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Abstract

The Johns Hopkins University Applied Physics Laboratory (JHU/APL) focused on the Robust and 
Question Answering Information Retrieval (QAIR) Tracks at the 2005 TREC conference.  For the 
Robust Track, we attempted to use the difference in retrieval scores between the top retrieved and the 
100th document to predict performance; the result was not competitive.  For QAIR, we augmented 
each query with terms that appeared frequently in documents that contained answers to questions 
from previous question sets; the results showed modest gains from the technique.

HAIRCUT

The Hopkins Automated Information Retriever for Combing Unstructured Text (HAIRCUT) [3] is a 
document retrieval system developed at the Applied Physics Laboratory. It uses a traditional inverted 
index, a unigram language model for its similarity metric [2, 4], and a flexible tokenizer.  The 
tokenizer supports words, stems, character n-grams, word n-grams and phrases.  We have focused on 
language-independent techniques in developing HAIRCUT.  It has been evaluated in TREC, CLEF  
and NTCIR in at least sixteen languages, and routinely performs among the top systems for both 
monolingual and translingual ad hoc retrieval.

Question Answering Information Retrieval Track

We were interested in whether we could identify terms that would be indicative of answers to 
particular types of questions.  For example, it is reasonable to think that words such as famous, himself 
and died might be found frequently in or near answers to PERSON questions.  If such terms can be 
accurately identified, they might be used to influence a document's ranking.

We used the TREC-2002, -2003, and -2004 questions and judgments to identify indicator terms.  Our 
process begins by identifying a small taxonomy of question types, comprising HOW, HOW_MANY, 
WHAT_IS, WHEN, WHERE, WHO and OTHER questions.  To automatically assign a question to its 
question type, we first parse the question using the Charniak Parser [1].  We then use a simple pattern-
matching approach to map linearized parse trees onto question types.  Any question that does not 
match a pattern is assigned to an 'OTHER' category.

Once the training questions are partitioned into question types, we want to use those assignments to 
identify indicator terms.  We exploited the relevance judgments (qrels) from TRECs 2002 through 
2004 for this purpose.  For each question type, we identify two document sets: those that were listed 
as 'relevant' for questions of that type, and those that appeared in the judgments but that were judged 
not relevant.  The QA judgments are not binary, but have four relevance values (descriptions taken 
from the track guidelines):

• incorrect: the answer-string does not contain a correct answer or the answer is not responsive;
• unsupported: the answer-string contains a correct  answer but the document returned does not 

support that answer;
• non-exact: the answer-string contains a correct answer and  the document supports that answer, 

but the string contains more than just the answer (or is missing bits of the answer);
• correct: the answer-string consists of exactly a correct  answer and that answer is supported by 

the document returned.
For our purposes, we treat correct and non-exact as relevant, and all others as non-relevant.



Given these two document sets (judged relevant and judged non-relevant), we want to extract terms 
that are prominent in the relevant documents but not in the non-relevant documents.  To do so, we 
first consider each document set separately, extracting words that appear frequently in that set, but 
relatively infrequently in the collection as a whole.  We use a home-brew 'affinity' statistic for this 
purpose, but other measures, such as mutual information or the Dice coefficient, might work as well.  
The result is an ordered list of scored terms.  We then score each term by the difference of its scores 
in the two sets.  Finally, we select the top scoring terms as the expansion terms.
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Table 1.  Sample augmentation terms for three question categories

We generated augmentation terms for each question type.  Sample augmentation terms are show in 
Table 1.  Some augmentation terms are clearly sensible, such as north, near and miles for WHERE 
questions.  Others, such as rock and ago, make less intuitive sense.  Using retrieved but non-relevant 
documents to provide terms that should not appear in the augmentation lists eliminates most 
question-specific terms.  However, there would certainly appear to be a fair amount of noise in these 
augmentation term lists.  Nonetheless, we used the unaltered lists in our experiments. 

To process each question, we first assign it a question type.  We then build a new query, comprising 
the terms from the original query, plus the expansion terms for the selected question type.  We weight 
query terms at a ratio of 100:1 relative to the expansion terms.  This weighting was selected arbitrarily 
with no experimentation; a more accurate tuning of this parameter might lead to significant 
additional gains from the technique.  Finally, we process the augmented query normally; we used 
HAIRCUT with words as indexing terms, a unigram language model with α=0.5, and no blind 
relevance feedback.

Our results showed a modest improvement from the use of this technique.  Mean average precision 
without augmentation was 0.3322, while with augmentation it was 0.3417.  The latter score ranked 
fifth among the submitted systems.  Augmentation produced a 3% relative improvement.  This gain 
was achieved with a simplistic question type assignment mechanism, and with no tuning of the 
weighting parameter.  It is reasonable to expect that further gains might be seen if these two 
weaknesses were addressed.



Robust Track

In the Robust we looked for a simple predictor of retrieval effectiveness.  We use a unigram language 
model for our similarity metric, and we were curious whether the document scores could tell us 
anything about performance.  We therefore correlated various combinations of the scores of the top 
document, the tenth document, and the 100th document, with the average precision of the query, 
using the TREC-2004 Robust Track data as training data.  We found the best correlations when 
taking the ratio of the score of the 100th document with the score of the top document.  For 5-grams, 
the correlation was 0.57, while for words it was 0.53.  We therefore used this ratio as our predictor for 
success on each query.

We were also interested in whether the use of phrases mined from the target collection could improve 
performance.  We used suffix arrays [5] to identify all high frequency phrases in the document 
collection.  We deleted leading and trailing closed class words from these phrases, and added the 
resulting phrase list as additional indexing terms.

We submitted five runs:
• apl05pd: description-only run using phrases.
• apl05prf: description-only run using phrases and blind relevance feedback.
• apl05pt: title-only run using phrases.
• apl05cmb: a combination of a word run, a character 5-gram run, apl05pd and apl05prf.  We 

used z-score normalization to combine the runs, and weighted the four runs evenly.
• apl05p50: Under the theory that high-performing queries are more likely to benefit from 

blind relevance feedback, we selected each query’s answer from either apl05pd or apl05prf 
according to whether it was predicted to be in the lower performing half or the upper 
performing half respectively.  We used the ratio described above to predict into which half a 
query would fall.

Performance was uniformly poor relative to the field.  Results are shown in Table 2. Based on these 
results, we cannot recommend the simple query difficulty metric we used in these studies.
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Table 2.  Performance on APL’s five Robust Track runs.

Conclusions

Using ratios of language model retrieval scores to predict retrieval performance was not particularly 
effective relative to other techniques described at TREC-2005; we do not recommend its use.  
Assigning different document priors based on question type can produce a boost in retrieval 
performance.  Our technique of adding query terms based on the question type is a way to exploit 
nonuniform document priors in any retrieval system without modifying the index.  Our experiments 
were not finely tuned; our question type assignment was simplistic, and we tried only a single query 
term weight assignment.  We nonetheless got a performance boost from the technique in the TREC-
2005 QAIR task, as well as in our own cross-validation experiments on the question sets from the 
three prior TRECs.  We therefore recommend the technique as a way to produce a modest boost in 
retrieval effectiveness for question answering systems.  Careful tuning of the approach would likely 
increase that boost.
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