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Abstract

This paper describes the SpamBayes submissions made to the Spam Track of the 2005 Text  
Retrieval Conference (TREC).  SpamBayes is briefly introduced, but the paper focuses more on  
how  the  submissions  differ  from  the  standard  installation.  Unlike  in  the  majority  of  earlier  
publications evaluating the effectiveness of SpamBayes, the fundamental ‘unsure’ range is discussed,  
and the method of removing the range is outlined.  Finally, an analysis of the results of the running  
the four submissions through the Spam Track ‘jig’ with the three private corpora and one public  
corpus is made.

1 SpamBayes
SpamBayes [1] was born on August 19th 2002, soon after publication of  A Plan for Spam [2]; Tim Peters and others 
involved with the Python development community developed code based on Graham’s ideas, with the initial aim of 
filtering python.org mailing-list traffic, although this quickly progressed to also filtering personal email streams (today, 
although most python.org mailing lists do use SpamBayes, the overwhelmingly most common use of SpamBayes is for 
personal email filtering).  Although the project initially started with Graham’s original combining scheme, it currently 
uses the chi-squared combining scheme developed by Robinson.

The SpamBayes distribution includes a plug-in for Microsoft™ Outlook™, a generic POP3 proxy and IMAP4 filter, 
various command-line scripts, and a suite of tools for testing modifications of the tokenization/classification systems. 
The software is free1, released under the Python Software Foundation Licence.  A basic introduction to the distribution 
can be found in [3].  The testing outlined in this paper used version 1.1a1; the only modifications were adjustments of 
the client/server architecture to improve the speed of the TREC testing.

2 TREC 2005 Spam Track Corpora
This paper covers results from testing SpamBayes with the three 2005 TREC spam track private corpora, and the 2005 
TREC spam track public corpus (the full corpus, and four subset variants).  As the author had access to the TM corpus 
prior to the 2005 TREC spam track submission, no consideration will be made of the results of the runs against this 
corpus in this paper, although these runs were performed (results were generally similar to those of the Public and MrX 
corpora).  Table 1 outlines the vital statistics for each of the copora; more details about the composition of the eight 
corpora, including a detailed explanation of the creation of the  Public corpus and a breakdown of the  SB corpus into 
both ham and spam genre can be found in the overview of the spam track for TREC 2005 [4].

1 Beer and speech.



3 Handling the ‘unsure’ range
3.1 The unsure range in practice
SpamBayes  uses  Robinson’s  chi-squared  probabilities  combining  scheme  [5].   A  chi-squared  test  calculates  the 
probability that a particular distribution matches a hypothesis (in this case that the message is spam and, separately, that 
the message is ham).  The results of these two chi-squared tests are then combined and scaled to give an overall message 
spam score in the range 0 to 1.  The ‘unsure’ middle ground is defined as any message with a final score falling between 
an upper and lower bound.  In the SpamBayes distribution, the default unsure range is a message with a final combined 
spam score between 0.20 and 0.90; this lack of symmetry reflects an aversion to false positives.  Messages tend to score 
at the extremes of the range, apart from difficult to classify messages (those that strongly resemble both ham and spam, 
and those that do not resemble either) which fall near 0.5.

Corpus # Ham # Spam Ham::Spam Ratio
MrX 9038 40048 0.23::1
SB 6231 775 8.04::1
TM 150685 19516 7.72::1
Public (Full) 39399 52790 0.75::1
Public (Ham 25) 9751 52790 0.18::1
Public (Ham 50) 19586 52790 0.37::1
Public (Spam 25) 39399 13179 2.99::1
Public (Spam 50) 39399 26283 1.50::1
Table 1: Breakdown of testing corpora.

A remarkable property of chi-combining is that people have generally been sympathetic to its ‘unsure’ ratings: people 
usually agree that messages classed unsure really are hard to categorize. For example, commercial HTML email from a 
company you do business with is quite likely to score as unsure the first time the classifier sees such a message from a 
particular company. Spam and commercial email both use the language and devices of advertising heavily, so it is hard to 
tell  them apart.  Training quickly teaches the system how to identify desired commercial  email  by picking up clues, 
ranging from which company sent it and how they addressed you, to the kinds of products and services it offers.

SpamBayes users typically experience no false positives; this is not from an inherent strength of SpamBayes over similar 
statistical (or other) filters, but as a result of the unsure range.  Essentially, the messages that would otherwise have been 
false positives are classified as unsure.  The advantage of this system is that the volume of mail that the user must scan to 
find  errors  (both false  positives  and  false  negatives)  is  greatly  reduced;  typically  between one and  five  percent  of 
messages are classified as unsure, which is generally much lower than the percentage of mail that is spam.

As a result, users are more likely to take the time to scan the unsure folder than they would be to scan the entire spam 
folder, more able to identify the correct classification (rather than missing a false positive in a crowded spam folder) and 
more likely to appropriately train messages therein.  The disadvantage of this system is that the percentage of messages 
that are classified as unsure is typically higher than the combined percentage of false negative and false positive messages 
obtained when using a classifier that does not include an unsure range.  In simple terms, more messages must be 
manually corrected, but fewer messages must be manually examined.

3.2 Treatment of the unsure range for TREC 2005
Although any spam filter that generates a score (rather than a simple binary decision) for messages could be adapted to 
include an unsure range, the range is fundamental to the classifier that SpamBayes currently uses; there are three distinct 



clusters  of  messages  scores  (near  0.0,  near  0.5,  and  near  1.0).   Note  that  the  classification  is  not  a  true  ternary 
classification, however, such as systems like POPFile [6] and CRM114 [7] may provide, merely a method of distributing 
the message scores across the potential 0.0 – 1.0 range.

The difficulty arises when attempting to utilise SpamBayes as a simpler binary decision engine, requiring a “ham” or 
“spam” output.  The options are to either change the combining scheme that is used, or to set the ham-unsure and 
unsure-spam thresholds to the same value; while using a different combining scheme is likely to be more effective, this 
then considerably changes the method that SpamBayes is using, distancing any test results from results that could be 
expected from ‘real life’ usage.  As such, for the purposes of the TREC spam track, the single-threshold technique was 
used – the resulting question is then to decide what value to assign to this threshold.

While 0.5 is the most obvious choice, in practice, the unsure range tends to include more spam than ham; this is most 
likely the result of both the growing ham::spam imbalance in the average mail stream and the greater homogeneity 
(particularly over time) of ham as compared to spam.  With this consideration, a threshold value around 0.4 would likely 
produce the best  results.   However,  the lower the threshold is,  the greater the chance of incurring additional false 
positives; since a false positive is generally considered many times worse than a false negative, the threshold for all four 
variants of the 2005 TREC spam track runs was set to 0.6 (incurring additional false negatives in order to avoid as many 
false positives as possible).

The figure of 0.6 was chosen fairly arbitrarily; little analysis was done to determine an optimal value.  The primary reason 
for this is that it is the score output (see ROC analysis below) that is of more interest to the author than the simple false 
negative/false positives results; in addition, it appears that the balance of ham and spam in the unsure range is highly 
sensitive  to  the  balance  of  ham and  spam in  the  entire  mail  stream,  which  was  an  unknown factor  in  the  tests. 
Automatic adjustment of the thresholds during the run was considered unnecessary, due both to the greater interest in 
the ROC analysis and the desire to keep the simulation as similar to ‘real use’ of SpamBayes as possible.

4 Run Variants
Four variants of the SpamBayes distribution were submitted to the 2005 TREC spam track; all four variants included the 
same files, with selection of the variant completed by a simple script that selected the training script and SpamBayes 
configuration file to use.  All four variants are possible using the standard SpamBayes distribution.

4.1 tam1 – train-on-everything/defaults
The first submission, tam1, uses all the default settings in the 1.1a1 SpamBayes distribution, other than the 0.6 value for 
the ham and spam thresholds (as above); this is also identical to the SpamBayes sample script provided in the initial 2005 
TREC spam track ‘jig’, other than the threshold values, which were there set to 0.9.  A brief outline of the tokenization 
methods used can be found in [3].  The training regime used in tam is train-on-everything.  Every message is trained with 
the correct classification immediately after classification, and before any further message is classified.

This technique provides the classifier with the most information, but not necessarily the highest quality information; 
previous  testing  [8,  9]  has  shown that  more  minimalist  training  regimes  are  not  only  faster  and  result  in  smaller 
databases,  but  deliver  superior  results.   The  expectation  was  that  tam1 would  be  the  least  effective  of  the  four 
submissions, and was primarily intended as a base with which to compare the other results.

4.2 tam2 – fpfnunsure/bigrams
While early testing [10] showed that using either character or word n-grams was less effective than simple split-on-white-
space unigrams, in late 2002 Robinson and Robert Woodhead independently came up with an idea for using both 



unigrams  and  bigrams,  with  a  twist  to  avoid  generating  highly  correlated  clues.   This  idea  was  cleaned  up  and 
implemented by Peters, although it was only added to the SpamBayes code in late 2003; the technique is further outlined 
in [3].

The tam2 submission differs from tam1 in only two respects: it enables the use_bigrams scheme outlined above (retaining 
default values for all  non-threshold options as in  tam1),  and it  uses the  fpfnunsure training regime (train on all  false 
positives,  false  negatives,  and  unsure  messages2)  rather  than  train-on-everything.   This  is  the  training  regime  that 
SpamBayes recommends users employ.  Previous testing has indicated that the tiled unigram/bigram scheme delivers 
superior results in almost (but not all) corpora [3]; as above, testing has also indicated that a fpfnunsure training regime is 
always superior to train-on-everything.

As a  result,  the expectation was that  tam2 would considerably outperform  tam1;  one complication is  that the tiled 
unigram/bigram scheme does often increase the number of messages in the ‘unsure’ range, which is treated unusually 
(for SpamBayes) in the TREC submission.  In addition, some previous testing [3] has shown the tiled unigram/bigram 
scheme to decrease accuracy when used in an ‘incremental’ testing setup (e.g. the incremental setup in [3], and the 2005 
TREC spam track jig), rather than in cross-validation testing; this is at odds with the anecdotal evidence of use of the 
scheme in practice, however.

4.3 tam3 – train-to-exhaustion/bigrams
The third SpamBayes submission, tam3, uses identical tokenisation and classification options to tam2, but uses the train-
to-exhaustion training regime.  ‘Training to exhaustion’ [11] is a regime developed by Gary Robinson that resembles the 
perceptron algorithm [12].   In this regime, a collection of ham and spam are repeatedly trained (using any training 
method, although typically not train-on-everything; here fpfnunsure is used) until all messages in the collection are able to 
be successfully classified, or an iteration limit is reached.  The regime aims to find the smallest subset of messages that,  
when trained on, will correctly identify the largest subset of messages.

Although  previous  testing  [8]  has  indicated  that  train-to-exhaustion  delivers  results  that  are  superior  to  train-on-
everything, non-edge training,  fpfnunsure, and fpfn, the training regime is much more resource intensive than any of the 
other regimes.  In each iteration, all messages in the collection must be reclassified (whereas in the other regimes, no 
reclassification is  done),  and multiple  messages may be trained (whereas  in  the  other  regimes,  a  maximum of  one 
message is trained).  In addition, more than one iteration is likely to be required (for tam3 and tam4 a maximum of ten 
iterations was permitted).  The regime is therefore more suitable to batch training than training after every message.

The initial concept for using train-to-exhaustion with  tam3 and  tam4 was to include the entire known corpus in the 
training collection (i.e. after classifying 5,000 messages, there would be 5,000 messages in the training collection).  This 
proved to be far too slow with large corpora, however, and so the final submission used the most recent 1,000 ham and 
1,000 spam (for the first 1000 ham and 1,000 spam, all available messages were used).  Although a batch training mode 
could have been used (e.g. only training every hundredth message, or at the end of every ‘day’), the submissions used the 
simpler method of executing a full, 2,000 message, 10-iteration-maximum, train-to-exhaustion cycle for every incorrectly 
classified message.

This technique proved far too slow in practice, far exceeding the two-second-per-message intended limit for the spam 
track jig.  As a result, the larger corpora (the public corpus, in all but one variation, and the TM corpus) did not complete 

2 With typical SpamBayes use, where the unsure range is present, this regime differs from fpfn (false positives, false negatives, but not 
unsure messages); both, however, are commonly referred to as train-on-error and other similar names.  For the 2005 TREC spam 
track, these two regimes are, in fact, identical, of course, since the unsure range was eliminated.



the tam3 and tam4 runs.  If the train-to-exhaustion regime is used in future ‘incremental’ style simulations, such as the 
2005 TREC spam track jig, then implementation of a batch version of this regime would be necessary.  A potential 
method would be to batch-train once per simulation day, including only messages received during that ‘day’ (rather than 
the most recent 1,000 ham and 1,000 spam), and to add to the existing database, rather than replace it.

The train-to-exhaustion regime includes two, potentially significant, improvements over  fpfnunsure,  in addition to the 
cyclical, backtracking, nature of the regime.  The first is that if a limit is placed on the number of ham and spam included 
in  the  training  collection,  and  the  database  is  recreated  with  each  train-to-exhaustion  cycle,  then  messages  are 
automatically expired from the database.  With the tam3 and tam4 submissions, this expiry was age-based – only the most 
recent 1,000 ham and 1,000 spam could be used for training; other selection (and therefore expiry) methods are also 
possible.

In addition to the automatic expiry, the train-to-exhaustion regime automatically balances the database.  Each train-to-
exhaustion iteration processes the ham and spam collection independently, classifying and potentially training one ham 
message, then one spam message (and so on).  Any messages left after one collection is exhausted are ignored for that 
training cycle (although for the tam3 and tam4 submissions an equal number of ham and spam were provided, so this 
would never be the case).  Like other statistical filters, SpamBayes appears to be fairly sensitive to large imbalances 
between the number of ham and spam trained (see also below), and so it is expected that results would improve as a 
result of this automatic balancing.

4.4 tam4 – train-to-exhaustion/all options
The fourth, final, submission,  tam4,  uses the train-to-exhaustion training regime, like  tam3  (above); as a result, it too 
failed to complete the runs of the larger corpora.  The difference between tam3 and tam4 is that tam4 enables nearly all of 
the optional tokenizer techniques that SpamBayes 1.1a1 includes.  The intent behind this submission was to get a general 
idea of whether the ‘turn everything on’ attitude that some users have would be beneficial or not; ideally each of these 
options should be considered individually (as was the case before they were added to the distribution), but this was 
outside the scope of the TREC evaluation.   The hope was that  tam4 would outperform  tam3;  even if  one of  the 
additional  options was detrimental,  it  ought to be countered by benefits  from other options.   tam4 used the same 
thresholds as the other three submissions, and used the tiling unigram/bigram scheme as tam2 and tam3.  A brief outline 
of the other various options appeared in the track notebook paper for the submission; the reader is referred to the 
SpamBayes website3 for more details.

5 Results
5.1 False positive and false negative rates
Tables 2 through 5 outline simple false positive and false negative results for the two4 private corpora and (full) public 
corpus, along with (for reference) the total size and ham::spam ratio for each corpus.  At first glance, it appears that 
SpamBayes  performs  somewhat  better  than  (the  author)  expected,  given  the  ‘unsure’  range  difficulty,  but  that  all 
submissions perform extremely poorly on the SB corpus.  The MrX and Public results are reasonably similar across the 
four submissions.

3 http://spambayes.org
4 As above, the TM corpus is excluded from these results.



5.2 Explaining the poor SB corpus results
It is difficult to determine why performance was so poor for the SB corpus; the two obvious differences are that the 
corpus is relatively small and is weighted much more towards ham than spam5.  One possibility is that the ham and spam 
are  unevenly  temporally  distributed,  so  that  a  large  number  of  ham are  classified  before  any  spam are  seen;  this 
particularly fits with the decrease in false negatives between tam1 and tam2 – since tam2 only trains when a mistake is 
made, this imbalance would have a much smaller effect.  This could also explain the shift from excessive false negatives 
to high (but not as high) false positives and false negatives when comparing tam1 and tam2 with tam3 and tam4.  Since the 
train-to-exhaustion regime reorganises the training order of messages,  alternating between ham and spam, and also 
forces a 1::1 ham::spam ratio, this imbalance would have a significantly different effect.

The SB corpus is largely composed of mailing-list messages (48% of ham) and three frequent correspondents (12% of 
ham) [4].  “List” spam was particularly likely to be classified as ham (40, 8, and 4 messages for  tam1,  tam2, and  tam3 
respectively); this is not entirely unexpected, as mailing list messages tend to have a large number of tokens that are 
present in every message.  Since around 3,000 mailing-list messages were trained as ham, these tokens end up as very 
strong ham clues; the best solution to this problem is to install a good spam filter in the mailing-list delivery process (as 
this filter has access to the raw message, prior to the mailing-list specific tokens being added to it).  A similar explanation 
probably applies to “newsletter” spam (14, 10, and 5 messages for tam1, tam2, and tam3, respectively).

“Sex”  spam  was  also  particularly  likely  to  be  classified  as  ham  (147,  48,  and  17  messages  for  tam1,  tam2,  tam3 
respectively); this is much more difficult to explain.  One possible explanation is that the ham messages included many 
messages about sex, neutralising those tokens; another explanation is that these messages were primarily image-based. 
SpamBayes does not yet do any processing of images, so image-based messages generally have very few tokens and end 
up in the unsure range (which, for TREC, would mean ham).  These three spam genre account for 94%, 92%, and 93% 
of the false negatives for tam1, tam2, and tam3 respectively.

Genre classification of false positives offers fewer clues as to the poor performance.  “List” and “newsletter” false 
positives have the greatest increase across submissions, from 3 (tam1) to 32 (tam2) to 197 (tam3); as above, the most 
likely explanation for these errors is the temporal distribution of the messages, along with the ham::spam imbalance.  If 
the spam “list” and “newsletter” messages arrived much earlier than the ham messages, then the large number of tokens 
would start out as strongly spam.

5.3 ROCA and LAM%
A difficulty of comparing filters is that the choice of threshold value includes a subjective judgement about the cost of 
false positives versus false negatives.  To compare filters across all threshold values, Receiver Operating Characteristic 
(ROC) curves [13] were calculated for each run, and the area under the ROC curve was calculated.  The area under the 
ROC curve is a cumulative measure of the effectiveness of the filter over all possible threshold values; for consistency 
with false  negative  and false  positive  values,  the  track  uses  the area  above the  ROC curve,  as  a  percentage  ((1  – 
ROCA)%).   Note that  the ‘unsure’  range does not  fit  particularly  well  in ROCA analysis,  as the effectiveness is  a 
measurement of a binary classification, and is not able to factor in the ‘unsure’ range.

Another single-figure result provided in the track is the logistic average misclassification percentage (LAM%) [4], which 
is the geometric mean of the odds of ham and spam misclassification, converted back to a proportion.  Note that neither  
of these measures impose any relative importance on ham or spam misclassification, and reward equally a fixed-factor 
improvement in the odds of either.  While a single-figure statistic is convenient for comparison purposes, and is certainly 
preferred by the media and general public, it is somewhat misleading, given that there is a recognised difference in cost 
5 However, the TM corpus had an even higher ham::spam ratio, and did not experience these poor results.



between false positives and false negatives (with the former considered much more expensive).  However, until valid 
data quantifying the relative costs is available, determining a single-figure statistic remains difficult.

The tam1 submission had a ROCA value of 0.172 (the range of all submissions6 was 0.051 to 33.079; almost all were 
under  5.0),  and the  tam2 submission had a  ROCA value  of 0.209.   These  are fairly  satisfactory results,  and more 
indicative of actual performance than the raw false positive and false negative results; for example,  tam1 was the 10th 

most successful filter in terms of ROCA, but 3rd in terms of false positives, and 24th in terms of false negatives.  This 
suggests that the 0.6 threshold was not ideal, and should have been lower in order to minimize the total number of 
errors,  although  considering  the  perceived  (see  above)  cost  of  false  positives,  this  trade-off  could  be  considered 
worthwhile.

The tam1 submission had a LAM percentage of 1.07 (the range of all submissions was 0.62 to 35.88; most were under 
2.0), and the tam2 submission had a LAM percentage of 1.10.  Most interestingly, these are very similar results (more 
similar than the ROCA and, particularly, false positive/negative measures), indicating that the primary difference that the 
use_bigrams option  and  fpfnunsure regime  made  was  to  shift  errors  to/from  false  negatives  to  false  positives. 
Comparatively, both tam1 and tam2 did not do as well with this measure, with tam2 ranked at 18th; selecting a threshold 
that minimized total errors rather than false positives would probably have improved this.

5.4 Comparing submissions
Comparing  tam1 and  tam2,  tam2 does  not  perform  as  well  as  expected.   The  tam2 submission  added  the  tiled 
unigram/bigrams technique and changed to a mistake-based training regime; both of these have given superior results in 
the majority of previous testing.  The percentage of false negatives did decrease between tam1 and tam2 (vastly in the 
case of the unusual SB corpus), but this decrease came at the cost of an increase in false positives in all three corpora; 
whether this trade-off is acceptable would depend on the relative cost of false positives versus false negatives.  The 
author’s hypothesis is that the change to the fpfnunsure training regime improved results (particularly reducing the number 
of false negatives),  but that the unigram/bigram tiling technique may have increased the number of false positives 
(particularly those that would normally fall in the unsure range).  This hypothesis is based on previous research, where 
the tiling technique has increased the number of messages in the unsure range and has not always given superior results 
in an ‘incremental’ simulation, rather than on data provided from the TREC simulations themselves.

The shift from tam2 to tam3, which only changed the training regime from fpfnunsure to train-to-exhaustion, was expected 
to (at the cost of vastly increasing the simulation runtime) significantly improve the classification results.  The actual 
results are unclear;  with  MrX there is a slight improvement in the false positive rate at the cost of a much smaller 
increase in the false negative rate, with the Public corpus there is a larger improvement in the false positive rate but at the 
cost of an even larger increase in the false negative rate, and with the  SB corpus the change appears to mostly be a 
shifting of the error rate from mostly false negatives to both false negatives and false positives.

The failure of the train-to-exhaustion technique to deliver improved results (particularly in the comparison of tam2 and 
tam3, where nothing else was changed) is puzzling.  It is possible that the restriction of the training collections to the 
most recent 1,000 ham and 1,000 spam had a detrimental effect, but the simple enforced balance of the training data was 
expected to improve results.

6 Both ROCA and LAM% refer to aggregate scores over all corpora (including the SB corpus, for which SpamBayes results were very 
poor).  tam3 and tam4 are not included, as they did not complete on all corpora.



Corpus FP % FN % Total Messages Ham::Spam Ratio
MrX 0.2774% 2.614% 49086 0.23::1
SB 0.1446% 37.90% 7006 8.04::1
Public (Full) 0.2621% 4.270% 92189 0.75::1
Table 2: Simple results summary for tam1.

Corpus FP % FN % Total Messages Ham::Spam Ratio
MrX 1.448% 1.784% 49086 0.23::1
SB 1.054% 10.24% 7006 8.04::1
Public (Full) 0.8550% 1.467% 92189 0.75::1
Table 3: Simple results summary for tam2.

Corpus FP % FN % Total Messages Ham::Spam Ratio
MrX 0.8239% 1.883% 49086 0.23::1
SB 6.708% 3.774% 7006 8.04::1
Public (Full) 0.2239% 4.667% 92189 0.75::1
Table 4: Simple results summary for tam3.

Corpus FP % FN % Total Messages Ham::Spam Ratio
MrX 0.9720% 0.8944 49086 0.23::1
SB 4.075% 6.602% 7006 8.04::1
Table 5: Simple results summary for tam4.

Comparing  tam3 to  tam4,  where many additional tokenization options were enabled, the  MrX corpus had improved 
results (a small increase in the false positive rate, but a near halving of the false negative rate), while the unusual  SB 
corpus  essentially  swapped  the  false  positive  and  false  negative  rates  (overall,  a  success,  since  a  false  positive  is 
considerably worse that a false negative).  It is odd that the  tam4 changes had opposite effects in these two corpora, 
decreasing false negatives with MrX, but decreasing false positives with SB; unfortunately the size of the public corpus, 
combined with the lethargy of the tam3 and tam4 submissions, meant that results for tam4 were unable to be obtained.

5.5 Training data ham::spam balance
SpamBayes does not perform well when the ratio of trained ham to trained spam is very large or very small (some users 
have reported ratios as high as 1::300 and 1::500!).  The expectation, therefore, is that the percentages of false positives 
and false negatives would be lowest where the ham::spam ratio is closest to 1, and as the ratio approached zero and 
infinity, the false positive and false negative rates would increase.  The data is not conclusive (particularly since there are 
only a small number of corpora represented), but, as shown in Figure 1, there is some evidence of this trend.  The shape  
of the false positive data points does form a very shallow parabola, with the low centre point around the 1::1 point.  The 
false negative data is less clear – there are some fairly high rates near 1::1, and fairly low rates towards 0.1, but many of 
the data points would fit into a curve of a similar shape to that of the false positive data points.
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Figure 1: False positive and false negative rates across varying ham::spam ratios7.

6 Conclusion
For the majority of the corpora tested as part of the TREC 2005 spam track (including the variants of the public corpus, 
not discussed here), SpamBayes performed better than the author expected, given that a somewhat arbitrary value was 
chosen for the ham and spam thresholds, in order to remove the unsure range.  Anecdotal reports suggest that a false 
negative rate around 1%, a false positive rate of around 0%, and an unsure rate of around 1% to 5% is common with 
practical SpamBayes use.  Dividing the 1%-5% unsure range (as above) into the false negative and false positive ranges 
results in an expectation of around a 2% to 4% false negative range, and a 0% to 2% false positive range.  The results  
obtained match this fairly closely, with typical false positive values around 1% and typical false negative values around 
2%-4% (with the exception of the SB corpus, where results are abysmal).  These results strengthen those obtained in the 
research of the SpamBayes development team, with their own cross-validation and incremental testing simulations [3, 8, 
9].

However, the comparison of the four submissions is extremely unclear.  Those techniques that have, both in simulation 
and in practice, performed well  in the past,  have failed to deliver improved results in the TREC simulations.  The 
reasons for this failure are not apparent;  it  is possible that there will  not be enough data available from the TREC 
simulations for the reasons to be conclusively determined.  From limited analysis,  it  does appear that the expected 
performance decrease as the trained ham::trained spam ratio diverges from 1::1 is observed in the TREC simulations.
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