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Abstract 

We describe our experience with two new, built-
from-scratch, web-based question answering sys-
tems applied to the TREC 2005 Main Question 
Answering task, which use complementary models 
of answering questions over both structured and 
unstructured content on the Web. Our approaches 
depart from previous question answering (QA) 
work in several ways. For unstructured content, we 
used a web-based system with novel features such 
as web snippet pattern matching and generic an-
swer type matching using web counts. We also ex-
perimented with a new, complementary question 
answering approach that uses information from the 
millions of tables and lists that abound on the web. 
This system attempts to answer factoid ques-
tions by guessing relevant rows and fields in 
matching web tables and integrating the results. 
We believe a combination of the two approaches 
holds promise. 

1 Introduction and Previous Work 

The systems described in this paper are entirely web-
based and explore two different research directions: 
one is to employ a web search engine to mine text 
web pages (unstructured web information hence-
forth), the other to employ the already structured web 
information in the form of html tables, which typi-
cally summarize various relations of interest to web 
users. 

There has been a substantial amount of work on using 
web information and search engines for TREC QA, 
starting from the premise that a data collection such 
as the TREC corpus has considerably less answer 
redundancy than the web and thus, it is easier to 
match a question to the web data, to extract answers 
from the matching text, and then project these an-
swers on the restricted data collection (e.g. Brill et al. 
[2], Radev et al. [12], Ramakrishnan et al. [13]). 

Most of the published web-based QA systems focus 
on one language (English) and employ advanced 
natural language processing tools and/or extensive 

hierarchies of answer matching rules and answer 
types. From a practical perspective (i.e., having a 
search engine handle natural language questions in all 
markets in which it is deployed), such assumptions 
cannot be made. While previous approaches investi-
gated how to scale current paradigms to general QA 
on the web (e.g. Kwok [11]), one of our main goals 
was to determine what performance can be achieved 
with a moderate annotation effort (in our case, one 
person-day) by a web-based QA system. 

Because previous research on question answering 
largely ignored existing html tables and focused ei-
ther on natural language text from web pages or 
online databases, another important goal of this work 
is to investigate a new way of using the existent 
structured information on the web to retrieve answers 
to factoid questions. By exploiting the explicit tabular 
structures created by the web document authors, we 
can, in principle, get natural language understanding 
“ for free”  and hence, advance the applicability and 
scalability of question answering. 

There have been many efforts to extract structured 
information from the web. Previous approaches (e.g., 
Agichtein and Gravano [1], Etzioni et al. [6]) focused 
on extracting specific relationships (e.g., "is a"), 
which can then be used to answer the specific ques-
tions that these relationships support (e.g., "who is 
X"). In this work, we attempt to support any question 
by finding the structured table(s) on the web where 
this question was already answered. Unfortunately, 
many of the most useful tables do not contain the text 
patterns these systems look for. By indexing “all”  
potentially useful tables we are more likely to 
achieve high coverage of user’s questions. 

In a closely related study, Hildebrandt et al. [9] used 
a large number of dictionaries and lists, some of 
which were constructed dynamically by querying 
sites such as Amazon. Unlike in our approach, the 
lists were specific and were constructed in advance 
for each question type. To the best of our knowledge, 
our study is the first attempt to integrate, index, and 
exploit millions of tables for question answering. 



2 Systems Description 

2.1 Common System Architecture 

Figure 1 outlines the architecture of the two proposed 
systems. In this section, we describe the pre-
processing and post-processing blocks common to 
both systems. Sections 2.2 and 2.3 present in detail 
the novel features of these systems. 

In a first step, a question to be answered is passed 
through a phrase chunker (derived from the parsing 
system described in Heidorn, 2000) to extract infor-
mation about the verbs, pronouns, and noun phrases 
in the question. The pronoun and noun phrase infor-
mation is used to resolve the references to the ques-
tion target, based on a small set of resolution 
heuristics. The verb information is used further by the 
WSQA system, as it will be described in Section 2.2. 

 

Figure 1. Overall System Architecture 

Then, the WSQA system attempts to guess the an-
swer type by using rewrite rules, as described in Sec-
tion 2.2. This information is provided to both WSQA 
and TQA systems, which attempt to answer the ques-
tion using unstructured and respectively, structured 
web content. Optionally, the lists of candidate an-
swers returned by the WSQA and the TQA systems 
can be combined. We employed a linear mixture 
strategy that combines the lists using the normalized 
score associated with the answers by the two systems, 
the overlap between proposed answers, and the ex-
pected accuracy of each of the systems. 

The top candidate answer is then projected onto the 
AQUAINT corpus to find document support. 

The projection was done by simply retrieving the 
document that best matched both the query and the 
candidate answer. Finally, the highest scoring answer 
and its support document are returned. 

2.2 Mining Unstructured Web Content 
(WSQA) 

For unstructured content, we used a web-based QA 
system inspired from the AskMSR structural design 
(Brill et al. [2]), which does not make use of ad-
vanced NLP tools. This system employs two novel 
ideas related to generic answer type matching using 
web counts and web snippet pattern matching. The 
former is proposed as an alternative to employing a 
predefined ontology of answer types, while the latter 
reduces the number of candidate answers that co-
occur frequently with the question words in web 
search snippets but are not related to the question 
intent and also eliminates the need of an n-gram as-
sembly stage, as employed in [2] and [5]. In the re-
mainder of this section, we will focus mainly on the 
two novel features of the proposed system. 

The WSQA system employs 198 question match-
ing/rewriting rules, created by one human in one per-
son day, based on the set of TREC-9 questions ([15]), 
a subset of the TREC 2004 questions ([14]), and an-
other custom development set of 150 questions. The 
only syntactic information encoded in these rules 
concerns the verb identification. The system submit-
ted to TREC 2005 uses a phrase chunker to derive the 
needed information, but additional experiments 
showed that very similar results can be obtained by 
employing just lexical and verb inflectional morphol-
ogy information about the language. 

The rules are sorted by question prefix (when, where, 
what, which, who, how many, how much, how, 
in/on/by what, and name). For each prefix, they are 
listed from the most particular to the most general. 
When presented with a question, the system tries 
each rewriting rule in order until a match is found or 
all rules are consummated. In the latter situation, a 
back-off strategy is applied, as described further in 
this section. 

Each rewriting rule is composed of one Perl-like 
question matching pattern and one or more rewriting 
patterns. Each of the rewriting patterns contains a *  
symbol, which encodes the required position of the 
answer in the text with respect to the pattern. For 
example, the rewriting rule 

When ~V<(is|was|are|were)> (.+) � 
{ 
Rewrite: $2 $1 on * AnsType: &DATE 
Rewrite: $2 $1 in * AnsType: &YEAR 
} 



transforms a question such as When is Halloween? 
into Halloween is on *  AnsType: &DATE and 
Halloween is in *  AnsType: &YEAR. 

We defined 15 standard types (DATE, MONTH, YEAR, 
PERSON, ORGANIZATION, PLACE, COUNTRY, 
NUMBER, TIME, DISTANCE, SPEED, WEIGHT, 
TEMPERATURE, CURRENCY, and PERCENTAGE), 
each being described by a regular expression, for 
example (in Perl/C# notation): 

PERCENTAGE: [0-9\.\,]+\s*(\%|percent)$ 

PERSON: ^(([A-Z](\.|[a-z]+)\s+)+([a-z\-
]+)?)?(\s*[A-Z][a-z]+)+$ 

In some patterns, the answer type is represented by 
one of the match constituents in the regular expres-
sion instead of one of the standard types, e.g.: 

What ~V<(is|are|was|were)> the (\S+) 
(of|for) (.+) � 
{ 
Rewrite: $2 $3 $4 $1 * AnsType: $2 
Rewrite: * $1 the $2 $3 $4 AnsType: $2 
} 

According to the rewrite rule above, the question 
What is the color of the sky? is rewritten as color of 
the sky is * AnsType: color and * is the color of the 
sky AnsType: color. Here, color is a generic answer 
type, obtained automatically. 

When the answer type is obtained in this way and is 
not mapped to one of the standard types, the system 
uses a web search engine to validate the matching of 
each answer candidate (e.g. blue, blue blue, result, 
grey, usually, being, often, lake, etc.) with the generic 
answer type (color). For each candidate X with an 
answer type Y, the following five quoted queries, are 
sent to the search engine: 

"Y such as the X" 
"Y such as X" 
"X is a|an Y" 
"X is the Y" 
"X Y" 

The score associated with each answer is boosted up 
based on the number of results returned by the search 
engine for each of these queries. 

Additional hypernym patterns, for example, similar 
to those employed by Hearst [7], could be used. Un-
fortunately, for each additional pattern, the system 
has to perform a number of searches on the order of 
the number of candidate answers, which means that 
every additional pattern adds a considerable compu-
tational effort.1 

                                                           
1 A number of searches for a given pattern can be 
avoided; for example, when a candidate answer con-

We now describe the usage of the rewrite patterns by 
using as example the question Q: Who killed Ken-
nedy? According to the first matching rule employed 
by our system, this question is rewritten as R1(Q): *  
killed Kennedy, R2(Q): Kennedy was killed by * , 
R3(Q): Kennedy were killed by * , and R4(Q): Ken-
nedy, killed by * , all four rewrites having the answer 
type PERSON.2 

The rewrites are sent as quoted queries to a search 
engine and the top N search result snippets are ex-
tracted (in our experiments, N = 40). Next, the system 
finds the location of the patterns in the snippets and 
hypothesizes as possible answers all word n-grams 
(in our experiments, n = 6) that appear in the position 
of the * in the pattern. For example, the rewrite R2(Q) 
retrieves from the snippet […] Some people believe 
that Kennedy was killed by Lee Harvey Oswald , act-
ing as a lone gunman […] candidates such as Lee, 
Lee Harvey, Lee Harvey Oswald, Lee Harvey Oswald 
acting, Lee Harvey Oswald acting as, and Lee Har-
vey Oswald acting as a. We then count the occur-
rences of the valid candidates3 in all snippets 
retrieved by the rewrite. Note that the longer candi-
date Lee Harvey Oswald will have a smaller count 
than its prefix Lee Harvey, which, in turn, will have a 
smaller count than the prefix Lee. In general, for a 
rewrite with the *  symbol on the rightmost position 
(henceforth, prefix pattern), multi-word candidates 
will have smaller counts then their valid candidate 
prefixes. Similarly, for a rewrite with * on the right-
most position (henceforth, suffix pattern), multi-word 
candidates will have smaller counts than their valid 
candidate suffixes. Thus, the raw counts always favor 
shorter answers. To compensate for this problem, we 
employ two strategies. The first one is to reduce the 
count of an affix when the longer candidate’s count is 
greater than a threshold, proportionally to the longer 
candidate’s count (we name these as adjusted 
counts). The second one is to ensure, as much as pos-
sible, that each rewrite rule contains rewrite patterns 
in which the position of the *  symbol varies (prefix, 
suffix, and infix), and thus, the correct answer re-
ceives counts from all types of rewrite patterns, while 
its prefixes and suffixes receive counts from only one 
type of patterns. For example, the rewrite R1(Q) (i.e. 
* killed Kennedy) retrieves as candidate answers 
Oswald, Harvey Oswald, and Lee Harvey Oswald, 

                                                                                       
tains as an affix another candidate for which no web 
results were found. 
2 Note that some patterns may be ungrammatical be-
cause the system does not use agreement information. 
3 In the provided example, the last three candidates 
are discarded immediately because they do not match 
the regular expression for the answer type PERSON. 



but not Lee and Lee Harvey, which were retrieved by 
the suffix pattern discussed previously. Typically, 
when the adjusted counts for candidate answers are 
aggregated from all rewrites, the complete, correct 
answers are obtained.  

When no rewrite rule matches a question or no web 
search results for the matching rewrite are found, the 
system backs off iteratively to search queries that use 
bags of phrases (if phrase information is available), 
bags of bigrams, and finally, bags of words (in this 
case, the search queries do not contain quoted terms). 
All non-singleton n-grams in the web search snippets 
returned by the search engine that match the answer 
pattern are selected as candidate answers. The counts 
for candidates that are affixes of other candidates are 
discounted in the same manner as for *  matches of 
rewrite patterns. When the answer type is derived 
from the question based on a rewriting rule, these 
counts are further adjusted using the validating strat-
egy described earlier. 

Because each question Q in TREC 2005 has a target 
T, we run WSQA in parallel on the original question 
Q and the target-resolved question Q(T). When using 
the rewrites for the original question, the target T is 
added as a quoted string to the queries sent to the 
search engine. The candidate answer lists are com-
bined and the adjusted counts are added up. In this 
setting, the back-off system described in the preced-
ing paragraph is employed only when the rewrites for 
both runs fail at retrieving a list of candidate answers. 
Employing a second run on the rewrites for the origi-
nal query has two advantages: it may retrieve an-
swers in which the target was referred in the same 
way it is referred in the question (e.g. pronoun), and 

it decreases the system’s dependence on accurate 
target resolution. 

2.3 Mining Structured Content on the 
Web (TQA) 

Traditional question answering systems typically 
perform complex parsing and entity extraction for 
both queries and best matching Web pages, and 
maintain local caches of pages or term weights. Our 
approach is distinguished from these in that we ex-
plicitly target the structured content which presents 
new challenges and opportunities. 

Consider the example question "When was the tele-
graph invented?" We often find that someone (per-
haps, a history buff) has created a list of all the major 
inventions and the corresponding years. In our ap-
proach, we take this idea to an extreme, and assume 
that every query or factoid question can be answered 
by some relationship expressed in a structured con-
tent (e.g., an HTML table) on the web.  

Unfortunately, HTML tables on the web rarely have 
associated metadata or schema. Hence, we use what-
ever metadata is available (e.g., surrounding text on 
the page, page title, and the URL of the originating 
page). More specifically, each structure is associated 
with a set of keywords that appear in the header, 
footer, and title of the page, and the first row of the 
table as column headers.  
Once the structures are indexed, they can be used for 
answering questions. Our framework for answering 
factoid questions over this implicitly structured con-
tent is outlined in Figure 2.1.  
 

Query: “telegraph invented”

Question Focus: telegraph

Question Analysis and Parsing

Candidate Row Selection

Candidate Answer Projection

Candidate Answer Reranking

Table1

Born                     1867
Invents lightbulb  1903
Died                     1923

Answer: “1844”

Table2

steam engine     1867
Telegraph          1844
PC                   1981

Table3

Edison            light bulb
Graham          telephone
Morse             telegraph

Table1

---    ---
---    ---
---    ---

Table0

-- --  ---
-- --  ---
-- --  ---

Table100

-- --  -  ---
-- --  -  ---
-- --  -  ---

Candidate Answers

1844       0.85   1       1    0.3  ...
Morse     0.90   0       1    0.1  ...

Ranked Answers

1844                 1
Morse            0.6

Candidate Table Retrieval

Answer Retrieval

Keyword search on 

table metadata

Figure 2.1: The Table Question Answering (TQA) framework 
 



To answer a question in our framework, we proceed 
conceptually as outlined in Algorithm 2.1: 

1. Retrieve all matching tables RT from the 
indexed tables TALL. 

2. For each table t in RT select the rows ti 
in t that match the question target. 

3. Extract answer candidates C from the un-
ion of all selected rows. 

4. Assign a score and re-rank answer candi-
dates Ci in C using the features associ-
ated with Ci. 

Return top K answer candidates. 
Algorithm 2.1: Answering factoid questions over 
structured web content. 

For our example question, the appropriate semantic 
relationship is InventionDate(Invention, Date), and a 
table snippet could be one of many instances of In-
ventionDate on the web. The selected rows in RT 
would be those containing the question target, ``tele-
graph''. 

Initially, the question is chunked and automatically 
annotated with the question target and answer type as 
described above, and converted to a keyword query. 
The query is then submitted to the search engine over 
the metadata stored for our set of tables. The meta-
data information is indexed as regular text keywords, 
and the actual table content is stored as "non-
indexed" text blob. 

In this years’  TREC QA evaluation, the question tar-
get was manually specified which allowed us to filter 
the candidate rows to include only those that match 
the target. The candidate answer strings were then 
filtered to match the answer type. For each surviving 
candidate answer string we construct a feature vector 
describing the source quality, the closeness of match, 
frequency of the candidate and other characteristics 
of the answer and the source tables from which it was 
retrieved. The answer candidates are then re-ranked 
using linear combination of (heuristically assigned) 
feature weights, and the top-scoring answer is re-
turned as the output of TQA. 

As a source of tables we used a random sample of 
100M documents from the web, obtained from the 
msnbot (MSN Search) crawler, enhanced with the 
more focused crawl of likely fact-rich websites such 
as Wikipedia and FactMonster. Overall, more than 
200 million tables were extracted and indexed for this 
evaluation.  

3 Results and Conclusions 

The systems described in this paper were developed 
from scratch for this year’s TREC evaluation and 
were initially tested on the TREC 2004 factoid QA 
evaluation. On the development set, WSQA obtained 
32.7% U-accuracy, while TQA was reached 14.9%.  

The official performance of these systems in the 
TREC 2005 evaluation is reported in Table 3.1. As 
we can see, WSQA performs well on extracting an-
swers from the web (U+R=21.8%) when the support 
for these answers in the TREC corpus is ignored. In 
contrast, TQA performs poorly, achieving only 5.5% 
exact answer accuracy even with no support required. 

Unfortunately, the WSQA system timed out for al-
most 10% on the test questions in the official run, and 
a NULL answer was submitted for those questions, 
thereby decreasing the highest possible score achiev-
able by our systems. 

Because the proposed systems are web-based, we had 
to project the hypothesized web answers on the 
TREC data by retrieving the documents in the collec-
tion that “  best support”  the answers. We used a 
rather naïve projection strategy, and therefore, our 
official strict score suffered significantly due to 
inadequate support for otherwise correct answers. 
Specifically, the WSQA score dropped from 21.8% to 
9.4% and the TQA score dropped from 5.8% to 1.7%. 
For the next TREC QA evaluation we plan to devote 
more effort into a more robust and effective answer 
projection and document-support finding component. 

Tables 3.2 and 3.3 report the official performance 
results of WSQA and TQA broken down by question 
type (“wh-“  word) and target type (“event”  or “en-
tity” ). The accuracy of WSQA for “when”  and 
“where”  questions is substantially better than the 
accuracy on other types of questions.  
 

System: WSQA TQA Combined 
Nr. right (R): 34 6 33 
Nr. unsupported (U): 45 14 47 
Nr. inexact (X): 10 1 7 
Nr. wrong (W): 273 341 275 
U + X + R accuracy: 24.6% 5.8% 24.0% 
U + R accuracy: 21.8% 5.5% 22.1% 
R accuracy: 9.4% 1.7% 9.1% 
Table 3.1: Official results for the three runs submit-
ted to the TREC 2005 QA Task. 
 

 (a) Total Correct (RU) + Partial (X) Wrong 
“When” 54 33 61.1% 2 64.8% 19 
“Where”  40 12 30.0% 5 42.5% 23 
“Who” 51 6 11.8% 1 13.7% 44 
“What”  117 14 12.0% 1 12.8% 102 
“Which”  4 0 0.0% 0 0.0% 4 
“How” 60 7 11.7% 0 11.7% 53 
Other 35 7 19.4% 1 22.2% 28 
(b)       
Entity 266 62 23.3% 7 25.9% 197 
Event 96 17 17.7% 3 20.8% 76 
Overall 362 79 21.8% 10 24.6% 273 
Table 3.2: Official results for WSQA broken down by 
(a) question prefix, and (b) target type. 



(a) Total Correct (RU) + Partial (X) Wrong 
“When” 54 7 13.0% 0 13.0% 47 
“Where”  40 3 7.5% 0 7.5% 37 
“Who” 51 2 3.9% 0 3.9% 49 
“What”  117 3 2.6% 1 3.4% 113 
“Which”  4 0 0.0% 0 0.0% 4 
“How” 60 4 6.7% 0 6.7% 56 
Other 36 1 2.8% 0 2.8% 35 
(b)       
Entity 266 14 5.3% 1 5.6% 251 
Event 96 6 6.3% 0 6.3% 90 
Overall 362 20 5.5% 10 5.8% 273 
Table 3.3: Official results for TQA broken down by 
(a) question prefix, and (b) target type. 
 
While the overall performance of TQA is low, we 
also analyze how this system performs for different 
question prefixes and target types (Table 3.3). Not 
surprisingly TQA performs better on the “when”  
questions (0.13) than on all other question types.  

Finally, we analyze the accuracy of different systems 
for varying number of top K results examined. As 
shown in Figure 3.1, the accuracy numbers of all 
systems steadily improve. The Combined system 
(COMB) retrieved the correct answer 40% of the 
time in the top six and 50% of the time in the top 15. 
Clearly, an important direction for future progress is 
the improvement of answer ranking for all systems.  
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Figure 3.1: Accuracy at K for TQA, WSQA, and COMB. 

In summary, we presented two new web-based ques-
tion answering systems that were evaluated on the 
TREC 2005 Main Question Answering task. The 
systems use complementary models of answering 
questions over unstructured and structured content on 
the Web, respectively. Despite a rather poor showing 
in our first TREC evaluation, we believe that a com-
bination of the two approaches holds promise. 

Acknowledgments 
We thank MSN Search for providing us access to their 
search engine. We also thank Eric Brill for extremely valu-
able discussions and feedback on this work. 

References 
[1] Agichtein, E. and L. Gravano. 2000. Snowball: Ex-

tracting Relations from Large Plain-Text Collections. 

[2] Brill, E., J. Lin, M. Banko, S. Dumais, and A. Ng. 
2001. Data-intensive question answering. In Proceed-
ings of TREC 2001. 

[3] Brill, E. and G. Ngai. 1999. Man vs. Machine: A Case 
Study in Base Noun Phrase Learning. In Proceedings 
of ACL 1999, pages 65-72. 

[4] Caverlee, J., L. Liu, and D. Buttler. 2004. Probe, clus-
ter, and discover: Focused extraction of qa-pagelets 
from the deep web. In Proceedings of ICDE. 

[5] Dumais, S., M. Banko, E. Brill, J. Lin, and A. Ng. 
2002. Web Question Answering: Is More Always Bet-
ter? In Proceedings of SIGIR 2002. 

[6] Etzioni, O., M. Cafarella, D. Downey, S. Kok, A. M. 
Popescu, T. Shaked, S. Soderland, D. Weld, and A. 
Yates. 2004. Web-scale information extraction in 
KnowItAll. In Proceedings of WWW 2004. 

[7] Hearst, M. A. Automated discovery of wordnet rela-
tions. 1998. In WordNet: An Electronic Lexical Data-
base. MIT Press, Cambridge, MA. 

[8] Heidorn, G. 2000. Intelligent Writing Assistance. In A 
Handbook of Natural Language Processing: Tech-
niques and Applications for the Processing of Lan-
guage as Text. Marcel Dekker, NY, 181-207. 

[9] Hildebrandt W., B. Katz, and J. Lin. 2004. Answering 
Definition Questions with Multiple Knowledge 
Sources. In Proceedings of HLT/NAACL 2004. 

[10] Keller, F., M. Lapata, and O. Ouriopina. 2002. Using 
the web to overcome data sparseness. In Proceedings 
of EMNLP 2002, pages 230-237. 

[11] Kwok, C. C. T., O. Etzioni, and D. S. Weld. 2001. 
Scaling question answering to the web. In Proceedings 
of the World Wide Web Conference 2001. 

[12] Radev, D., H. Qi, Z. Zheng, S. Blair-Goldstein, Z. 
Zhang, W. Fan, and J. Prager. 2001. Miningthe Web 
for Anwers to Natural Language Questions. In Pro-
ceedings of CIKM 2001. 

[13] Ramakrishnan, G., S. Chakrabarti, D. Paranjpe, and P. 
Bhattacharyya. 2004. Is question answering an ac-
quired skill? In Proceedings of the World Wide Web 
Conference 2004. 

[14] Voorhees, E. M. 2004. Overview of TREC 2004. In 
NIST Special Publication 500-261: The Thirteenth 
Text REtrieval Conference Proceedings (TREC 2004), 
pages 1-12. 

[15] Voorhees, E. M. and D. Harman. 2000. Overview of 
the Ninth Text REtrieval Conference (TREC-9). In 
NIST Special Publication 500-249: The Ninth Text 
REtrieval Conference (TREC-9) 2000, pages 1-14. 

[16] Zhu, X. and R. Rosenfeld. Improving Trigram Lan-
guage Modeling with the World Wide Web. In Pro-
ceedings of ICASSP 2001, pages 592-597. 


