al., 2002).  Similarly, we can infer that MeSH terms are crucial to the GO 
subtask, which also supports the wide-spread using of MeSH terms by top-performing teams (Dayanik et al., 2004; 



Fujita, 2004) in TREC Genomics 2004.  Looking at the Tumor subtask, we can tell that MeSH terms are important, 
but after semantic type extraction the AbstractSEM representation exhibits relatively high cross-validation 
performance.  Since only 10 features are selected for the AbstractSEM representation, using this representation 
alone may be susceptible to over-fitting.  Finally, by comparing the performance of the AbstractTM and 
Abstract representations, we find the list of tumor names helpful for filtering abstracts. 
 

Table 1: Partial Cross-validation Results. 

 Allele Expression GO Tumor 
 # Tokens / NU # Tokens / NU # Tokens / NU # Tokens / NU 

Abstract 10 / 0.7707 10 / 0.5586 10 / 0.4411 10 / 0.8055 
MeSH 10 / 0.7965 10 / 0.6044 10 / 0.4968 30 / 0.8106 

Caption 10 / 0.8179 10 / 0.7192 10 / 0.4091 10 / 0.7644 
AbstractSEM 10 / 0.7209 10 / 0.4811 10 / 0.3493 10 / 0.8814 

MeSHSEM 10 / 0.6942 10 / 0.4563 10 / 0.4403 10 / 0.7047 
CaptionSEM 30 / 0.6789 10 / 0.5433 10 / 0.2551 30 / 0.7160 
AbstractTM    30 / 0.8325 
CaptionTM    10 / 0.7498 

 

We list the results of our official runs in Table 2.  Column “cv NU” shows the cross-validation NU measure, 
“NU” shows the performance on the test data and column “combination” lists the combination of representations 
used for each run.  In this table, M30 is the abbreviation for the MeSH30 representation, CS10 represents the 
CaptionSEM10 representation, and so on.  The combinations for the first 4 runs are obtained by the simple 
algorithm described in Section 3, while the combination for tNTUMACwj is obtained by substituting 
AbstractTM30 for Abstract30 in the combination for tNTUMAC.  The last run tNTUMACasem uses only the 
AbstractSEM10 representation because its cross-validation performance beats all other combinations for the 
Tumor subtask. 

 

Table 2: Results of Our Official Runs. 

Run Tag cv NU NU Recall Precision F-score Combination 
aNTUMAC 0.8717 0.8423 0.9488 0.3439 0.5048 M30+C10+A10+CS10+AS10+MS10
eNTUMAC 0.7691 0.7515 0.8190 0.1593 0.2667 M10+C10+CS10+MS10 
gNTUMAC 0.5402 0.5332 0.8803 0.1873 0.3089 M10+C10+MS10 
tNTUMAC 0.8742 0.8299 0.9000 0.0526 0.0994 M30+C30+A30+AS10+CS30 

tNTUMACwj 0.8764 0.8747 0.9500 0.0518 0.0982 M30+C30+AT30+AS10+CS30 
tNTUMACasem 0.8814 0.5699 0.6500 0.0339 0.0645 AS10 

 
The combinations of the first 5 runs illustrate that adding other inferior representations to the best one enhances 

the performance, which implies that the inferior ones may contain important exclusive information.  The 
cross-validation performance fairly predicts the performance on the test data, except for the last run 



tNTUMACasem, which relies on only 10 features and is therefore susceptible to over-fitting. 
We list the best and median results for each subtask in Table 3.  Each row shows the performance of the 

best/median teams.  For example, the best team of Allele subtask achieves NU of 0.8710, the recall rate of 0.9337, 
the precision rate of 0.4669, and the F-score of 0.6225.  The comparing results of each subtask between the best, 
median and our methods (NTU) are depicted in Figure 3, 4, 5 and 6.  Because we submitted 3 official runs for the 
tumor subtask, there exist NTU1, NTU2 and NTU3 in Figure 6.   Comparing to the results, it shows our 
experimental results have overall high performance. 

 

Table 3: Best and Median Results for Each Subtask. 

Subtask NU 
(Best/Median) 

Recall 
(Best/Median) 

Precision 
(Best/Median) 

F-score 
(Best/Median) 

Allele 0.8710/0.7773 0.9337/0.8720 0.4669/0.3153 0.6225/0.5010 
Expression 0.8711/0.6413 0.9333/0.7286 0.1899/0.1164 0.3156/0.2005 

GO Annotation 0.5870/0.4575 0.8861/0.5656 0.2122/0.3223 0.3424/0.4107 
Tumor 0.9433/0.7610 1.0000/0.9500 0.0709/0.0213 0.1325/0.0417 
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Figure 3. Comparison of Allele Subtask.     Figure 4. Comparison of Expression Subtask. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NU Recall Precision F-score

Best

Median

NTU

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NU Recall Precision F-score

Best

Median

NTU1

NTU2

NTU3

 
Figure 5. Comparison of GO Annotation Subtask.     Figure 6. Comparison of Tumor Subtask. 



5 Concluding Remarks 

In this paper, we demonstrate how our system is constructed.  Three parts of an article are extracted and each of 
them is considered a representation of the article.  We incorporate two domain-specific resources, i.e., UMLS and 
a list of tumor names.  By integrating domain knowledge, we obtain 5 more representations of an article.  We 
perform feature selection on each of the 8 representations to obtain the optimal number of features for each of them.  
For each subtask, we mainly rely on a simple algorithm to get the best combination of the representations and train 
an SVM classifier out of this combination.  The partial cross-validation results and the results of our official runs 
are listed.  Evaluation results show overall high performance in this study. 
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