

 1

Genomic Information Retrieval through Selective Extraction and
Tagging by the ASU-BioAI Group

Lian Yu, Syed Toufeeq Ahmed, Graciela Gonzalez, Brandon Logsdon, Mutsumi Nakamura, Shawn
Nikkila, Kalpesh Shah, Luis Tari, Ryan Wendt, Amanda Zeigler, Chitta Baral�

Department of Computer Science and Engineering,
Arizona State University,

PO Box 878809,
 Tempe, AZ 85287-8809, USA

ABSTRACT
In this paper we describe the approach used by the Arizona
State University BioAI group for the ad-hoc retrieval task of
the TREC Genomics Track 2005. We pre-process TREC
query expression by adding the synonyms of genes,
diseases, bio-processes, functions of organs, and selectively
adding stemming verbs, nouns, and Mesh Heading
categories. The pre-processed queries are used to perform
initial search on the TREC Genomics collection of MEDLINE
abstracts and produce a set of target abstracts using Apache
Lucene. Tagging, anaphor resolution and fact extraction are
performed on the target abstracts to refine the search results
in terms of relevance. Finally, we rank the target abstracts
according to the extracted facts, distance between terms and
terms appeared in the query.

1 INTRODUCTION
The BioAI Research Group of the Fulton School of

Engineering in Arizona State University participated in the
Ad-hoc Retrieval Task of the TREC (Text Retrieval
Conference) Genomics Track in 2005. Provided were a set
of retrieval queries collected from biologists that conformed
to a set of generic topic templates (GTTs). There are 5
GTTs, each of which has 10 instances, for a total of 50
topics. Following is a list of the 5 GTTs listed as given,
(available at http://ir.ohsu.edu/genomics/2005protocol.html)
with the semantic types in each GTT underlined:

1. Find articles describing standard methods or protocols
for doing some sort of experiment or procedure.

2. Find articles describing the role of a gene involved in
a given disease.

3. Find articles describing the role of a gene in a specific
biological process.

4. Find articles describing interactions (e.g., promote,
suppress, inhibit, etc.) between two or more genes in
the function of an organ or in a disease.

5. Find articles describing one or more mutations of a
given gene and its biological impact.

The dataset for the TREC 2005 Genomics Track consists
of completed citations from the MEDLINE database

* To whom correspondence should be addressed.

inclusive from 1994 to 2003. Records were extracted using
the Date Completed (DCOM) field for all references in the
range of 19940101 - 20031231. This provided a total of
4,591,008 records, which is about one third of the full
MEDLINE database. The subset of articles provided by
TREC is available in the "MEDLINE" format, which
consists of ASCII text with fields indicated and delimited by
different 2-4 character abbreviations.

The aim for our first participation in the TREC Genomics
Track was to provide an efficient approach to retrieve most
relevant abstracts from the subset regarding to the queries.
We found that about 25% of MEDLINE records do not have
an abstract, mainly because the article itself does not have
one. We focused our retrieval task on the remaining 75%,
giving us close to 3.5 million abstracts. A guiding principle
for us was that relevance of a topic should not be just based
on individual terms or keywords, such as genes or diseases,
but rather it should take into account the subject of the
whole document. In order to implement this principle, we
would first parse the abstract to identify complete facts: the
right semantic terms plus the right relationship among them,
as specified in the query topic. We would extract those facts
as a whole, noting that they might appear more than once in
the abstract, and then take both fact and term frequency into
consideration when ranking the abstracts for relevance.

 The idea was that if we could extract all relevant facts
from each abstract, we would just need to search among
those extracted facts for those closely related to the query
(rank) and return results. However, we needed to process a
large volume of abstracts within a limited time in order to
submit experiment results on time. We decided to retrieve a
set of potential target abstracts from the given dataset using
the given query topics, and then apply the extraction and
ranking schema on that reduced set.

 We choose Apache Lucene [1] to perform the initial
retrieval. Apache Lucene is a high-performance, full-
featured text search engine library written in Java. It is a
technology suitable for an application that requires full-text
search, especially cross-platform. Apache Lucene is an open
source project available from Apache Jakarta. Figure 1
shows the architecture of our approach:

Lian Yu et al.

2

1. Pre-processing queries: To apply Lucene in the
biomedical domain, we needed to first incorporate
bio-domain knowledge into the Lucene queries. For
example, we needed to pre-process each of the 50
queries by adding synonyms, alias, and acronyms to
genes, diseases, bio-processes, and functions of
organs, as well Mesh categories information.

2. Indexing: uses Lucene indexing APIs to create a
comprehensive index of terms on about 3.4 million of
the given subset of MEDLINE abstracts.

3. Retrieval of target abstracts: uses a batch query-
process Java program to input each pre-processed
query topic and output a list of PubMed IDs (hereafter
called PMIDs) associated to it. The size of target
abstracts is narrowed down to 12K MEDLINE
abstracts through this process.

4. Tagging: tags entities such as genes and diseases to
facilitate anaphor resolution and fact extraction.

5. Resolving Anaphors: resolves pronouns of genes,
diseases, and bio-processes so that the text extraction
tool can extract facts of interest.

6. Fact extraction: extracts facts in terms of the relation
identified from the queries.

7. Ranking of abstracts: we define a formula which takes
the fact frequency, the distance of terms, as well as
terms frequency into consideration.

In the following section, we expand on each step in this
process. In Section 3 we describe the evaluation of our
approach. In Section 4 we sketch future research
directions.

Fig. 1. Architecture of the Ad-hoc Retrieval System

2 INFORMATION RETRIEVAL SYSTEM

2.1 Pre-process Queries
Query pre-processing can be divided into three phases:

synonym matching, stemming and fine tuning. Both the
synonym matching and stemming phases are automatic,
while the fine tuning phase is manually done based on the
topics and the number of abstracts retrieved. We elaborate
on each of them below. Since we use Lucene as our
indexing system, the queries follow the Lucene syntax.

2.1.1 Synonym Matching
Given a list of words provided by TREC for each topic,

synonym matching automatically checks if the given word
is a gene or a disease. If it is either of the two, all of the
corresponding synonyms are extracted from either Entrez

Gene1 or MeSH2, respectively. Entrez Gene [6] is a gene
database from NCBI and MeSH [4] (short for Medical
Subject Headings) is an ontology of terms used for
categorizing articles in PubMed [6]. Both Entrez Gene and
MeSH provide flat files available at their FTP sites. For
topics that involve biological processes and functions, a
selected set of terms from MeSH is used with their
corresponding synonyms.

Synonyms are grouped by “OR” Boolean operator and
groups of synonyms are connected with “AND” Boolean
operator. For instance, suppose g is a gene name, and g1 and
g2 are synonyms of g, and d is a disease name while d1 is a
synonym of d. Then the query formed would be:

 (g OR g1 OR g2) AND (d OR d1)

1 ftp://ftp.ncbi.nlm.nih.gov/gene/
2 http://www.nlm.nih.gov/mesh/filelist.html

Genomic Information Retrieval through Selective Extraction and Tagging by the ASU-BioAI Group

3

2.1.2 Stemming
Words that are not identified as genes or diseases are

stemmed using the Porter Stemming algorithm [9], which
returns the root form of a word. A wildcard is attached to
each stemmed word to form the query. For instance, the
word “progression” is stemmed as “progress” and
“progress*” is formed as part of the query.

2.1.3 Fine-Tuning
Queries formed by the previous two phases can result in a

large number of relevant abstracts for some of the topics.
Furthermore, our queries have to reflect the specific needs
of TREC. Therefore, it is insufficient to have the keywords
and their synonyms as part of the queries. It is necessary to
add extra information to the queries. For example, in the
case of topic 110, we are interested in the role of interferon-
beta gene in Multiple Sclerosis. Using “interferon-beta”,
“multiple sclerosis” and their corresponding synonyms as a
query would retrieve articles that used interferon-beta as a
treatment, which is not of our interest.

The fine tuning approach differs in the various templates.
In template 1 about methods and protocols, if the given
keywords appear in MeSH, the query is modified so that the
keywords must appear as the MeSH heading of the
abstracts. MeSH headings act as categories of the articles.
For instance, in topic 100, electroporation is a MeSH
heading, so the query for topic 100 contains “MH –
electroporation” to make use of the MedLine format of the
abstracts. The query for topic 100 is formed as follows in
Lucene syntax:

��� "MH \- Electroporation" AND "cell" AND

"open"

For template 2 regarding the role of genes in diseases,
MeSH headings such as genetics and pathology are added in
the queries. In the case of topic 118 regarding the gene
TGFB and Cerebral Amyloid Angiopathy, we added
“genetics AND pathology” as part of the query. The query is
formed as follows:

(TGFB1 OR CED OR DPD1 OR TGFB OR beta 1)

AND ("Cerebral Amyloid Angiopathy" OR

"Congophilic Angiopathy" OR "Sporadic

Cerebral Amyloid Angiopathy" OR "Cerebral

Amyloid Angiopathies" OR "Congophilic

Angiopathies") AND pathology AND genetics

On the other hand, NOT operators ‘-’ are used on words
such as treatment and clinical trials as part of the queries in
template 2 to exclude them from the search. The query for
topic 110 regarding interferon-beta and multiple sclerosis is
formed as follows:

("interferon* beta*") AND ("Multiple

Sclerosis" OR "MS" OR "Disseminated

Sclerosis") AND -"PT - Clinical Trial" AND

-treat* AND -therap*

Similarly, words such as polymorphism and mutation are
added as part of the queries for template 5, to reflect the fact
that we are interested in only articles about mutation of
genes. The query for topic 143 regarding the mutation of
NM23 and tracheal development is formed as follows:

("NME1" OR "AWD" OR "GAAD" OR "NDPKA" OR

"NM23" OR "NM23\-H1") AND (("tracheal

development" OR "tracheal develop*")) AND

(polymorphism OR mutation)

2.2 Indexing
Using the Standard Analyzer provided by Lucene, it

tokenizes the words in the abstracts to perform indexing.
The process of tokenization involves the use of stop-word
list, so that frequently used but uninformative words, such
as a, an, the, would not be used for indexing. The Lucene
index stores the tokens and a list of files in which each of
the token appears.

2.3 Entity Tagging
The task is to parse a biomedical text to identify entities

such as diseases, biological processes and biological
functions, and then tag them accordingly with
DISE_<term>, PROC_<term>, and FUNC_<term>, where
<term> represents the name of the disease, biological
process, or biological function, usually consisting of several
words. Abner [11], a system based on statistical machine
learning techniques, was used to identify gene and protein
names.

Two problems arise when dealing with this task. The first
problem is the looseness of the English language in
conjunction with synonyms, alias, acronyms and even
spelling errors. Tagging can not be done by simply
matching token by token because of names spanning
multiple words, so we must consider one or multiple words
when making comparisons. The second problem is
efficiency. Brute force methods will allow us to tag all
instances of biological words; however, the running time
makes it an unrealistic choice for the amount of abstracts
with which we have to deal.

We tried to exclude as many words as possible from being
matched such that the only words that are matched are
words of meaning and content. In the English language,
nouns, verbs, adjectives, and adverbs convey the real
meaning and content. Everything else just works to make a
more readable sentence, and they never change the content.

In order to reduce the number of word groups matched we
chunked words into noun and verb groups. Recognizing that
most likely an entity of interest would be either a noun
phrase (adjective/noun) or a verb phrase (adverb/verb) we
grouped words using a part-of-speech tagger tool called
Monty Tagger [5] into sequences. Thus, given an abstract,
before attempting to tag biological terms, we tag parts of
speech using the Monty Tagger Java API. An abstract where

Lian Yu et al.

4

each of the words is tagged with a part of speech preceded
by ‘/’ looks as follows:

Haemopoietic/NNP cell/NN growth/NN and/CC

differentiation/NN is/VBZ primarily/RB

regulated/VBN by/IN the/DT local/JJ

production/NN of/IN various/JJ

cytokines/NN within/IN the/DT bone/NN

marrow/NN micro_environment/NN 3/CD ,/,

as/IN well/RB as/IN by/IN the/DT

circulating/VBG hormone/NN ,/,

erythropoietin/NNP GENE_EPO/NNP ./.

This tagged string is then tokenized and one by one
analyzed for its part of speech in order to be grouped. There
are four main parts of speech that we care about: Noun,
Verb, Adjective, and Adverb. Nouns are tagged with /NN,
/NNS, /NNP, and /NNPS. Verbs are tagged with /VB,
/VBD, /VBG, /VBN, /VBP, and /VBZ. Adjectives are
tagged with /JJ, /JJR, and /JJS. Adverbs are tagged with
/RB, /RBR and /RBS. In the example above, the first noun
group is, “Haemopoetic/NNP cell/NN growth/NN”.
This group is then matched against our dictionaries of
diseases, biological processes, and functions (compiled from
MeSH). If there is a direct match the string is tagged as a
Disease, Process, or Function respectively. The same
process is applied to verb groups. In the above example the
first verb group is “is/VBZ primarily/RB

regulated/VBN”. The tagged abstracts are then used for
anaphor resolution.

2.4 Anaphora Resolution
In linguistics, an anaphora is an expression that is used to

refer back to some entity (or entities). Pronouns (such as it,
their, this) are the most common anaphora, though other
pro-forms are also anaphoras. The entity to which an
anaphora refers is its referent or antecedent. Consider:
“Luis sent me an email. It was the first

thing he did that day.”

 Here, both “it” and “he” are anaphoras that refer back to
the email and Luis (the antecedents), which were mentioned
before. A human reader has no problem identifying what
they refer to, but automatic processing of the text requires
their resolution: that is, finding a potential replacement for
them and substituting the anaphoras. For the biomedical
domain, we also need to apply some semantic information
to accurately replace some anaphoras.
 The subtasks for anaphor resolution include creating a
referent candidate list, doing a proximity search, and finding
the longest common substring to identify the right
antecedent. We elaborate on each of them next.

2.4.1 Creating a referent candidate list
A list of referents is maintained as they are encountered in

the sequential parsing of the abstract. The number of
referents can grow very large and prohibit efficient and

sensible search for resolution of ambiguous anaphora. So
the list is limited to only those words that are tagged as
potential names for genes, proteins or diseases. To facilitate
this, a variable is kept to track the most recent reference to
an antecedent entity, since sometimes there are some
anaphoras that are used more than once (like using “he” or
“it” in subsequent sentences in the example above).

Semantic Chunk Objects (SCO) [2] are the potential
candidates for the anaphoras, and contain a potential
antecedent plus information such as the distance of the SCO
from the first word in the abstract, the score received by the
SCO as a potential candidate for the anaphora and semantic
information such as whether the SCO is a gene, disease or
protein.

2.4.2 Proximity Search
Information regarding sentence number and distance from

the beginning of the text is kept for each SCO. Usually the
correct antecedent is the closest one to the anaphora. Using
the scoring heuristic and semantic information along with
the proximity information helps better resolve the
anaphoras.

2.4.3 Longest Common Substring
Anaphoras such as “these” or ‘both” are resolved by

looking at the word that follow them. A longest common
substring comparison is run on that word and the potential
SCOs. Depending upon how long the common substring is
one can decide which semantic chuck object the anaphora
substitutes. Consider the example:

“The exon1 and exon3 are most crucial in

expression of these genes. These exons

are…”.

In this case the word next to “these” is exon and that is
compared to all the SCO’s finding the noun group exon1
and exon3 as the closest matches thus are replacement for
anaphora “these”.

The comparison is run not only on the antecedent attribute
of the SCO but also on the semantic information of the
SCO. Consider for example:

“Alzheimer’s disease and variant

Creutzfeldt-Jakob disease affect the brain.

These diseases are more prominent…”

The comparison will include the word following “these”
i.e. “disease” and thus we get the group “Alzheimer’s
disease and variant Creutzfeldt-Jakob disease” as the
potential replacement.

2.5 Fact Extraction
As explained before, we consider a “fact” the entity or

set of entities participating in a relationship of interest for
the topic. Once the entities are recognized through tagging
–Section 2.3- and anaphor resolution –Section 2.4-, the
abstracts are ready for fact extraction. Recall that the

Genomic Information Retrieval through Selective Extraction and Tagging by the ASU-BioAI Group

5

abstracts are tagged with the following information (an
example is shown in Fig. 2):

• Gene names as GENE_<phrase of a gene name>
• Diseases as DISE_< phrase of a disease>
• Biological Processes as PROC_< phrase of a

biological process >
• Molecular Functions as FUNC_< phrase of a

molecular function>

Fig. 2: An example of tagging

Extraction of facts corresponding to the templates (shown
below) is carried out by the extraction module, where the
idea of lexical chaining is applied. The premise is that words
that are closer to each other are more likely related than the
ones that are far apart. The general schema for extracted
facts is as follows:

PMID| Fact Id| Fact Frequency| GENE_< phrase >|
Interaction Word | GENE_< phrase > | DISE_< phrase >|
PROC_< phrase > | FUNC_< phrase > |

where PMID is a unique PMID, Fact Id is unique fact
number within the given abstract, Fact Frequency is
frequency of the fact occurring in the given abstract,
GENE_< phrase > is gene name prefixed with GENE_,
similarly DISE_< phrase >, PROC_< phrase > and FUNC_<
phrase > is for disease, process and function respectively.

Extraction Solution
A lexical chain [8] is a lexical cohesion of related words

that contribute to the continuity of meaning. Based on this
idea, the extraction module tries heuristically to construct a
chain of related words (such as gene names and diseases)
and include them as a fact only if they are considered to be
related. The relation of these words is primarily assumed to
be in a single sentence.

Fig. 3: Heuristic based on Lexical (semantic) cohesion of words.
Windowing technique is used to limit the chain size under
consideration.

 The method can be explained with the help of windowing
technique. Let’s consider the input text (sentence by
sentence) to be a single stream of text with a window of size
�. A chain of related terms that fit within this window size
is a potential candidate for fact extraction. The extraction
module now considers the terms lexically related within this
window. This window is moved one word at a time
throughout the text. Fig. 3 shows the window and the input
text. The fact extraction task is performed on all gene-
related TREC topics (i.e. all topics except topic 1).

2.6 Ranking Abstracts
 The Ranking module takes two input files: 1) a query file
which contains a TREC template or query ID and
corresponding queries (created earlier in the Query Pre-
processing step) and 2) a query results file, which contains a
list of query IDs and associated PMIDs returned from a
Lucene search. For each query ID, the ranking module
outputs a ranking of the PMIDs based on relevancy.

To rank the abstracts with for a given query ID, a
hierarchical ranking approach is used in this paper: the
abstracts associated with a query ID are first ranked based
on the number of times relevant facts occur in each abstract.
This measure is called the fact frequency. The fact
frequency counts the number of times that related terms in
the query appear in a same sentence (see description of the
Extraction module) in the abstracts of interest. If any two
abstracts have the same fact frequency the tie is broken by
comparing the abstracts' term/distance scores, abbreviated
TD. (see Equation 2). The TD score incorporates both the
term frequency and term distance (where terms are not
necessarily in the same sentence, unlike fact frequency) of
the abstracts in order to determine which abstract is more
relevant.
TREC requires that each abstract be assigned a single score

to represent its relevancy. To accomplish this, a ranking
formula called rf(a) is used to assign a value to an abstract a
that meets the above two requirements.
If A represents all the abstracts that have the same query

ID, a ∈ A, ff(a) represents the fact frequency of a, and td(a)
represents the TD score of a, then the value rf(a) is as
follows in Equation (1):

� �)(*))(max()()(affAtdatdarf += (1)

 In Equation 1 the maximum score of all the abstracts in A
is used in order to ensure that an abstract that has a high fact
frequency, and is thus more relevant, will have a high value
of rf(a). The TD score of the abstract is also taken into
account to break ties between abstracts with identical fact
frequencies, resulting in a single value which ranks an
abstract using the hierarchical ranking approach described
earlier.

Lian Yu et al.

6

 Once rf(a) for each abstract has been computed, the list of
abstracts, sorted by query ID and then sub sorted in
decreasing order by rf(a), are written to two files, qrels.txt
and topic_document.txt, which were then submitted to
TREC for evaluation.
 The notations used in the following formula are listed as
follows:

a: an abstract with a query ID of ID
A: the set of all the abstracts with a query ID of

ID and a ∈ A.
G: the set of all genes and their synonyms found

in the query ID
D: the set of all the diseases and their synonyms

found in the query ID
s(a): the number of sentences in a
d = (s1, s2): the distance between strings s1 and s2 (such

as strings of a gene or a disease) in terms of
sentences in between

Mina (d): the minimum distance in sentences between
s1 and s2 If either s1 or s2 is not in a then Mina
(d) is defined to be equal to s(a)

f(a, s): the number of times the string s occurs in a
w(a): the total number of words in a
df(a, d): the number of times the pair of strings of d is

at a distance of Mina (d) (if either string in d
is not in a then df(a, d) is defined to be equal
to 1).

 Then the TD score of a, td(a), is computed as follows in
Equation (2).

�
�
�

=∨=
>∧>

=
0)(0)(,0
0)(0)(,**

)(
asawif

asawifreldistratio
atd

(2)

where the variable ratio is computed with gene or disease
overlap and the weights of the genes or diseases in the query
ID, dist represents the distance between gene/disease pairs
in the query ID (see Equation (3)). rel, or relevancy,
represents the frequency of the genes and diseases in the
query ID appearing in a (see Equation (6)).
 The portion of ratio in TD score consists of the product of
three factors as follows in Equation (3)[1]:

weight
awDG

overlap
ratio *

)(

1
*

+
= (3)

The first factor is called the coordination, which is the
overlap (see Equation (4)) divided by the number of genes
and diseases in the query ID. The second factor is known as
length normalization, which is the reciprocal of the square
root of the total number of items, tokens, or the words of the
abstract searched. The last factor, weight, represents the
weights assigned to each gene and disease in the query ID:

since each gene and disease has equal weight this score will
be the square root of the number of genes and diseases in
the query ID (see Equation (5)) [1].

The overlap of an abstract a is the number of genes or
diseases in the query ID that occur at least once in a.

0),(: >∪∈= dafDGdoverlap (4)

The weight value normalizes the weights for the genes
and diseases in the query ID.

�
∪∈

=

DGd
dwgh

weight
)(

2

1
 (5)

where wgh(d) represents the individual weight of a gene or
disease d in the query ID: by default, this value is equal to
one divided by the number of genes and diseases in the
query ID.
 The distance, dist, is the product of the distance scores for
each possible ordered pair of genes and diseases in the
query ID. A distance score for a gene/disease pair is a
product of two factors: a sentence distance factor and a
distance frequency factor. The sentence distance factor is a
value between one and two inclusive, with a value of one
signifying that the gene/disease pair do not occur together in
the abstract a and a score of two signifying that the gene and
disease occur in the same sentence in the abstract a. The
value of the distance frequency factor is how often the
gene/disease pair occurs at the distance used to calculate the
sentence distance factor: the square root is applied to this
value for normalization. If ID is between a certain range the
query includes not one but two sets of genes (G1 and G2) for
which the distance must be taken into account (see
corresponding template): therefore, a second product term
must be included which measures the distance between each
possible ordered pair of genes in these two sets.

The distance (dist) value is the product of the distance
values between each possible ordered pair of genes and
diseases in the query ID. A distance value for a gene/disease
pair is itself a product of two factors: a sentence distance
factor and a distance frequency factor. The sentence
distance factor is a value between one and two inclusive:
one signifying that the gene/disease pair does not occur
together in the abstract a and two signifying that the gene
and disease occur in the same sentence in the abstract a. The
value of the distance frequency factor indicates how often
the gene/disease pair occurs at the distance used to calculate
the sentence distance factor, and the square root is applied to
this value for normalization. If ID is between 130 and 139
then Equation (6b) is used to calculate the value of dist.
Within this range the query includes not one but two sets of
genes (G1 and G2) for which the distance must be taken into
account (see corresponding template): therefore, along with
the product found in Equation (6a), a second product term
must be included which measures the distance between each
possible ordered pair of genes in these two sets.

Genomic Information Retrieval through Selective Extraction and Tagging by the ASU-BioAI Group

7

 ∏
×∈

−=
DGd

dadf
as
dad

dist),(*)
)(

),(
2(

 0)()139130(≠∧>∨< asTT (6a)

∏

∏

×∈

×∈

−

−=

21

),(*)
)(

),(
2(

),()
)(

),(
2(

GGg

DGd

gadf
as

gad

dadf
as
dad

dist

 0)(139130 ≠∧≤∧≥ asTT (6b)

The relevancy portion in TD of a, rel, is a sum of the
relevancy of each gene or disease searched for in a. The
relevancy of an individual gene or disease is a product of its
frequency and its inverse document frequency [3],[10]. The
square root of the frequency is taken to normalize the value,
while the inverse document frequency measures how rare a
gene or disease is: the rarer the gene or disease, the higher
the inverse document frequency, and thus the relevancy,
will be. This is because the occurrence of a rare gene or
disease in an abstract is a better indicator of relevancy than a
common one.

)
1),(

log(*),(
−

= �
∪∈ dAdfr

A
dafrel

DGd

(7)

 The document frequency, dfr(A,d) (see Equation (8)),
represents the number of abstracts in A that contain the gene
or disease d at least once. The smaller the value of dfr(A,d)
the rarer the gene or disease d is.

0),(:),(>∈= dafAadAdfr (8)

3 EVALUATION AND DICUSSION
This section demonstrates the experiment results of our

approach, and the comparison with results from Pubmed
search engine in regarding to the 50 topics.

3.1 Run Results
 We performed Lucene indexing on the collection of 4.5

million abstracts in MEDLINE format, used 50 formatted
queries to search in the Lucene index, and retrieved about
12K target abstracts. The number of search results varied
from query to query ranging from 0 to 7,000.
 For each template, we performed tagging, anaphor
resolution, extraction (exception template 1) and ranking.
We performed fact extraction on abstracts pertinent to
templates 2 through 5, and calculated the fact frequencies,
which were incorporated into the ranking formula. For
abstracts related to template 1, we performed tagging and
anaphor resolution without fact extraction. The ranking is
only dependent on the score as described in Section 2.5.

3.2 TREC Evaluation Results

 TREC ad-hoc relevance judgments were done based on
the top 60 documents from the two runs submitted by each
group for each topic, which yielded an average pool size of
822 documents. Relevance judgments were performed only
on 49 of the 50 topics, as no relevant document was found
for one of the topics, which is topic #135. Evaluation results
returned by TREC were summarized in terms of precision at
top 10 relevant documents retrieved (denoted as P10),
precision at top 100 relevant documents retrieved (P100)
and uninterpolated average precision for the 49 topics.

Our system for the ad hoc retrieval task achieves an
overall precision of 0.2714 for P10 and precision of 0.1061
for P100 among the 49 topics. This implies that our system
achieves a low recall, as the number of articles retrieved by
our system is low. Table 1 shows the average number of
articles retrieved as well as minimum and maximum number
for each template. We further analyzed our performance and
noticed that our system performs best in template 2, which
is to retrieve articles describing the role(s) of a gene
involved in a disease. It is evident that our extraction-based
retrieval system benefits from the rich dictionaries of gene
and disease names compiled from Entrez Gene and MeSH.
On the contrary, the lack of rich dictionaries for functions of
an organ (for template 4) and biological impact or role (for
template 5) is the main reason on why our system suffers in
the precision of the retrieval task for templates 4 and 5. Our
system also failed to retrieve any documents for some of the
topics in templates 4 and 5.

Table 1: Average of the number of articles retrieved

Template # Number of articles retrieved on
average

1 (topic # 100-109) 95 (min = 2, max = 436)
2 (topic # 110-119) 110 (min = 4, max = 303)
3 (topic # 120-129) 122.5 (min = 4, max = 1000)
4 (topic # 130-139) 8.11 (min = 0, max = 52)
5 (topic # 140-149) 26.9 (min = 0, max = 207)

4 CONCLUSION AND FUTURE WORK
The TREC Genomics team included 8 members from the

BioAI group, 3 of them undergraduates. We spent about 6
weeks completing the ad-hoc retrieval task. We used
Apache Lucene to perform the initial retrieval and got 12K
target abstracts out of 4.5 million abstracts. Then tagging,
anaphor resolution, extraction and ranking were performed
to refine relevance of search results.

Retrieval systems such as NCBI PubMed generally return
a large number of documents that are supposed to be
relevant to the users’ queries. In other words, such retrieval
systems achieve high recall but relatively low precision.
Users of a retrieval system with high precision can benefit
on the preciseness and conciseness of the articles returned to

Lian Yu et al.

8

them. With this in mind, we emphasized the precision aspect
of our retrieval system. Our system could achieve higher
precision on templates 4 and 5 if richer ontologies were
used for functions of an organ and biological impact.

Future work includes investigating ways to improve the
accuracy of the tagging module for diseases, bio-processes
and functions of organs. A quantitative approach to assign
scores to SCOs is needed for the anaphor resolution module.
The extraction module needs to be able to extract various
types of the topics, such as topics in the template 1.

REFERENCES
[1] Apache Lucene. http://lucene.apache.org/java/docs/.
[2] J. Castaño, J. Zhang, J. Pustejovsky. Anaphora Resolution in

Biomedical Literature. International Symposium on Reference
Resolution, 2002.

[3] K.S. Jones. Index term weighting. Information Storage and
Retrieval, 9: 619-633, 1973.

[4] MeSH. http://www.nlm.nih.gov/mesh/.
[5] Monty Tagger. http://web.media.mit.edu/~hugo/montytagger/.
[6] NCBI Entrez Gene.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene.
[7] NCBI Entrez PubMed.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed.
[8] J. Morris, G. Hirst, Lexical Cohesion Computed by Thesaural

Relations as an indicator of the structure of Text. Association
of Computational Linguists, 1991.

[9] M.F. Porter. An algorithm for suffix stripping, Program,
14(3):130-137, 1980.

[10] S.E. Robertson and K.S. Jones. Relevance weighting of
search terms. Journal of the American Society for Information
Science, 27, 129—146, 1976.

[11] B. Settles. ABNER: an open source tool for automatically
tagging genes, proteins, and other entity names in text.
Bioinformatics, 21(14):3191-3192, 2005.

