
Factoid Question Answering over Unstructured and Structured
Web Content

Silviu Cucerzan and Eugene Agichtein
Microsoft Research
One Microsoft Way

Redmond, WA 98052
{ silviu,eugeneag} @microsoft.com

Abstract

We describe our experience with two new, built-
from-scratch, web-based question answering sys-
tems applied to the TREC 2005 Main Question
Answering task, which use complementary models
of answering questions over both structured and
unstructured content on the Web. Our approaches
depart from previous question answering (QA)
work in several ways. For unstructured content, we
used a web-based system with novel features such
as web snippet pattern matching and generic an-
swer type matching using web counts. We also ex-
perimented with a new, complementary question
answering approach that uses information from the
millions of tables and lists that abound on the web.
This system attempts to answer factoid ques-
tions by guessing relevant rows and fields in
matching web tables and integrating the results.
We believe a combination of the two approaches
holds promise.

1 Introduction and Previous Work

The systems described in this paper are entirely web-
based and explore two different research directions:
one is to employ a web search engine to mine text
web pages (unstructured web information hence-
forth), the other to employ the already structured web
information in the form of html tables, which typi-
cally summarize various relations of interest to web
users.

There has been a substantial amount of work on using
web information and search engines for TREC QA,
starting from the premise that a data collection such
as the TREC corpus has considerably less answer
redundancy than the web and thus, it is easier to
match a question to the web data, to extract answers
from the matching text, and then project these an-
swers on the restricted data collection (e.g. Brill et al.
[2], Radev et al. [12], Ramakrishnan et al. [13]).

Most of the published web-based QA systems focus
on one language (English) and employ advanced
natural language processing tools and/or extensive

hierarchies of answer matching rules and answer
types. From a practical perspective (i.e., having a
search engine handle natural language questions in all
markets in which it is deployed), such assumptions
cannot be made. While previous approaches investi-
gated how to scale current paradigms to general QA
on the web (e.g. Kwok [11]), one of our main goals
was to determine what performance can be achieved
with a moderate annotation effort (in our case, one
person-day) by a web-based QA system.

Because previous research on question answering
largely ignored existing html tables and focused ei-
ther on natural language text from web pages or
online databases, another important goal of this work
is to investigate a new way of using the existent
structured information on the web to retrieve answers
to factoid questions. By exploiting the explicit tabular
structures created by the web document authors, we
can, in principle, get natural language understanding
“ for free” and hence, advance the applicability and
scalability of question answering.

There have been many efforts to extract structured
information from the web. Previous approaches (e.g.,
Agichtein and Gravano [1], Etzioni et al. [6]) focused
on extracting specific relationships (e.g., "is a"),
which can then be used to answer the specific ques-
tions that these relationships support (e.g., "who is
X"). In this work, we attempt to support any question
by finding the structured table(s) on the web where
this question was already answered. Unfortunately,
many of the most useful tables do not contain the text
patterns these systems look for. By indexing “all”
potentially useful tables we are more likely to
achieve high coverage of user’s questions.

In a closely related study, Hildebrandt et al. [9] used
a large number of dictionaries and lists, some of
which were constructed dynamically by querying
sites such as Amazon. Unlike in our approach, the
lists were specific and were constructed in advance
for each question type. To the best of our knowledge,
our study is the first attempt to integrate, index, and
exploit millions of tables for question answering.

2 Systems Description

2.1 Common System Architecture

Figure 1 outlines the architecture of the two proposed
systems. In this section, we describe the pre-
processing and post-processing blocks common to
both systems. Sections 2.2 and 2.3 present in detail
the novel features of these systems.

In a first step, a question to be answered is passed
through a phrase chunker (derived from the parsing
system described in Heidorn, 2000) to extract infor-
mation about the verbs, pronouns, and noun phrases
in the question. The pronoun and noun phrase infor-
mation is used to resolve the references to the ques-
tion target, based on a small set of resolution
heuristics. The verb information is used further by the
WSQA system, as it will be described in Section 2.2.

Figure 1. Overall System Architecture

Then, the WSQA system attempts to guess the an-
swer type by using rewrite rules, as described in Sec-
tion 2.2. This information is provided to both WSQA
and TQA systems, which attempt to answer the ques-
tion using unstructured and respectively, structured
web content. Optionally, the lists of candidate an-
swers returned by the WSQA and the TQA systems
can be combined. We employed a linear mixture
strategy that combines the lists using the normalized
score associated with the answers by the two systems,
the overlap between proposed answers, and the ex-
pected accuracy of each of the systems.

The top candidate answer is then projected onto the
AQUAINT corpus to find document support.

The projection was done by simply retrieving the
document that best matched both the query and the
candidate answer. Finally, the highest scoring answer
and its support document are returned.

2.2 Mining Unstructured Web Content
(WSQA)

For unstructured content, we used a web-based QA
system inspired from the AskMSR structural design
(Brill et al. [2]), which does not make use of ad-
vanced NLP tools. This system employs two novel
ideas related to generic answer type matching using
web counts and web snippet pattern matching. The
former is proposed as an alternative to employing a
predefined ontology of answer types, while the latter
reduces the number of candidate answers that co-
occur frequently with the question words in web
search snippets but are not related to the question
intent and also eliminates the need of an n-gram as-
sembly stage, as employed in [2] and [5]. In the re-
mainder of this section, we will focus mainly on the
two novel features of the proposed system.

The WSQA system employs 198 question match-
ing/rewriting rules, created by one human in one per-
son day, based on the set of TREC-9 questions ([15]),
a subset of the TREC 2004 questions ([14]), and an-
other custom development set of 150 questions. The
only syntactic information encoded in these rules
concerns the verb identification. The system submit-
ted to TREC 2005 uses a phrase chunker to derive the
needed information, but additional experiments
showed that very similar results can be obtained by
employing just lexical and verb inflectional morphol-
ogy information about the language.

The rules are sorted by question prefix (when, where,
what, which, who, how many, how much, how,
in/on/by what, and name). For each prefix, they are
listed from the most particular to the most general.
When presented with a question, the system tries
each rewriting rule in order until a match is found or
all rules are consummated. In the latter situation, a
back-off strategy is applied, as described further in
this section.

Each rewriting rule is composed of one Perl-like
question matching pattern and one or more rewriting
patterns. Each of the rewriting patterns contains a *
symbol, which encodes the required position of the
answer in the text with respect to the pattern. For
example, the rewriting rule

When ~V<(is|was|are|were)> (.+) �
{
Rewrite: $2 $1 on * AnsType: &DATE
Rewrite: $2 $1 in * AnsType: &YEAR
}

transforms a question such as When is Halloween?
into Halloween is on * AnsType: &DATE and
Halloween is in * AnsType: &YEAR.

We defined 15 standard types (DATE, MONTH, YEAR,
PERSON, ORGANIZATION, PLACE, COUNTRY,
NUMBER, TIME, DISTANCE, SPEED, WEIGHT,
TEMPERATURE, CURRENCY, and PERCENTAGE),
each being described by a regular expression, for
example (in Perl/C# notation):

PERCENTAGE: [0-9\.\,]+\s*(\%|percent)$

PERSON: ^(([A-Z](\.|[a-z]+)\s+)+([a-z\-
]+)?)?(\s*[A-Z][a-z]+)+$

In some patterns, the answer type is represented by
one of the match constituents in the regular expres-
sion instead of one of the standard types, e.g.:

What ~V<(is|are|was|were)> the (\S+)
(of|for) (.+) �
{
Rewrite: $2 $3 $4 $1 * AnsType: $2
Rewrite: * $1 the $2 $3 $4 AnsType: $2
}

According to the rewrite rule above, the question
What is the color of the sky? is rewritten as color of
the sky is * AnsType: color and * is the color of the
sky AnsType: color. Here, color is a generic answer
type, obtained automatically.

When the answer type is obtained in this way and is
not mapped to one of the standard types, the system
uses a web search engine to validate the matching of
each answer candidate (e.g. blue, blue blue, result,
grey, usually, being, often, lake, etc.) with the generic
answer type (color). For each candidate X with an
answer type Y, the following five quoted queries, are
sent to the search engine:

"Y such as the X"
"Y such as X"
"X is a|an Y"
"X is the Y"
"X Y"

The score associated with each answer is boosted up
based on the number of results returned by the search
engine for each of these queries.

Additional hypernym patterns, for example, similar
to those employed by Hearst [7], could be used. Un-
fortunately, for each additional pattern, the system
has to perform a number of searches on the order of
the number of candidate answers, which means that
every additional pattern adds a considerable compu-
tational effort.1

1 A number of searches for a given pattern can be
avoided; for example, when a candidate answer con-

We now describe the usage of the rewrite patterns by
using as example the question Q: Who killed Ken-
nedy? According to the first matching rule employed
by our system, this question is rewritten as R1(Q): *
killed Kennedy, R2(Q): Kennedy was killed by * ,
R3(Q): Kennedy were killed by * , and R4(Q): Ken-
nedy, killed by * , all four rewrites having the answer
type PERSON.2

The rewrites are sent as quoted queries to a search
engine and the top N search result snippets are ex-
tracted (in our experiments, N = 40). Next, the system
finds the location of the patterns in the snippets and
hypothesizes as possible answers all word n-grams
(in our experiments, n = 6) that appear in the position
of the * in the pattern. For example, the rewrite R2(Q)
retrieves from the snippet […] Some people believe
that Kennedy was killed by Lee Harvey Oswald , act-
ing as a lone gunman […] candidates such as Lee,
Lee Harvey, Lee Harvey Oswald, Lee Harvey Oswald
acting, Lee Harvey Oswald acting as, and Lee Har-
vey Oswald acting as a. We then count the occur-
rences of the valid candidates3 in all snippets
retrieved by the rewrite. Note that the longer candi-
date Lee Harvey Oswald will have a smaller count
than its prefix Lee Harvey, which, in turn, will have a
smaller count than the prefix Lee. In general, for a
rewrite with the * symbol on the rightmost position
(henceforth, prefix pattern), multi-word candidates
will have smaller counts then their valid candidate
prefixes. Similarly, for a rewrite with * on the right-
most position (henceforth, suffix pattern), multi-word
candidates will have smaller counts than their valid
candidate suffixes. Thus, the raw counts always favor
shorter answers. To compensate for this problem, we
employ two strategies. The first one is to reduce the
count of an affix when the longer candidate’s count is
greater than a threshold, proportionally to the longer
candidate’s count (we name these as adjusted
counts). The second one is to ensure, as much as pos-
sible, that each rewrite rule contains rewrite patterns
in which the position of the * symbol varies (prefix,
suffix, and infix), and thus, the correct answer re-
ceives counts from all types of rewrite patterns, while
its prefixes and suffixes receive counts from only one
type of patterns. For example, the rewrite R1(Q) (i.e.
* killed Kennedy) retrieves as candidate answers
Oswald, Harvey Oswald, and Lee Harvey Oswald,

tains as an affix another candidate for which no web
results were found.
2 Note that some patterns may be ungrammatical be-
cause the system does not use agreement information.
3 In the provided example, the last three candidates
are discarded immediately because they do not match
the regular expression for the answer type PERSON.

but not Lee and Lee Harvey, which were retrieved by
the suffix pattern discussed previously. Typically,
when the adjusted counts for candidate answers are
aggregated from all rewrites, the complete, correct
answers are obtained.

When no rewrite rule matches a question or no web
search results for the matching rewrite are found, the
system backs off iteratively to search queries that use
bags of phrases (if phrase information is available),
bags of bigrams, and finally, bags of words (in this
case, the search queries do not contain quoted terms).
All non-singleton n-grams in the web search snippets
returned by the search engine that match the answer
pattern are selected as candidate answers. The counts
for candidates that are affixes of other candidates are
discounted in the same manner as for * matches of
rewrite patterns. When the answer type is derived
from the question based on a rewriting rule, these
counts are further adjusted using the validating strat-
egy described earlier.

Because each question Q in TREC 2005 has a target
T, we run WSQA in parallel on the original question
Q and the target-resolved question Q(T). When using
the rewrites for the original question, the target T is
added as a quoted string to the queries sent to the
search engine. The candidate answer lists are com-
bined and the adjusted counts are added up. In this
setting, the back-off system described in the preced-
ing paragraph is employed only when the rewrites for
both runs fail at retrieving a list of candidate answers.
Employing a second run on the rewrites for the origi-
nal query has two advantages: it may retrieve an-
swers in which the target was referred in the same
way it is referred in the question (e.g. pronoun), and

it decreases the system’s dependence on accurate
target resolution.

2.3 Mining Structured Content on the
Web (TQA)

Traditional question answering systems typically
perform complex parsing and entity extraction for
both queries and best matching Web pages, and
maintain local caches of pages or term weights. Our
approach is distinguished from these in that we ex-
plicitly target the structured content which presents
new challenges and opportunities.

Consider the example question "When was the tele-
graph invented?" We often find that someone (per-
haps, a history buff) has created a list of all the major
inventions and the corresponding years. In our ap-
proach, we take this idea to an extreme, and assume
that every query or factoid question can be answered
by some relationship expressed in a structured con-
tent (e.g., an HTML table) on the web.

Unfortunately, HTML tables on the web rarely have
associated metadata or schema. Hence, we use what-
ever metadata is available (e.g., surrounding text on
the page, page title, and the URL of the originating
page). More specifically, each structure is associated
with a set of keywords that appear in the header,
footer, and title of the page, and the first row of the
table as column headers.
Once the structures are indexed, they can be used for
answering questions. Our framework for answering
factoid questions over this implicitly structured con-
tent is outlined in Figure 2.1.

Query: “telegraph invented”

Question Focus: telegraph

Question Analysis and Parsing

Candidate Row Selection

Candidate Answer Projection

Candidate Answer Reranking

Table1

Born 1867
Invents lightbulb 1903
Died 1923

Answer: “1844”

Table2

steam engine 1867
Telegraph 1844
PC 1981

Table3

Edison light bulb
Graham telephone
Morse telegraph

Table1

--- ---
--- ---
--- ---

Table0

-- -- ---
-- -- ---
-- -- ---

Table100

-- -- - ---
-- -- - ---
-- -- - ---

Candidate Answers

1844 0.85 1 1 0.3 ...
Morse 0.90 0 1 0.1 ...

Ranked Answers

1844 1
Morse 0.6

Candidate Table Retrieval

Answer Retrieval

Keyword search on

table metadata

Figure 2.1: The Table Question Answering (TQA) framework

To answer a question in our framework, we proceed
conceptually as outlined in Algorithm 2.1:

1. Retrieve all matching tables RT from the
indexed tables TALL.

2. For each table t in RT select the rows ti
in t that match the question target.

3. Extract answer candidates C from the un-
ion of all selected rows.

4. Assign a score and re-rank answer candi-
dates Ci in C using the features associ-
ated with Ci.

Return top K answer candidates.
Algorithm 2.1: Answering factoid questions over
structured web content.

For our example question, the appropriate semantic
relationship is InventionDate(Invention, Date), and a
table snippet could be one of many instances of In-
ventionDate on the web. The selected rows in RT
would be those containing the question target, ``tele-
graph''.

Initially, the question is chunked and automatically
annotated with the question target and answer type as
described above, and converted to a keyword query.
The query is then submitted to the search engine over
the metadata stored for our set of tables. The meta-
data information is indexed as regular text keywords,
and the actual table content is stored as "non-
indexed" text blob.

In this years’ TREC QA evaluation, the question tar-
get was manually specified which allowed us to filter
the candidate rows to include only those that match
the target. The candidate answer strings were then
filtered to match the answer type. For each surviving
candidate answer string we construct a feature vector
describing the source quality, the closeness of match,
frequency of the candidate and other characteristics
of the answer and the source tables from which it was
retrieved. The answer candidates are then re-ranked
using linear combination of (heuristically assigned)
feature weights, and the top-scoring answer is re-
turned as the output of TQA.

As a source of tables we used a random sample of
100M documents from the web, obtained from the
msnbot (MSN Search) crawler, enhanced with the
more focused crawl of likely fact-rich websites such
as Wikipedia and FactMonster. Overall, more than
200 million tables were extracted and indexed for this
evaluation.

3 Results and Conclusions

The systems described in this paper were developed
from scratch for this year’s TREC evaluation and
were initially tested on the TREC 2004 factoid QA
evaluation. On the development set, WSQA obtained
32.7% U-accuracy, while TQA was reached 14.9%.

The official performance of these systems in the
TREC 2005 evaluation is reported in Table 3.1. As
we can see, WSQA performs well on extracting an-
swers from the web (U+R=21.8%) when the support
for these answers in the TREC corpus is ignored. In
contrast, TQA performs poorly, achieving only 5.5%
exact answer accuracy even with no support required.

Unfortunately, the WSQA system timed out for al-
most 10% on the test questions in the official run, and
a NULL answer was submitted for those questions,
thereby decreasing the highest possible score achiev-
able by our systems.

Because the proposed systems are web-based, we had
to project the hypothesized web answers on the
TREC data by retrieving the documents in the collec-
tion that “ best support” the answers. We used a
rather naïve projection strategy, and therefore, our
official strict score suffered significantly due to
inadequate support for otherwise correct answers.
Specifically, the WSQA score dropped from 21.8% to
9.4% and the TQA score dropped from 5.8% to 1.7%.
For the next TREC QA evaluation we plan to devote
more effort into a more robust and effective answer
projection and document-support finding component.

Tables 3.2 and 3.3 report the official performance
results of WSQA and TQA broken down by question
type (“wh-“ word) and target type (“event” or “en-
tity”). The accuracy of WSQA for “when” and
“where” questions is substantially better than the
accuracy on other types of questions.

System: WSQA TQA Combined
Nr. right (R): 34 6 33
Nr. unsupported (U): 45 14 47
Nr. inexact (X): 10 1 7
Nr. wrong (W): 273 341 275
U + X + R accuracy: 24.6% 5.8% 24.0%
U + R accuracy: 21.8% 5.5% 22.1%
R accuracy: 9.4% 1.7% 9.1%
Table 3.1: Official results for the three runs submit-
ted to the TREC 2005 QA Task.

 (a) Total Correct (RU) + Partial (X) Wrong
“When” 54 33 61.1% 2 64.8% 19
“Where” 40 12 30.0% 5 42.5% 23
“Who” 51 6 11.8% 1 13.7% 44
“What” 117 14 12.0% 1 12.8% 102
“Which” 4 0 0.0% 0 0.0% 4
“How” 60 7 11.7% 0 11.7% 53
Other 35 7 19.4% 1 22.2% 28
(b)
Entity 266 62 23.3% 7 25.9% 197
Event 96 17 17.7% 3 20.8% 76
Overall 362 79 21.8% 10 24.6% 273
Table 3.2: Official results for WSQA broken down by
(a) question prefix, and (b) target type.

(a) Total Correct (RU) + Partial (X) Wrong
“When” 54 7 13.0% 0 13.0% 47
“Where” 40 3 7.5% 0 7.5% 37
“Who” 51 2 3.9% 0 3.9% 49
“What” 117 3 2.6% 1 3.4% 113
“Which” 4 0 0.0% 0 0.0% 4
“How” 60 4 6.7% 0 6.7% 56
Other 36 1 2.8% 0 2.8% 35
(b)
Entity 266 14 5.3% 1 5.6% 251
Event 96 6 6.3% 0 6.3% 90
Overall 362 20 5.5% 10 5.8% 273
Table 3.3: Official results for TQA broken down by
(a) question prefix, and (b) target type.

While the overall performance of TQA is low, we
also analyze how this system performs for different
question prefixes and target types (Table 3.3). Not
surprisingly TQA performs better on the “when”
questions (0.13) than on all other question types.

Finally, we analyze the accuracy of different systems
for varying number of top K results examined. As
shown in Figure 3.1, the accuracy numbers of all
systems steadily improve. The Combined system
(COMB) retrieved the correct answer 40% of the
time in the top six and 50% of the time in the top 15.
Clearly, an important direction for future progress is
the improvement of answer ranking for all systems.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 2 3 4 5 6 7 8 9 10 12 13 14 15

K

A
cc

u
ra

cy
 a

t K

TQA
WSQA
COMB

Figure 3.1: Accuracy at K for TQA, WSQA, and COMB.

In summary, we presented two new web-based ques-
tion answering systems that were evaluated on the
TREC 2005 Main Question Answering task. The
systems use complementary models of answering
questions over unstructured and structured content on
the Web, respectively. Despite a rather poor showing
in our first TREC evaluation, we believe that a com-
bination of the two approaches holds promise.

Acknowledgments
We thank MSN Search for providing us access to their
search engine. We also thank Eric Brill for extremely valu-
able discussions and feedback on this work.

References
[1] Agichtein, E. and L. Gravano. 2000. Snowball: Ex-

tracting Relations from Large Plain-Text Collections.

[2] Brill, E., J. Lin, M. Banko, S. Dumais, and A. Ng.
2001. Data-intensive question answering. In Proceed-
ings of TREC 2001.

[3] Brill, E. and G. Ngai. 1999. Man vs. Machine: A Case
Study in Base Noun Phrase Learning. In Proceedings
of ACL 1999, pages 65-72.

[4] Caverlee, J., L. Liu, and D. Buttler. 2004. Probe, clus-
ter, and discover: Focused extraction of qa-pagelets
from the deep web. In Proceedings of ICDE.

[5] Dumais, S., M. Banko, E. Brill, J. Lin, and A. Ng.
2002. Web Question Answering: Is More Always Bet-
ter? In Proceedings of SIGIR 2002.

[6] Etzioni, O., M. Cafarella, D. Downey, S. Kok, A. M.
Popescu, T. Shaked, S. Soderland, D. Weld, and A.
Yates. 2004. Web-scale information extraction in
KnowItAll. In Proceedings of WWW 2004.

[7] Hearst, M. A. Automated discovery of wordnet rela-
tions. 1998. In WordNet: An Electronic Lexical Data-
base. MIT Press, Cambridge, MA.

[8] Heidorn, G. 2000. Intelligent Writing Assistance. In A
Handbook of Natural Language Processing: Tech-
niques and Applications for the Processing of Lan-
guage as Text. Marcel Dekker, NY, 181-207.

[9] Hildebrandt W., B. Katz, and J. Lin. 2004. Answering
Definition Questions with Multiple Knowledge
Sources. In Proceedings of HLT/NAACL 2004.

[10] Keller, F., M. Lapata, and O. Ouriopina. 2002. Using
the web to overcome data sparseness. In Proceedings
of EMNLP 2002, pages 230-237.

[11] Kwok, C. C. T., O. Etzioni, and D. S. Weld. 2001.
Scaling question answering to the web. In Proceedings
of the World Wide Web Conference 2001.

[12] Radev, D., H. Qi, Z. Zheng, S. Blair-Goldstein, Z.
Zhang, W. Fan, and J. Prager. 2001. Miningthe Web
for Anwers to Natural Language Questions. In Pro-
ceedings of CIKM 2001.

[13] Ramakrishnan, G., S. Chakrabarti, D. Paranjpe, and P.
Bhattacharyya. 2004. Is question answering an ac-
quired skill? In Proceedings of the World Wide Web
Conference 2004.

[14] Voorhees, E. M. 2004. Overview of TREC 2004. In
NIST Special Publication 500-261: The Thirteenth
Text REtrieval Conference Proceedings (TREC 2004),
pages 1-12.

[15] Voorhees, E. M. and D. Harman. 2000. Overview of
the Ninth Text REtrieval Conference (TREC-9). In
NIST Special Publication 500-249: The Ninth Text
REtrieval Conference (TREC-9) 2000, pages 1-14.

[16] Zhu, X. and R. Rosenfeld. Improving Trigram Lan-
guage Modeling with the World Wide Web. In Pro-
ceedings of ICASSP 2001, pages 592-597.

