
  

 1 

Genomic Information Retrieval through Selective Extraction and 
Tagging by the ASU-BioAI Group 

Lian Yu, Syed Toufeeq Ahmed, Graciela Gonzalez, Brandon Logsdon, Mutsumi Nakamura, Shawn 
Nikkila, Kalpesh Shah, Luis Tari, Ryan Wendt, Amanda Zeigler, Chitta Baral� 

Department of Computer Science and Engineering,  
Arizona State University,  

PO Box 878809,  
 Tempe, AZ 85287-8809, USA 

 
ABSTRACT 
In this paper we describe the approach used by the Arizona 
State University BioAI group for the ad-hoc retrieval task of 
the TREC Genomics Track 2005. We pre-process TREC 
query expression by adding the synonyms of genes, 
diseases, bio-processes, functions of organs, and selectively 
adding stemming verbs, nouns, and Mesh Heading 
categories. The pre-processed queries are used to perform 
initial search on the TREC Genomics collection of MEDLINE 
abstracts and produce a set of target abstracts using Apache 
Lucene. Tagging, anaphor resolution and fact extraction are 
performed on the target abstracts to refine the search results 
in terms of relevance. Finally, we rank the target abstracts 
according to the extracted facts, distance between terms and 
terms appeared in the query.  

1 INTRODUCTION  
The BioAI Research Group of the Fulton School of 

Engineering in Arizona State University participated in the 
Ad-hoc Retrieval Task of the TREC (Text Retrieval 
Conference) Genomics Track in 2005. Provided were a set 
of retrieval queries collected from biologists that conformed 
to a set of generic topic templates (GTTs). There are 5 
GTTs, each of which has 10 instances, for a total of 50 
topics.  Following is a list of the 5 GTTs listed as given, 
(available at http://ir.ohsu.edu/genomics/2005protocol.html) 
with the semantic types in each GTT underlined: 

1. Find articles describing standard methods or protocols 
for doing some sort of experiment or procedure. 

2. Find articles describing the role of a gene involved in 
a given disease. 

3. Find articles describing the role of a gene in a specific 
biological process. 

4. Find articles describing interactions (e.g., promote, 
suppress, inhibit, etc.) between two or more genes in 
the function of an organ or in a disease. 

5. Find articles describing one or more mutations of a 
given gene and its biological impact. 

The dataset for the TREC 2005 Genomics Track consists 
of completed citations from the MEDLINE database 
  
* To whom correspondence should be addressed.  

inclusive from 1994 to 2003.  Records were extracted using 
the Date Completed (DCOM) field for all references in the 
range of 19940101 - 20031231.  This provided a total of 
4,591,008 records, which is about one third of the full 
MEDLINE database. The subset of articles provided by 
TREC is available in the "MEDLINE" format, which 
consists of ASCII text with fields indicated and delimited by 
different 2-4 character abbreviations.  

The aim for our first participation in the TREC Genomics 
Track was to provide an efficient approach to retrieve most 
relevant abstracts from the subset regarding to the queries. 
We found that about 25% of MEDLINE records do not have 
an abstract, mainly because the article itself does not have 
one. We focused our retrieval task on the remaining 75%, 
giving us close to 3.5 million abstracts. A guiding principle 
for us was that relevance of a topic should not be just based 
on individual terms or keywords, such as genes or diseases, 
but rather it should take into account the subject of the 
whole document. In order to implement this principle, we 
would first parse the abstract to identify complete facts: the 
right semantic terms plus the right relationship among them, 
as specified in the query topic. We would extract those facts 
as a whole, noting that they might appear more than once in 
the abstract, and then take both fact and term frequency into 
consideration when ranking the abstracts for relevance. 

 The idea was that if we could extract all relevant facts 
from each abstract, we would just need to search among 
those extracted facts for those closely related to the query 
(rank) and return results. However, we needed to process a 
large volume of abstracts within a limited time in order to 
submit experiment results on time. We decided to retrieve a 
set of potential target abstracts from the given dataset using 
the given query topics, and then apply the extraction and 
ranking schema on that reduced set.  

 We choose Apache Lucene [1] to perform the initial 
retrieval. Apache Lucene is a high-performance, full-
featured text search engine library written in Java. It is a 
technology suitable for an application that requires full-text 
search, especially cross-platform. Apache Lucene is an open 
source project available from Apache Jakarta. Figure 1 
shows the architecture of our approach: 
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1. Pre-processing queries: To apply Lucene in the 
biomedical domain, we needed to first incorporate 
bio-domain knowledge into the Lucene queries. For 
example, we needed to pre-process each of the 50 
queries by adding synonyms, alias, and acronyms to 
genes, diseases, bio-processes, and functions of 
organs, as well Mesh categories information. 

2. Indexing: uses Lucene indexing APIs to create a 
comprehensive index of terms on about 3.4 million of 
the given subset of MEDLINE abstracts.  

3. Retrieval of target abstracts: uses a batch query-
process Java program to input each pre-processed 
query topic and output a list of PubMed IDs (hereafter 
called PMIDs) associated to it. The size of target 
abstracts is narrowed down to 12K MEDLINE 
abstracts through this process. 

4. Tagging: tags entities such as genes and diseases to 
facilitate anaphor resolution and fact extraction. 

5. Resolving Anaphors: resolves pronouns of genes, 
diseases, and bio-processes so that the text extraction 
tool can extract facts of interest. 

6. Fact extraction: extracts facts in terms of the relation 
identified from the queries. 

7. Ranking of abstracts: we define a formula which takes 
the fact frequency, the distance of terms, as well as 
terms frequency into consideration.  

In the following section, we expand on each step in this 
process. In Section 3 we describe the evaluation of our 
approach. In Section 4 we sketch future research 
directions.  
 

 

Fig. 1. Architecture of the Ad-hoc Retrieval System 

2 INFORMATION RETRIEVAL SYSTEM  

2.1 Pre-process Queries 
Query pre-processing can be divided into three phases: 

synonym matching, stemming and fine tuning. Both the 
synonym matching and stemming phases are automatic, 
while the fine tuning phase is manually done based on the 
topics and the number of abstracts retrieved. We elaborate 
on each of them below. Since we use Lucene as our 
indexing system, the queries follow the Lucene syntax.  

2.1.1 Synonym Matching 
Given a list of words provided by TREC for each topic, 

synonym matching automatically checks if the given word 
is a gene or a disease. If it is either of the two, all of the 
corresponding synonyms are extracted from either Entrez 

Gene1 or MeSH2, respectively. Entrez Gene [6] is a gene 
database from NCBI and MeSH [4] (short for Medical 
Subject Headings) is an ontology of terms used for 
categorizing articles in PubMed [6]. Both Entrez Gene and 
MeSH provide flat files available at their FTP sites. For 
topics that involve biological processes and functions, a 
selected set of terms from MeSH is used with their 
corresponding synonyms. 

Synonyms are grouped by “OR” Boolean operator and 
groups of synonyms are connected with “AND” Boolean 
operator. For instance, suppose g is a gene name, and g1 and 
g2 are synonyms of g, and d is a disease name while d1 is a 
synonym of d. Then the query formed would be: 

      (g OR g1 OR g2) AND (d OR d1) 

  
1 ftp://ftp.ncbi.nlm.nih.gov/gene/ 
2 http://www.nlm.nih.gov/mesh/filelist.html 
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2.1.2 Stemming 
Words that are not identified as genes or diseases are 

stemmed using the Porter Stemming algorithm [9], which 
returns the root form of a word. A wildcard is attached to 
each stemmed word to form the query. For instance, the 
word “progression” is stemmed as “progress” and 
“progress*” is formed as part of the query. 

2.1.3 Fine-Tuning 
Queries formed by the previous two phases can result in a 

large number of relevant abstracts for some of the topics. 
Furthermore, our queries have to reflect the specific needs 
of TREC. Therefore, it is insufficient to have the keywords 
and their synonyms as part of the queries. It is necessary to 
add extra information to the queries. For example, in the 
case of topic 110, we are interested in the role of interferon-
beta gene in Multiple Sclerosis. Using “interferon-beta”, 
“multiple sclerosis” and their corresponding synonyms as a 
query would retrieve articles that used interferon-beta as a 
treatment, which is not of our interest. 

The fine tuning approach differs in the various templates. 
In template 1 about methods and protocols, if the given 
keywords appear in MeSH, the query is modified so that the 
keywords must appear as the MeSH heading of the 
abstracts. MeSH headings act as categories of the articles. 
For instance, in topic 100, electroporation is a MeSH 
heading, so the query for topic 100 contains “MH – 
electroporation” to make use of the MedLine format of the 
abstracts. The query for topic 100 is formed as follows in 
Lucene syntax: 

���  "MH \- Electroporation" AND "cell" AND 

"open" 

For template 2 regarding the role of genes in diseases, 
MeSH headings such as genetics and pathology are added in 
the queries. In the case of topic 118 regarding the gene 
TGFB and Cerebral Amyloid Angiopathy, we added 
“genetics AND pathology” as part of the query. The query is 
formed as follows: 

(TGFB1 OR CED OR DPD1 OR TGFB OR beta 1) 

AND ("Cerebral Amyloid Angiopathy" OR 

"Congophilic Angiopathy" OR "Sporadic 

Cerebral Amyloid Angiopathy" OR "Cerebral 

Amyloid Angiopathies" OR "Congophilic 

Angiopathies") AND pathology AND genetics 

On the other hand, NOT operators ‘-’ are used on words 
such as treatment and clinical trials as part of the queries in 
template 2 to exclude them from the search. The query for 
topic 110 regarding interferon-beta and multiple sclerosis is 
formed as follows: 

("interferon* beta*") AND ("Multiple 

Sclerosis" OR "MS" OR "Disseminated 

Sclerosis") AND -"PT - Clinical Trial" AND 

-treat* AND -therap* 

Similarly, words such as polymorphism and mutation are 
added as part of the queries for template 5, to reflect the fact 
that we are interested in only articles about mutation of 
genes. The query for topic 143 regarding the mutation of 
NM23 and tracheal development is formed as follows: 

("NME1" OR "AWD" OR "GAAD" OR "NDPKA" OR 

"NM23" OR "NM23\-H1") AND (("tracheal 

development" OR "tracheal develop*")) AND 

(polymorphism OR mutation) 

2.2 Indexing 
Using the Standard Analyzer provided by Lucene, it 

tokenizes the words in the abstracts to perform indexing. 
The process of tokenization involves the use of stop-word 
list, so that frequently used but uninformative words, such 
as a, an, the, would not be used for indexing. The Lucene 
index stores the tokens and a list of files in which each of 
the token appears. 

2.3 Entity Tagging 
The task is to parse a biomedical text to identify entities 

such as diseases, biological processes and biological 
functions, and then tag them accordingly with 
DISE_<term>, PROC_<term>, and FUNC_<term>, where 
<term> represents the name of the disease, biological 
process, or biological function, usually consisting of several 
words. Abner [11], a system based on statistical machine 
learning techniques, was used to identify gene and protein 
names.  

Two problems arise when dealing with this task. The first 
problem is the looseness of the English language in 
conjunction with synonyms, alias, acronyms and even 
spelling errors. Tagging can not be done by simply 
matching token by token because of names spanning 
multiple words, so we must consider one or multiple words 
when making comparisons. The second problem is 
efficiency. Brute force methods will allow us to tag all 
instances of biological words; however, the running time 
makes it an unrealistic choice for the amount of abstracts 
with which we have to deal. 

We tried to exclude as many words as possible from being 
matched such that the only words that are matched are 
words of meaning and content. In the English language, 
nouns, verbs, adjectives, and adverbs convey the real 
meaning and content. Everything else just works to make a 
more readable sentence, and they never change the content. 

In order to reduce the number of word groups matched we 
chunked words into noun and verb groups. Recognizing that 
most likely an entity of interest would be either a noun 
phrase (adjective/noun) or a verb phrase (adverb/verb) we 
grouped words using a part-of-speech tagger tool called 
Monty Tagger [5] into sequences. Thus, given an abstract, 
before attempting to tag biological terms, we tag parts of 
speech using the Monty Tagger Java API. An abstract where 
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each of the words is tagged with a part of speech preceded 
by ‘/’ looks as follows:  

Haemopoietic/NNP cell/NN growth/NN and/CC 

differentiation/NN is/VBZ primarily/RB 

regulated/VBN by/IN the/DT local/JJ 

production/NN of/IN various/JJ 

cytokines/NN within/IN the/DT bone/NN 

marrow/NN micro_environment/NN 3/CD ,/, 

as/IN well/RB as/IN by/IN the/DT 

circulating/VBG hormone/NN ,/, 

erythropoietin/NNP GENE_EPO/NNP ./.  

This tagged string is then tokenized and one by one 
analyzed for its part of speech in order to be grouped. There 
are four main parts of speech that we care about: Noun, 
Verb, Adjective, and Adverb. Nouns are tagged with /NN, 
/NNS, /NNP, and /NNPS. Verbs are tagged with /VB, 
/VBD, /VBG, /VBN, /VBP, and /VBZ. Adjectives are 
tagged with /JJ, /JJR, and /JJS. Adverbs are tagged with 
/RB, /RBR and /RBS. In the example above, the first noun 
group is, “Haemopoetic/NNP cell/NN growth/NN”. 
This group is then matched against our dictionaries of 
diseases, biological processes, and functions (compiled from 
MeSH). If there is a direct match the string is tagged as a 
Disease, Process, or Function respectively. The same 
process is applied to verb groups. In the above example the 
first verb group is “is/VBZ primarily/RB 

regulated/VBN”. The tagged abstracts are then used for 
anaphor resolution.  

2.4  Anaphora Resolution 
In linguistics, an anaphora is an expression that is used to 

refer back to some entity (or entities). Pronouns (such as it, 
their, this) are the most common anaphora, though other 
pro-forms are also anaphoras. The entity to which an 
anaphora refers is its referent or antecedent. Consider: 
“Luis sent me an email. It was the first 

thing he did that day.” 

 Here, both “it” and “he” are anaphoras that refer back to 
the email and Luis (the antecedents), which were mentioned 
before. A human reader has no problem identifying what 
they refer to, but automatic processing of the text requires 
their resolution: that is, finding a potential replacement for 
them and substituting the anaphoras. For the biomedical 
domain, we also need to apply some semantic information 
to accurately replace some anaphoras.  
  The subtasks for anaphor resolution include creating a 
referent candidate list, doing a proximity search, and finding 
the longest common substring to identify the right 
antecedent. We elaborate on each of them next. 

2.4.1 Creating a referent candidate list  
A list of referents is maintained as they are encountered in 

the sequential parsing of the abstract. The number of 
referents can grow very large and prohibit efficient and 

sensible search for resolution of ambiguous anaphora. So 
the list is limited to only those words that are tagged as 
potential names for genes, proteins or diseases. To facilitate 
this, a variable is kept to track the most recent reference to 
an antecedent entity, since sometimes there are some 
anaphoras that are used more than once (like using “he” or 
“it” in subsequent sentences in the example above).  

Semantic Chunk Objects (SCO) [2] are the potential 
candidates for the anaphoras, and contain a potential 
antecedent plus information such as the distance of the SCO 
from the first word in the abstract, the score received by the 
SCO as a potential candidate for the anaphora and semantic 
information such as whether the SCO is a gene, disease or 
protein. 

2.4.2 Proximity Search 
Information regarding sentence number and distance from 

the beginning of the text is kept for each SCO. Usually the 
correct antecedent is the closest one to the anaphora. Using 
the scoring heuristic and semantic information along with 
the proximity information helps better resolve the 
anaphoras.  

2.4.3 Longest Common Substring 
Anaphoras such as “these” or ‘both” are resolved by 

looking at the word that follow them. A longest common 
substring comparison is run on that word and the potential 
SCOs. Depending upon how long the common substring is 
one can decide which semantic chuck object the anaphora 
substitutes. Consider the example:   

“The exon1 and exon3 are most crucial in 

expression of these genes. These exons 

are…”.  

In this case the word next to “these” is exon and that is 
compared to all the SCO’s finding the noun group exon1 
and exon3 as the closest matches thus are replacement for 
anaphora “these”. 

The comparison is run not only on the antecedent attribute 
of the SCO but also on the semantic information of the 
SCO. Consider for example:  

“Alzheimer’s disease and variant 

Creutzfeldt-Jakob disease affect the brain. 

These diseases are more prominent…”  

The comparison will include the word following “these” 
i.e. “disease” and thus we get the group “Alzheimer’s 
disease and variant Creutzfeldt-Jakob disease” as the 
potential replacement. 

2.5 Fact Extraction 
As explained before, we consider a “fact” the entity or 

set of entities participating in a relationship of interest for 
the topic. Once the entities are recognized through tagging 
–Section 2.3- and anaphor resolution –Section 2.4-, the 
abstracts are ready for fact extraction. Recall that the 
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abstracts are tagged with the following information (an 
example is shown in Fig. 2):  

• Gene names as GENE_<phrase of a gene name> 
• Diseases as DISE_< phrase  of a disease> 
• Biological Processes as PROC_< phrase of a 

biological process > 
• Molecular Functions as FUNC_< phrase of a 

molecular function> 
 

 

Fig. 2: An example of  tagging 

Extraction of facts corresponding to the templates (shown 
below) is carried out by the extraction module, where the 
idea of lexical chaining is applied. The premise is that words 
that are closer to each other are more likely related than the 
ones that are far apart. The general schema for extracted 
facts is as follows:  
 
PMID| Fact Id| Fact Frequency| GENE_< phrase >| 
Interaction Word | GENE_< phrase > | DISE_< phrase >| 
PROC_< phrase > | FUNC_< phrase > | 
 
where PMID is a unique PMID, Fact Id is unique fact 
number within the given abstract, Fact Frequency is 
frequency of the fact occurring in the given abstract, 
GENE_< phrase > is gene name prefixed with GENE_, 
similarly DISE_< phrase >, PROC_< phrase > and FUNC_< 
phrase > is for disease, process and function respectively.  

Extraction Solution 
A lexical chain [8] is a lexical cohesion of related words 

that contribute to the continuity of meaning. Based on this 
idea, the extraction module tries heuristically to construct a 
chain of related words (such as gene names and diseases) 
and include them as a fact only if they are considered to be 
related. The relation of these words is primarily assumed to 
be in a single sentence. 
 

 

Fig. 3: Heuristic based on Lexical (semantic) cohesion of words. 
Windowing technique is used to limit the chain size under 
consideration. 

   The method can be explained with the help of windowing 
technique. Let’s consider the input text (sentence by 
sentence) to be a single stream of text with a window of size 
�.  A chain of related terms that fit within this window size 
is a potential candidate for fact extraction. The extraction 
module now considers the terms lexically related within this 
window. This window is moved one word at a time 
throughout the text. Fig. 3 shows the window and the input 
text. The fact extraction task is performed on all gene-
related TREC topics (i.e. all topics except topic 1).    

2.6 Ranking Abstracts 
   The Ranking module takes two input files: 1) a query file 
which contains a TREC template or query ID and 
corresponding queries (created earlier in the Query Pre-
processing step) and 2) a query results file, which contains a 
list of query IDs and associated PMIDs returned from a 
Lucene search. For each query ID, the ranking module 
outputs a ranking of the PMIDs based on relevancy. 

To rank the abstracts with for a given query ID, a 
hierarchical ranking approach is used in this paper: the 
abstracts associated with a query ID are first ranked based 
on the number of times relevant facts occur in each abstract. 
This measure is called the fact frequency. The fact 
frequency counts the number of times that related terms in 
the query appear in a same sentence (see description of the 
Extraction module) in the abstracts of interest. If any two 
abstracts have the same fact frequency the tie is broken by 
comparing the abstracts' term/distance scores, abbreviated 
TD. (see Equation 2). The TD score incorporates both the 
term frequency and term distance (where terms are not 
necessarily in the same sentence, unlike fact frequency) of 
the abstracts in order to determine which abstract is more 
relevant. 
TREC requires that each abstract be assigned a single score 

to represent its relevancy. To accomplish this, a ranking 
formula called rf(a) is used to assign a value to an abstract a 
that meets the above two requirements. 
If A represents all the abstracts that have the same query 

ID, a ∈ A, ff(a) represents the fact frequency of a, and td(a) 
represents the TD score of a, then the value rf(a) is as 
follows in Equation (1): 

� � )(*))(max()()( affAtdatdarf +=     (1) 

     In Equation 1 the maximum score of all the abstracts in A 
is used in order to ensure that an abstract that has a high fact 
frequency, and is thus more relevant, will have a high value 
of rf(a). The TD score of the abstract is also taken into 
account to break ties between abstracts with identical fact 
frequencies, resulting in a single value which ranks an 
abstract using the hierarchical ranking approach described 
earlier. 



Lian Yu et al. 

6 

  Once rf(a) for each abstract has been computed, the list of 
abstracts, sorted by query ID and then sub sorted in 
decreasing order by rf(a), are written to two files, qrels.txt 
and topic_document.txt, which were then submitted to 
TREC for evaluation. 
   The notations used in the following formula are listed as 
follows: 
 
a: an abstract with a query ID of ID 
A: the set of all the abstracts with a query ID of 

ID and a ∈ A. 
G: the set of all genes and their synonyms found 

in the query ID 
D: the set of all the diseases and their synonyms 

found in the query ID 
s(a): the number of sentences in a 
d = (s1, s2): the distance between strings s1 and s2   (such 

as strings of a gene or a disease) in terms of 
sentences in between 

Mina (d): the minimum distance in sentences between 
s1 and s2 If either s1 or s2 is not in a then Mina 
(d) is defined to be equal to s(a) 

f(a, s): the number of times the string s occurs in a 
w(a): the total number of words in a 
df(a, d): the number of times the pair of strings of d is 

at a distance of Mina (d) (if either string in d 
is not in a then df(a, d) is defined to be equal 
to 1). 

 
   Then the TD score of a, td(a), is computed as follows in 
Equation (2).  

�
�
�

=∨=
>∧>

=
0)(0)(,0
0)(0)(,**

)(
asawif

asawifreldistratio
atd  

(2) 

where the variable ratio is computed with gene or disease 
overlap and the weights of the genes or diseases in the query 
ID, dist represents the distance between gene/disease pairs 
in the query ID (see Equation (3)). rel, or relevancy, 
represents the frequency of the genes and diseases in the 
query ID appearing in a (see Equation (6)).  
   The portion of ratio in TD score consists of the product of 
three factors as follows in Equation (3)[1]:  

weight
awDG

overlap
ratio *

)(

1
*

+
=       (3) 

The first factor is called the coordination, which is the 
overlap (see Equation (4)) divided by the number of genes 
and diseases in the query ID. The second factor is known as 
length normalization, which is the reciprocal of the square 
root of the total number of items, tokens, or the words of the 
abstract searched. The last factor, weight, represents the 
weights assigned to each gene and disease in the query ID: 

since each gene and disease has equal weight this score will 
be the square root of the number of genes and diseases in 
the query ID (see Equation (5)) [1]. 

The overlap of an abstract a is the number of genes or 
diseases in the query ID that occur at least once in a. 

0),(: >∪∈= dafDGdoverlap        (4) 

The weight value normalizes the weights for the genes 
and diseases in the query ID.  

�
∪∈

=

DGd
dwgh

weight
)(

2

1
          (5) 

where wgh(d) represents the individual weight of a gene or 
disease d in the query ID: by default, this value is equal to 
one divided by the number of genes and diseases in the 
query ID. 
  The distance, dist, is the product of the distance scores for 
each possible ordered pair of genes and diseases in the 
query ID. A distance score for a gene/disease pair is a 
product of two factors: a sentence distance factor and a 
distance frequency factor. The sentence distance factor is a 
value between one and two inclusive, with a value of one 
signifying that the gene/disease pair do not occur together in 
the abstract a and a score of two signifying that the gene and 
disease occur in the same sentence in the abstract a. The 
value of the distance frequency factor is how often the 
gene/disease pair occurs at the distance used to calculate the 
sentence distance factor: the square root is applied to this 
value for normalization. If ID is between a certain range the 
query includes not one but two sets of genes (G1 and G2) for 
which the distance must be taken into account (see 
corresponding template): therefore, a second product term 
must be included which measures the distance between each 
possible ordered pair of genes in these two sets.  

The distance (dist) value is the product of the distance 
values between each possible ordered pair of genes and 
diseases in the query ID. A distance value for a gene/disease 
pair is itself a product of two factors: a sentence distance 
factor and a distance frequency factor. The sentence 
distance factor is a value between one and two inclusive:  
one signifying that the gene/disease pair does not occur 
together in the abstract a and two signifying that the gene 
and disease occur in the same sentence in the abstract a. The 
value of the distance frequency factor indicates how often 
the gene/disease pair occurs at the distance used to calculate 
the sentence distance factor, and the square root is applied to 
this value for normalization. If ID is between 130 and 139 
then Equation (6b) is used to calculate the value of dist. 
Within this range the query includes not one but two sets of 
genes (G1 and G2) for which the distance must be taken into 
account (see corresponding template): therefore, along with 
the product found in Equation (6a), a second product term 
must be included which measures the distance between each 
possible ordered pair of genes in these two sets. 
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The relevancy portion in TD of a, rel, is a sum of the 
relevancy of each gene or disease searched for in a. The 
relevancy of an individual gene or disease is a product of its 
frequency and its inverse document frequency [3],[10]. The 
square root of the frequency is taken to normalize the value, 
while the inverse document frequency measures how rare a 
gene or disease is: the rarer the gene or disease, the higher 
the inverse document frequency, and thus the relevancy, 
will be. This is because the occurrence of a rare gene or 
disease in an abstract is a better indicator of relevancy than a 
common one. 

)
1),(

log(*),(
−

= �
∪∈ dAdfr

A
dafrel

DGd

(7) 

 The document frequency, dfr(A,d) (see Equation (8)), 
represents the number of abstracts in A that contain the gene 
or disease d at least once. The smaller the value of dfr(A,d) 
the rarer the gene or disease d is. 

0),(:),( >∈= dafAadAdfr      (8) 

3 EVALUATION AND DICUSSION 
This section demonstrates the experiment results of our 

approach, and the comparison with results from Pubmed 
search engine in regarding to the 50 topics. 

3.1 Run Results  
 We performed Lucene indexing on the collection of 4.5 

million abstracts in MEDLINE format, used 50 formatted 
queries to search in the Lucene index, and retrieved about 
12K target abstracts. The number of search results varied 
from query to query ranging from 0 to 7,000. 
    For each template, we performed tagging, anaphor 
resolution, extraction (exception template 1) and ranking. 
We performed fact extraction on abstracts pertinent to 
templates 2 through 5, and calculated the fact frequencies, 
which were incorporated into the ranking formula. For 
abstracts related to template 1, we performed tagging and 
anaphor resolution without fact extraction. The ranking is 
only dependent on the score as described in Section 2.5.  

3.2 TREC Evaluation Results  

     TREC ad-hoc relevance judgments were done based on 
the top 60 documents from the two runs submitted by each 
group for each topic, which yielded an average pool size of 
822 documents. Relevance judgments were performed only 
on 49 of the 50 topics, as no relevant document was found 
for one of the topics, which is topic #135. Evaluation results 
returned by TREC were summarized in terms of precision at 
top 10 relevant documents retrieved (denoted as P10), 
precision at top 100 relevant documents retrieved (P100) 
and uninterpolated average precision for the 49 topics. 

Our system for the ad hoc retrieval task achieves an 
overall precision of 0.2714 for P10 and precision of 0.1061 
for P100 among the 49 topics. This implies that our system 
achieves a low recall, as the number of articles retrieved by 
our system is low. Table 1 shows the average number of 
articles retrieved as well as minimum and maximum number 
for each template. We further analyzed our performance and 
noticed that our system performs best in template 2, which 
is to retrieve articles describing the role(s) of a gene 
involved in a disease. It is evident that our extraction-based 
retrieval system benefits from the rich dictionaries of gene 
and disease names compiled from Entrez Gene and MeSH. 
On the contrary, the lack of rich dictionaries for functions of 
an organ (for template 4) and biological impact or role (for 
template 5) is the main reason on why our system suffers in 
the precision of the retrieval task for templates 4 and 5. Our 
system also failed to retrieve any documents for some of the 
topics in templates 4 and 5. 

Table 1: Average of the number of articles retrieved  

Template # Number of articles retrieved on 
average 

1 (topic # 100-109) 95 (min = 2, max = 436) 
2 (topic # 110-119) 110 (min = 4, max = 303) 
3 (topic # 120-129) 122.5 (min = 4, max = 1000) 
4 (topic # 130-139) 8.11 (min = 0, max = 52) 
5 (topic # 140-149) 26.9 (min = 0, max = 207) 

 

4 CONCLUSION AND FUTURE WORK 
The TREC Genomics team included 8 members from the 

BioAI group, 3 of them undergraduates. We spent about 6 
weeks completing the ad-hoc retrieval task. We used 
Apache Lucene to perform the initial retrieval and got 12K 
target abstracts out of 4.5 million abstracts. Then tagging, 
anaphor resolution, extraction and ranking were performed 
to refine relevance of search results.  

Retrieval systems such as NCBI PubMed generally return 
a large number of documents that are supposed to be 
relevant to the users’ queries. In other words, such retrieval 
systems achieve high recall but relatively low precision. 
Users of a retrieval system with high precision can benefit 
on the preciseness and conciseness of the articles returned to 
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them. With this in mind, we emphasized the precision aspect 
of our retrieval system. Our system could achieve higher 
precision on templates 4 and 5 if richer ontologies were 
used for functions of an organ and biological impact. 

Future work includes investigating ways to improve the 
accuracy of the tagging module for diseases, bio-processes 
and functions of organs. A quantitative approach to assign 
scores to SCOs is needed for the anaphor resolution module. 
The extraction module needs to be able to extract various 
types of the topics, such as topics in the template 1.   
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