
JHU/APL at TREC 2005:
QA Retrieval and Robust Tracks

James Mayfield and Paul McNamee
Research and Technology Development Center

The Johns Hopkins University Applied Physics Laboratory
11100 Johns Hopkins Road, Laurel, Maryland 20723-6099 USA

{ James.Mayfield, Paul.McNamee }@jhuapl.edu

Abstract

The Johns Hopkins University Applied Physics Laboratory (JHU/APL) focused on the Robust and
Question Answering Information Retrieval (QAIR) Tracks at the 2005 TREC conference. For the
Robust Track, we attempted to use the difference in retrieval scores between the top retrieved and the
100th document to predict performance; the result was not competitive. For QAIR, we augmented
each query with terms that appeared frequently in documents that contained answers to questions
from previous question sets; the results showed modest gains from the technique.

HAIRCUT

The Hopkins Automated Information Retriever for Combing Unstructured Text (HAIRCUT) [3] is a
document retrieval system developed at the Applied Physics Laboratory. It uses a traditional inverted
index, a unigram language model for its similarity metric [2, 4], and a flexible tokenizer. The
tokenizer supports words, stems, character n-grams, word n-grams and phrases. We have focused on
language-independent techniques in developing HAIRCUT. It has been evaluated in TREC, CLEF
and NTCIR in at least sixteen languages, and routinely performs among the top systems for both
monolingual and translingual ad hoc retrieval.

Question Answering Information Retrieval Track

We were interested in whether we could identify terms that would be indicative of answers to
particular types of questions. For example, it is reasonable to think that words such as famous, himself
and died might be found frequently in or near answers to PERSON questions. If such terms can be
accurately identified, they might be used to influence a document's ranking.

We used the TREC-2002, -2003, and -2004 questions and judgments to identify indicator terms. Our
process begins by identifying a small taxonomy of question types, comprising HOW, HOW_MANY,
WHAT_IS, WHEN, WHERE, WHO and OTHER questions. To automatically assign a question to its
question type, we first parse the question using the Charniak Parser [1]. We then use a simple pattern-
matching approach to map linearized parse trees onto question types. Any question that does not
match a pattern is assigned to an 'OTHER' category.

Once the training questions are partitioned into question types, we want to use those assignments to
identify indicator terms. We exploited the relevance judgments (qrels) from TRECs 2002 through
2004 for this purpose. For each question type, we identify two document sets: those that were listed
as 'relevant' for questions of that type, and those that appeared in the judgments but that were judged
not relevant. The QA judgments are not binary, but have four relevance values (descriptions taken
from the track guidelines):

• incorrect: the answer-string does not contain a correct answer or the answer is not responsive;
• unsupported: the answer-string contains a correct answer but the document returned does not

support that answer;
• non-exact: the answer-string contains a correct answer and the document supports that answer,

but the string contains more than just the answer (or is missing bits of the answer);
• correct: the answer-string consists of exactly a correct answer and that answer is supported by

the document returned.
For our purposes, we treat correct and non-exact as relevant, and all others as non-relevant.

Given these two document sets (judged relevant and judged non-relevant), we want to extract terms
that are prominent in the relevant documents but not in the non-relevant documents. To do so, we
first consider each document set separately, extracting words that appear frequently in that set, but
relatively infrequently in the collection as a whole. We use a home-brew 'affinity' statistic for this
purpose, but other measures, such as mutual information or the Dice coefficient, might work as well.
The result is an ordered list of scored terms. We then score each term by the difference of its scores
in the two sets. Finally, we select the top scoring terms as the expansion terms.

miles

began

across

museum

near

west

rock

ago

north

thought

found

water

sun

NASA

became

orbit

scientists

II

William

king

history

space

war

America

thought

deathpark

warsingerbuilt

WHEREWHENHOW

Table 1. Sample augmentation terms for three question categories

We generated augmentation terms for each question type. Sample augmentation terms are show in
Table 1. Some augmentation terms are clearly sensible, such as north, near and miles for WHERE
questions. Others, such as rock and ago, make less intuitive sense. Using retrieved but non-relevant
documents to provide terms that should not appear in the augmentation lists eliminates most
question-specific terms. However, there would certainly appear to be a fair amount of noise in these
augmentation term lists. Nonetheless, we used the unaltered lists in our experiments.

To process each question, we first assign it a question type. We then build a new query, comprising
the terms from the original query, plus the expansion terms for the selected question type. We weight
query terms at a ratio of 100:1 relative to the expansion terms. This weighting was selected arbitrarily
with no experimentation; a more accurate tuning of this parameter might lead to significant
additional gains from the technique. Finally, we process the augmented query normally; we used
HAIRCUT with words as indexing terms, a unigram language model with α=0.5, and no blind
relevance feedback.

Our results showed a modest improvement from the use of this technique. Mean average precision
without augmentation was 0.3322, while with augmentation it was 0.3417. The latter score ranked
fifth among the submitted systems. Augmentation produced a 3% relative improvement. This gain
was achieved with a simplistic question type assignment mechanism, and with no tuning of the
weighting parameter. It is reasonable to expect that further gains might be seen if these two
weaknesses were addressed.

Robust Track

In the Robust we looked for a simple predictor of retrieval effectiveness. We use a unigram language
model for our similarity metric, and we were curious whether the document scores could tell us
anything about performance. We therefore correlated various combinations of the scores of the top
document, the tenth document, and the 100th document, with the average precision of the query,
using the TREC-2004 Robust Track data as training data. We found the best correlations when
taking the ratio of the score of the 100th document with the score of the top document. For 5-grams,
the correlation was 0.57, while for words it was 0.53. We therefore used this ratio as our predictor for
success on each query.

We were also interested in whether the use of phrases mined from the target collection could improve
performance. We used suffix arrays [5] to identify all high frequency phrases in the document
collection. We deleted leading and trailing closed class words from these phrases, and added the
resulting phrase list as additional indexing terms.

We submitted five runs:
• apl05pd: description-only run using phrases.
• apl05prf: description-only run using phrases and blind relevance feedback.
• apl05pt: title-only run using phrases.
• apl05cmb: a combination of a word run, a character 5-gram run, apl05pd and apl05prf. We

used z-score normalization to combine the runs, and weighted the four runs evenly.
• apl05p50: Under the theory that high-performing queries are more likely to benefit from

blind relevance feedback, we selected each query’s answer from either apl05pd or apl05prf
according to whether it was predicted to be in the lower performing half or the upper
performing half respectively. We used the ratio described above to predict into which half a
query would fall.

Performance was uniformly poor relative to the field. Results are shown in Table 2. Based on these
results, we cannot recommend the simple query difficulty metric we used in these studies.

Run

0.06630.1374

0.05930.1411

0.06070.1528

0.05040.1654

0.08900.1709

apl05p50

apl05cmb

apl05pt

apl05prf

apl05pd

Geometric MAPMAP

Table 2. Performance on APL’s five Robust Track runs.

Conclusions

Using ratios of language model retrieval scores to predict retrieval performance was not particularly
effective relative to other techniques described at TREC-2005; we do not recommend its use.
Assigning different document priors based on question type can produce a boost in retrieval
performance. Our technique of adding query terms based on the question type is a way to exploit
nonuniform document priors in any retrieval system without modifying the index. Our experiments
were not finely tuned; our question type assignment was simplistic, and we tried only a single query
term weight assignment. We nonetheless got a performance boost from the technique in the TREC-
2005 QAIR task, as well as in our own cross-validation experiments on the question sets from the
three prior TRECs. We therefore recommend the technique as a way to produce a modest boost in
retrieval effectiveness for question answering systems. Careful tuning of the approach would likely
increase that boost.

References

[1] Charniak, E. ‘A maximum-entropy-inspired parser.’ In Proceedings of the First Meeting of the
North American Chapter of the Association for Computational Linguistics. Seattle, Washington,
pp. 132-139. 2000.

[2] Hiemstra, D., Using Language Models for Information Retrieval, Ph.D. Thesis, Center for
Telematics and Information Technology, The Netherlands. 2000.

[3] Mayfield, J. and McNamee, P., ‘The HAIRCUT information retrieval system.’ The Johns
Hopkins APL Technical Digest 26(1):2-14. 2005.

[4] Miller, D., Leek, T., and Schwartz, R., ‘A hidden Markov model information retrieval system.’ In
Proceedings of the 22nd Annual International ACM SIGIR Conference on R&D in Information
Retrieval, Berkeley, CA, pp. 214–221, 1999.

[5] Yamamoto, M. and Church, K. W. ‘Using suffix arrays to compute term frequency and document
frequency for all substrings in a corpus.’ In Proceedings of the ACL Workshop on Very Large
Corpora, Montreal, pp. 28-37. 1998.

