
IBM SpamGuru on the TREC 2005 Spam Track

Richard Segal rsegal@us.ibm.com

IBM T.J. Watson Research Center, Hawthorne, NY 10532, USA

Abstract

IBM Research is developing an enterprise-
class anti-spam filter as part of our over-
all strategy of attacking the Spam problem
on multiple fronts. Our anti-spam filter,
SpamGuru, mirrors this philosophy by incor-
porating several different filtering technolo-
gies and intelligently combining their output
to produce a single spamminess rating. The
use of multiple algorithms improves the sys-
tem’s effectiveness and makes it more difficult
for spammers to attack. While our overall
performance was strong, our results did un-
cover some flaws and weaknesses in our ex-
isting implementation. Our latest code, with
these weaknesses addressed as well as other
enhancements, produces results on par with
the best performing classifiers reported for
TREC 2005 on the public corpus.

1. Introduction

IBM Research is developing an enterprise-class anti-
spam filter as part of our overall strategy of attacking
the Spam problem on multiple fronts. Our anti-spam
filter, SpamGuru, mirrors this philosophy by incorpo-
rating several different filtering technologies and in-
telligently combining their output to produce a single
spamminess rating or score for each incoming message.
The use of multiple algorithms improves the system’s
effectiveness and makes it more difficult for spammers
to attack. While a spammer may defeat any single
algorithm, SpamGuru can rely on its remaining algo-
rithms to maintain a high-degree of effectiveness.

The IBM Research submission to the TREC 2005
spam track used the SpamGuru anti-spam framework
to evaluate three experimental anti-spam technologies
that are under development. The first is LNB (Less-
Näıve Bayes), an extension of the ubiquitous Näıve-
Bayesian text classifier that relaxes the independence
assumption by modeling some of the dependencies be-
tween attributes. The second is SMTP Path Analysis,

an algorithm that classifies incoming mail based on the
servers used to deliver the message. The third tech-
nology is a classifier aggregation algorithm that uses
the Nelder-Mead nonlinear optimizer to dynamically
select weights for combining the LNB and SMTP path
analysis classifiers into a single prediction.

The next section presents an overview of the
SpamGuru anti-spam framework. The following sec-
tions details each of the three algorithms used in our
evaluation. Section 6 presents our results on the
TREC 2005 Spam Track, analyzes our performance,
and discusses what we have learned that has allowed
us to substantially improve our overall system. Finally,
Section 7 concludes.

2. SpamGuru Overview

SpamGuru is a server-based framework for anti-spam
filtering (Segal et al., 2004). The SpamGuru frame-
work provides the plumbing needed for a complete
anti-spam solution. The SpamGuru server can com-
municate with a variety of SMTP servers and e-mail
gateways to provide anti-spam services.

The work of labeling incoming messages is done us-
ing the SpamGuru Filtering Pipeline. The filtering
pipeline consists of one or more pluggable anti-spam
modules. SpamGuru processes each incoming e-mail
by passing it from one anti-spam module to the next.
Each module analyzes the message and optionally as-
signs it a score based on its prediction of how likely the
message is to be spam. The last module in the chain is
always an aggregator that is responsible for combining
the results from the individual classifiers into a single
score. That score is then used by SpamGuru to decide
on whether or not to flag the message as spam.

The SpamGuru Filtering Pipeline was instantiated for
TREC 2005 as follows. Our primary TREC submis-
sion consisted of a MIME decoder, the LNB clas-
sifier, the SMTP Path Analysis classifier, and our
optimization-based classifier aggregator. For our other
submissions, we submitted each classification technol-
ogy individually so that we could evaluate each indi-



IBM SpamGuru on the TREC 2005 Spam Track

vidual algorithm as well as our aggregation technology.
Our second submission therefore used just the SMTP
Path analysis module. Our third submission consisted
of the MIME decoder and the LNB classifier. Our
second submission does not consider the text in the
body of a message and therefore does not benefit from
decoding the message’s constituent MIME parts.

3. Less Näıve Bayesian

Traditional Näıve Bayesian filters make the assump-
tion that words are conditionally independent given
the target classification and use that assumption to
derive an otherwise mathematically sound formula for
the probability of a document being a member of that
class (Lewis, 1998). However, it is manifestly true
that this conditional independence assumption does
not hold. The word “inkjet” appears much more of-
ten in spam documents that also contain the word
“printer” than in randomly selected spam documents.
The goal of Less Näıve Bayesian (LNB) is to produce
a classifier that is more accurate than simple Näıve-
Bayes by taking the dependencies among features into
account.

The LNB algorithm is not strictly Bayesian. LNB
takes the approach of a discriminative classifier in
which probabilities are replaced by a single weight
that represents a word’s relative spamminess. As is
typically done with discriminant-style classifiers, the
word weights are adjusted as new training examples
arrive to ensure that the new training example is cate-
gorized correctly. What is unique is that LNB adjusts
its weights in a manner that makes the algorithm less
sensitive to feature dependencies.

4. SMTP Path Analysis

SMTP Path Analysis categorizes incoming spam based
on the sequence of gateways that delivered the mes-
sage (Leiba et al., 2005). The intuition behind the al-
gorithm is that mail sent through the same or similar
IP addresses are likely to share the same classifications.

The SMTP protocol specifies that each SMTP re-
lay used to send an email message must add at the
beginning of the message’s headers a ”received” line
that contains (at least) information about the SMTP
server receiving the message, from where the server re-
ceived the message, and a time-stamp stating when the
header was added. These header lines, taken together,
provide a trace of the SMTP path used to deliver a
message.

SMTP Path Analysis learns the spamminess or good-

ness of IP addresses by analyzing the past history of
e-mail sent using that IP address. When training, the
algorithm extracts from each message the sequence of
IP addresses that mail supposedly took to get to the
recipient and collects statistics about the spam and
good e-mail sent through each IP address. During
classification, the algorithm extracts the IP address se-
quence from the target message and yields a score for
that message based on the IP addresses of the gate-
ways supposedly used to deliver the message. The al-
gorithm looks at no other information; in particular, it
does not otherwise analyze the content of the message
or consider any domain information.

The probability that mail passing through any
previously-seen IP address is spam is estimated, when
possible, based on the frequency of spam in e-mail pre-
viously sent by that host. However, due to dynamic
IP addresses and other complexities of IP addresses,
a substantial amount of e-mail originates from IP ad-
dresses for which we may have little to no data. We
address this issue by combining statistics of the current
IP address with those of ”nearby” IP addresses when-
ever there is not sufficient data regarding the current
IP address to make a reliable decision.

As described, SMTP Path Analysis is susceptible to
spoofing. A spammer can easily add false received line
headers to a message to make it appear to be sent
through a reliable source. To address this problem,
we establish a credibility value for each intermediate
address, and if an address is not credible we partially
ignore the remaining addresses.

5. Classifier Aggregation

SpamGuru employs an aggregate classifier to combine
the results of each individual classifier into a single
score that can be used to decide how each incoming
message should be routed. Classifier aggregation pro-
vides two benefits. First, it improves classifier accu-
racy by combining the best features of multiple al-
gorithms. Second, it improves the robustness of the
overall system since a spammer trying to attack the
system must defeat multiple anti-spam filtering tech-
nologies to defeat the entire system (Segal, 2005).

Each classifier in SpamGuru rates the spamminess of
incoming messages by returning a score from 0 to 1000.
A score of 0 indicates that the message is almost cer-
tainly good, while a score of 1000 indicates that the
message is almost certainly spam. The output of most
classifiers can be scaled to fit this range.

The scores of several classifiers are combined by com-
puting a single score from the scores of each individual



IBM SpamGuru on the TREC 2005 Spam Track

classifier. There are several well-known methods for
combining classifiers (Dietterich, 2000). One option
is to return the minimum score output by any of the
classifiers. This method tags a message as spam only
if all the classifiers return a score over a threshold pro-
vided by the user. That is, all the classifiers agree that
the message is spam. The minimum score aggregator
produces a very low false-positive rate since a legiti-
mate message can only be misclassified as spam if all
the algorithms incorrectly label the message as spam.
On the other hand, its spam detection rate can be no
better than the least effective classifier.

By experimentation, we found that the most successful
way to combine classifiers was to use their unthresh-
olded output scores as input to a super-classifier; a lin-
ear one typically worked well in practice. The linear
super-classifier’s score was a weighted sum of the scores
of the constituent classifiers. The optimal values of the
weights were established by using a Nelder-Mead non-
linear optimizer to minimize a penalty function that
emphasized the relative importance of false positives
and false negatives in the anti-spam domain. The op-
timization was performed using a sliding window of
several thousand most recently labeled emails.

6. Results

Figure 1 graphs SpamGuru’s performance on each of
the four TREC datasets. For comparison, each fig-
ure includes a classifier marked “Best*” that was con-
structed using the best results returned by any classi-
fier at several representative false positive rates. Note,
the hypothetical “Best*” classifier is likely to outper-
form all real classifiers as some classifiers perform bet-
ter in different regions of the ROC curve.

SpamGuru’s performed very well on the TM dataset,
scoring at or just below the best classifier through-
out the entire curve. It’s performance was also very
good for low misclassification rates on the MrX and
SB datasets. However, SpamGuru’s ROC curve drops
far below the best classifiers for ham misclassification
rates above 1%. In real-world use, poor results with
a threshold that allows a high misclassification rate is
not a problem as most users find false-positive rates
above 1% unacceptable. It developing Spamguru, we
have focused on achieving good performance with false
positive rates at or below the 0.1% level. The strong
performance of SpamGuru at a 0.1% false-positive rate
and below is the direct result of these efforts.

SpamGuru’s weak performance at higher false positive
rates suggests that a real issue may be lurking under
the covers. With further investigation, we discovered

a flaw that caused most of the issue with the MrX
dataset. SpamGuru places a limit on the overall mes-
sage size that it will attempt to classify. This is done
to achieve good scalability and to protect against de-
nial of service attacks. Messages above this threshold
are assumed ham. The MrX dataset was unusual in
that it had several spam messages above SpamGuru’s
size threshold, a problem we had not seen in dur-
ing our testing on actual e-mail streams. It is pos-
sible that we had not seen this problem previously be-
cause SpamGuru is usually deployed in conjunction
with anti-virus technology that eliminates most offen-
sive large messages.

Figure 2 shows SpamGuru’s performance when long
messages are truncated to meet its internal size
limit. The improvement on this dataset is dramatic.
SpamGuru performs close to or above the best re-
ported performance through most of its ROC curve.
Performance still does drop starting around 1% ham
misclassification rate, but the drop is not nearly as sig-
nificant as it was when SpamGuru assumed all large
e-mail is legitimate.

The graphs in Figure 1 also illustrate the performance
of our aggregation technology and the constituent clas-
sifiers that were combined. Most of the system’s accu-
racy comes from the performance of Less Näıve Bayes.
As seen in the graphs, SMTP path analysis cannot
provide the same level of spam detection provided by
the best Bayesian filters. In our experience, the main
value of SMTP path analysis is as an adjunct classifier
that can improve performance when combined with a
more powerful classifier. SMTP path analysis works
well in this role as its predictions are based on struc-
tural data that are not available to the commonly used
bag-of-words style anti-spam filters.

The value of SMTP path analysis and SpamGuru’s
aggregator can be seen on the Full and TM datasets.
On both these datasets, the aggregator substantial im-
proves SpamGuru’s ROC curve. Interestingly, the ag-
gregator provides this advantage on the full dataset
despite a very poor showing of SMTP path analysis
on the portions of the ROC curve in which the aggre-
gator helped most.

While we did not expect SMTP Path Analysis to be
competitive with the best spam filters, its accuracy
was still considerably below our expectations. We ran
several additional experiments to understand these re-
sults. We discovered that there was a bug in the parser
that caused many IP addresses to be missed. Since our
original submission, we have fixed this bug as well as
made several improvements to Less Näıve Bayesian.
Figure reffig:full-new shows the performance of the



IBM SpamGuru on the TREC 2005 Spam Track

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n 
(lo

gi
t s

ca
le

)

% Ham Misclassification (logit scale)

Full Dataset

Aggregate of LNB+SMTP
Less Naive Bayesian
SMTP Path Analysis
Best*

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n 
(lo

gi
t s

ca
le

)

% Ham Misclassification (logit scale)

Mr. X Dataset

Aggregate of LNB+SMTP
Less Naive Bayesian
SMTP Path Analysis
Best*

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n 
(lo

gi
t s

ca
le

)

% Ham Misclassification (logit scale)

SB Dataset

Aggregate of LNB+SMTP
Less Naive Bayesian
SMTP Path Analysis
Best*

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n 
(lo

gi
t s

ca
le

)

% Ham Misclassification (logit scale)

TM Dataset

Aggregate of LNB+SMTP
Less Naive Bayesian
SMTP Path Analysis
Best*

Figure 1. Performance of SpamGuru on the TREC datasets.

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n 
(lo

gi
t s

ca
le

)

% Ham Misclassification (logit scale)

Mr. X Dataset

Aggregate (Corrected)
Aggregate (Official)
Best*

Figure 2. SpamGuru results with large message flaw fix.

latest version of SpamGuru on the full dataset. The
performance of SMTP path analysis dramatically im-
proved as the result of the improved parsing. The new
results are more in line with our expectations, SMTP
path analysis works well but its performance is not
sufficient for it to function as a standalone classifier.

These results also show a substantial improvement in
Less Näıve Bayes. The new version of Less Näıve Bayes
performs very close to the “Best*” classifier through-
out its ROC curve. This new version has several up-
grades, most notably an improved method for smooth-
ing probabilities and better handling of pure words —
words that only appear in spam or only appear in ham.
However, its strong performance provides the aggrega-
tor with very little room for improvement, even with
a much improved SMTP Path Analysis algorithm.

The final experiment we performed was to evaluate
whether our extension to Näıve Bayes provided any
real benefit. Figure 4 compares Less Näıve Bayesian
to traditional Näıve Bayes with a geometric mean.
The first Näıve-Bayesian implementation shown in the
graph was created by disabling our extensions in our
Less Näıve Bayesian code. As a result, this compari-
son is free from most biases that can be introduced by



IBM SpamGuru on the TREC 2005 Spam Track

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n 
(lo

gi
t s

ca
le

)

% Ham Misclassification (logit scale)

Full Dataset

Aggregate of LNB+SMTP (New)
Less Naive Bayesian (New)
SMTP Path Analysis (New)

Best*

Figure 3. Latest version of SpamGuru on Full dataset.

implementation details such as choice of tokenization
algorithm or choice of smoothing function. The second
Näıve-Bayesian implementation used for comparison
is the one distributed with the popular SpamAssassin
anti-spam filter. This second implementation serves as
a control to ensure that our implementation of Näıve
Bayes is reasonable.

The results of this experiment demonstrate that Less
Näıve Bayesian does indeed offer a substantial im-
provement over our implementation of Näıve Bayes on
this data. Less Näıve Bayes outperformed our Näıve
Bayes implementation by a large margin throughout
the entire ROC curve. It also outperformed the Spa-
mAssassin Näıve-Bayes implementation over most of
the curve, but by a much smaller margin. However,
the results are not clear cut as the SpamAssassin im-
plementation of Näıve Bayes performed much better
than our Näıve Bayes version. The advantages demon-
strated by LNB in this experiment may be due to
weaknesses in our Näıve Bayes implementation. As
future work, we would like to explore why our ba-
sic Bayesian implementation did not perform as well
as SpamAssassin’s implementation. This may provide
new insight into the implementation details that are
important for building accurate Bayesian classifiers. It
also may provide a strong starting point for our Less
Näıve Bayesian algorithm and allow us to achieve even
higher performance levels.

7. Conclusion

The SpamGuru entry to the TREC 2005 spam track
performed very well. SpamGuru’s results were consis-
tently near the best when evaluated on low ham mis-
classification rates. We finished with the fourth low-
est spam misclassification rate at the 0.1% ham mis-
classification level (Cormack & Lynam, 2006). Only

50.00

10.00

1.00

0.10

0.01

50.0010.001.000.100.01

%
 S

pa
m

 M
is

cl
as

si
fic

at
io

n 
(lo

gi
t s

ca
le

)

% Ham Misclassification (logit scale)

Full Dataset

Less Naive Bayesian (New)
Naive Bayesian (New)

SpamAssassin Naive Bayes
Best*

Figure 4. Less Näıve Bayesian vs. Näıve Bayesian.

the three variations of the Josef Stefan Institute’s
compression-based classifier performed better on this
metric.

In previous work, we have evaluated our system only
on ham misclassification rates at or below 0.1% as
this is the region of greatest importance for end users.
Participating in TREC has taught us that consider-
ing ham misclassification rates above 1% can be useful
in testing and debugging. While most anti-spam sys-
tems will never be used in production with such high
false positive rates, the weaknesses show by SpamGuru
in this region of the ROC curve have helped us un-
cover several flaws in our submission. When these er-
rors were corrected and combined with some recent
enhancements to our Less Näıve Bayesian classifier,
SpamGuru achieves very close to best-in-class perfor-
mance on the Full dataset for most of the ROC curve.

Acknowledgments

The authors want to thank the many in IBM who have
helped in the development of SpamGuru and the de-
velopment of many of the ideas presented in this paper.
Those involved include Bill Arnold, Nathaniel Boren-
stein, Jason Crawford, Mike Halliday, Shlomo Her-
shkop, Tien Huynh, Barry Leiba, Jeff Kephart, Joel
Ossher, V. T. Rajan, Isidore Rigoutsos, Mark Weg-
man, and Ian Whalley. We also give special thanks to
the track organizers for all their hard work in putting
together this workshop and their patience in address-
ing some technical difficulties that arose with our ini-
tial submission.



IBM SpamGuru on the TREC 2005 Spam Track

References

Cormack, G., & Lynam, T. (2006). TREC 2005 Spam
Track overview. The Fourteenth Text REtrieval
Conference (TREC 2005) Notebook.

Dietterich, T. G. (2000). Ensemble methods in ma-
chine learning. MCS ’00: Proceedings of the First
International Workshop on Multiple Classifier Sys-
tems (pp. 1–15). Springer-Verlag.

Leiba, B., Ossher, J., Rajan, V., Segal, R., & Wegman,
M. (2005). SMTP path analysis. Proceedings of the
Second Conference on Email and Anti-Spam.

Lewis, D. D. (1998). Naive (Bayes) at forty: The inde-
pendence assumption in information retrieval. Pro-
ceedings of ECML-98, 10th European Conference on
Machine Learning.

Segal, R. (2005). Combining multiple classifiers. Virus
Bulletin.

Segal, R. B., Crawford, J., Kephart, J. O., & Leiba,
B. (2004). SpamGuru: An enterprise anti-spam fil-
tering system. Proceedings of the First Conference
on Email and Anti-Spam.


