Question Answering by Searching Large Corpora
with Linguistic Methods

Michael Kaisser, Tilman Becker
Saarland University / DFKI GmbH
{mkaisser,becker }@dfki.de

Abstract

In this paper we describe the QuALIM Question Answering
system which uses linguistic analysis of questions as well as
candidate sentences in its answer finding process. To this end
we have developed a rephrasing algorithm based on linguistic
patterns that describe the structure of questions and candidate
sentences and where precisely to find the answer in the can-
didate sentences. With this method and a fall-back strategy,
both using the web as their primary data source, we partic-
ipated in TREC 2004. We present our official results and a
follow-up evaluation to elucidate the contribution of the meth-
ods used.

1 Introduction

At least since Frege and Wittgenstein we understand
how to interpret sentences in natural language as ex-
pressing facts. In a sentence, different entities are re-
ferred to by linguistic expressions and the structure of
the sentence describes the relationship between them.
When someone asks a question, he asks not so much
for a word or a few words that make up the answer,
but rather for a fact that he has some partial knowl-
edge of, but where he is lacking an important entity
to describe it completely.

E.g., in the question “When was Franz Kafka
born?” the asker already knows that there is a person
called Franz Kafka, and that this person must, as all
persons, be born sometime. What he lacks, and asks
for, is the date of birth. The fact the person looks
for can in a davidsonian way be described like this:

born(“Franz Kafka”,e) AND born(“July 3, 1883")
The knowledge the question asker has is this:

born(“Franz Kafka”,e) AND born(X,e)

Sentences containing the facts and entities that are
sought can be expressed with a wide variety of lin-
guistic means. However, a simple sentence containing
the answer to the question might be:

“Franz Kafka was born on July 3, 1883.”

The observation one can make here is that cer-
tain words from the question reoccur in the answer
sentence. In this case “Franz” “Kafka”, “was” and
“born”. This is the basic observation most IR sys-
tems, and therefore also most QA systems, make use
of. When searching for an answer to a question like
the one described these systems search for the (non-
stop) words in the question in a document collection,
and if they find as many as possible closely together,
they look for a date which is also close to these words
and return this as the answer. However, they cannot
be sure that the answer they found is the correct one:

“Franz Kafka was not born on July 3, 1884.”

What these systems are not taking into account
is that natural language has a structure and that it
is this structure that determines in which relation
certain linguistic entities in a sentence stand to each
other. A related aspect is the variety of linguistic
means to refer to entities. E.g., the correct answer is
also contained in:

“Franz Kafka’s birthday was July 3, 1883.”

These are the basic observations that lead to the
development of QuUALIM: “Question Answering with
Linguistic Methods”.

2 Overview

In this section we will give an short overview of how
QuALiM answers questions. We will then in the fol-
lowing sections describe the different modules in more
detail. Then, the TREC results and a post-TREC
evaluation with its discussion are presented. After
the conclusion, an appendix lists the third-party ap-
plications that were used in QuALiM.

QuALiM heavily relies on patterns. When it is
asked a question it searches for a syntactic description
in one of these patterns that matches the question.
Most of these patterns also contain syntactic descrip-
tions of potential answer sentences. This information
can be used to predict the surface structure of pos-
sible answer sentences. Google is used to search for
answer sentences and the retrieved sentences are then
checked on whether they really match the syntactic
structure proposed in the first place. To do this the
sentences are parsed and tagged. If a candidate sen-
tence still matches, the system knows which phrase
in the sentence is the answer. The answer itself is
then checked on its semantic type by using a Named
Entity Recognition system.

QuALiM also implements a fallback mechanism,
which does not propose reformulations, but instead
sends queries created from key words and key phrases
in the question to Google. From the returned snip-
pets n-grams are mined, which are also checked on
their semantic type.

3 The Rephrasing Algorithm

3.1 Strict Pattern Matching

As described above, the rephrasing part of QuALiM
relies on patterns which are used to define linguistic
constraints on questions, potential answer sentences
to these questions and the answers themselves. In
detail a pattern used in QuALiM consists of three
parts:

e Sequences are used to classify the questions
according to their linguistic (mostly syntactic)
structure.

e Targets are used to describe the linguistic
(mostly syntactic) structure of potential answer
candidates.

o AnswerType elements express semantic con-
straints on the answers.

Figure 1 gives an example of such a pattern.

Each question that the system is asked is checked
whether it matches one of the sequences in the pat-
tern files. The sequence which can be seen in figure
1 matches any question that starts with the word
“When”, followed by the word “did”, followed by an
NP, followed by a verb in its infinitive form, followed
by an NP or a PP, followed by a question mark which
has in addition to be the last element in the question.

In the TREC 2004 question set, this sequence
matched five questions:

e When did Floyd Patterson win the title?
e When did Amtrak begin operations?

When did Jack Welch become chairman of Gen-
eral Electric?

When did Jack Welch retire from GE?

e When did the Khmer Rouge come into power?

For the TREC 2004 runs QuALiM used 157 pat-
terns (with 157 sequences) to classify incoming ques-
tions. If a question matches a sequence, the targets
are used to predict the linguistic structure of poten-
tial answer sentences. Two targets are shown in fig-
ure 1. For the question “When did Amtrak begin op-
erations?”, they would suggest the following answer
sentences (or answer sentence parts):

1. Amtrak began operations in ANSWER
2. In ANSWER (,) Amtrak began operations

The numbers in the ref elements are variables that
point back to the sequence element with the corre-
sponding id attribute. Note, that QuALIM copies the
complete linguistic information for the sequence ele-
ment into the target, not just its surface appearance.
Beside the target elements that can be seen in the

<pattern name="When+did+NP+Verb+NPorPP" level="5">

<sequence>
<word id="1">When</word>
<word id="2">did</word>
<parse id="3">NP</parse>
<morph id="4">V INF</morph>
<parse id="5">NP|PP</parse>
<final>7</final>

</sequence>

<target name="targetl">
<ref>3</ref>
<ref morph="V PAST">4</ref>
<ref>b</ref>
<word>in</word>
<answer>NP</answer>

</target>

<target name="target2">
<word>in</word>
<answer>NP</answer>

<punctuation optional="true">,<punctuation>

<ref>3</ref>
<ref morph="V PAST">4</ref>
<ref>5</ref>

</target>

. more targets ...

<answerType phrases="NP|PP">

<built-in weight="2">dateComplete</built-in>
<namedEntity weight="4">Date</namedEntity>
<built-in weight="3">year|in_year</built-in>

<other ignore="true"/>
</answerType>
</pattern>

Figure 1: Example pattern as used in the current version of the QuALiM system.

example (ref, word, punctuation and answer), three
others exist: pos, parse and unknown, but the latter
two are—up to now—just implemented with dummy
functionality and could therefore not be used for the
TREC runs.

Although the targets describe linguistic structures
they can also be used to propose surface structures
of the potential answer sentences. Some target el-
ements can be used for this, namely ref, word and

punctuation, while the others cannot. With this in-
formation search queries can be created that are send
to Google. Unfortunately, as Google ignores punctu-
ation in queries, this information is also not useful
when creating the queries. But the ref and word el-
ements in the targets seen in figure 1 provide enough
information to generate the following two queries:

1. “Amtrak began operations in”

2. “In” “Amtrak began operations”

QuALiM will send these queries to Google and har-
vest the first 40 snippets returned. It will then try
to extract sentences from the snippets that contain
all words from the search query. For the first query
listed above, the first five sentences QuALIM can ex-
tract are:

e “Since Amtrak began operations in 1971, federal
outlays for intercity rail passenger service have
been about $18 billion.”

e “Amtrak began operations in 1971.”

e “Amtrak of the obligation to operate the basic
system of routes that was largely inherited from
the private railroads when Amtrak began oper-
ations in 1971.”

e “Amtrak began operations in 1971, as autho-
rized by the Rail Passenger Service Act of 1970.”

e “A comprehensive history of intercity passenger
service in Indiana, from the mid-19th century
through May 1, 1971, when Amtrak began oper-
ations in the state.”

QuALiM will now parse and tag the candidate sen-
tences and check weather the linguistic structure de-
scribed in the target really matches the sentences. If
the system finds this structure, it also knows which
part of the sentence must be the answer. In the first
four examples given above it is “1971”, in the last
“the state” (which is sorted out in a later processing
step, when the system recognizes that “the state” is
not an appropriate answer for this type of question).

The system will place all answers it has found in
a weighted sequence bag, a bag of word sequences,
where each word sequence has a weight attached. In
the given example the weighted sequence bag will
look like this:

4. "1971"
1: "the state"

3.2 Fuzzy Pattern Matching

Experiments during the construction phase of
QuALiM showed that the described constraints are
sometimes too strict. It happens that the retrieved
sentences contain the correct answer, but not exactly
at the position described by the targets. For the sec-
ond target shown in figure 1 a possible answer sen-
tence received from Google might be:

“In 1971, the railroad company Amtrak began op-
erations.”

This sentence does not match the target because
no single NP is placed between the word “In” and
the NP “Amtrak”. In such a case QuALiM will ex-
tract the string where it actually expected the NP,
here: “1971, the railroad company”. This string con-
tains two NPs: “1971” and “the railroad company”.
With this information another weighted sequence bag
is created:

1: "1971", "the railroad company"

The results form both pattern matching algorithms
are then combined, but before this is done the weights
from the exact target matching algorithm are multi-
plied with 5. So the outcome looks like this:

21: "1971"
5: "the state"
1: "the railroad company"

This method of combining the results proofed to be
quite effective. If QuUALIM can find many sentences
that match the targets exactly, the fuzzy results are
of nearly no importance. If there are no or only a few
exact matching sentences found, the fuzzy results will
become more important.

4 The Google Fallback
Mechanism

QuALiM implements a second mechanism to find
answers. It constructs three search queries that are
combinations from all NPs in the question and all
non stop words:

“When was Jim Inhofe first elected to the senate?”
becomes

1. Jim Inhofe senate first elected

2. “Jim Inhofe” “the senate”

3. “Jim Inhofe” “the senate” first elected

These queries are sent to Google and from the snip-
pets returned, n-grams are mined. These n-grams are
placed in a weighted sequence bag, where the weights
initially show how often an n-gram has been found in
the snippets. The results form the third query are
doubled. The weights are then modified, so that n-
grams with more words receive a bonus over shorter
n-grams.

The results from the Google fallback algorithm are
combined with the results from the rephrasing algo-
rithms. But before this is done the weights of the
rephrasing algorithms are multiplied with 4. (So the
overall ratio strict:fuzzy:fallback is 20:4:1)

5 Type Checking

What remains to do is to check the combined out-
put of the three answer finding mechanisms on their
type. To do this the answerType element in the XML
structure is used. Several information sources can
be combined here: named entity recognition, Word-
Net or built-in named entity recognition features,
which can be used to recognize standard date speci-
fications, year specifications, numbers, number/unit
compounds etc.

The textual content of an answer type element
specifies the condition an item in the sequence bag
must fulfill, to match the answer type element. Each
element from the sequence bag is matched against all
answer type elements. All weights from the matching
answer type elements are summed up, and finally the
value of the sequence bag element is multiplied with
that sum.

6 List and Definition Questions

The approach QuALiM uses to answer list questions
is a simple modification of the factoid approach. The
system tries to put a question in the singular form

and it will then return all answers above a given cut-
off level. It is possible to write special list patterns
(similar to factoid patterns as seen in figure 1), but
only two patterns existed for the TREC runs.

Definition questions are processed as follows: The
series’ target is send to Google, and as with the
Google fallback mechanism a weighted sequence bag
is created, with the most frequent words or word se-
quences occurring in the snippets at the top. The
system then looks for sentences (or sentence parts)
in the AQUAINT document collection that contain
many of the entries in the weighted sequence Bag.
For each sentence, the weights of the entries in the se-
quence bag that occur in the sentence lead to a score
which will be divided through the character length of
the sentence. The sentence with the best score is se-
lected. Then, all values of all entries in the sequence
bag that occurred in the selected sentence are divided
by three and again all sentences are scored and the
best one is selected. This is repeated until the sen-
tences selected so far exceeded a certain character
length.

7 Related Work

QuALiM builds on two pillars: Creative use of the
web, especially by using a search engine (Google in
our case) as an Information Retrieval system and
by using linguistic methods to analyze questions and
candidate sentences in order to locate the exact an-
swers in the latter.

Using the web for Question Answering is an idea
that became more and more important in recent
years. AnswerBus [Ans|, BrainBoost [Bra], IONaut
[ION] and START[STA] are systems that are online
and that search the web for an answer to a ques-
tion a user has asked. Furthermore quite a few re-
search papers exist on that topic: [DBBT02, KEWO01,
RFQ™04] to name just a few.

Our way to use the web shows similarities to
[DBB*02]. In this paper the authors also present a
way to reformulate questions as possible answer sen-
tences, exploiting redundancy in large corpora such
as the web. However, their reformulations are not
based on the syntactic structure, but rather on sim-

ple string manipulations. Reformulations based on
the syntactic structure offer a number of benefits:
The reformulations are more exact, more reformula-
tions can be described and the knowledge about the
sentence structure can be used to locate the exact
answer in candidate sentences.

In general not much work has been done so far
on using linguistic knowledge to find candidate sen-
tences, on making use of this knowledge to evaluate
their credibility and to locate the part of the sentence
that contains the answer.

There are three systems we want to mention here
which actually parse candidate sentences and make
use of this information, although in quite different
ways:

e LLCC’s PowerAnswer system which incorporates
a Logic Prover named Cogex to filter out incor-
rect answers. [HMCT03]

e MIT’s START and especially Omnibase which
builds up a database of so-called ternary expres-
sions. [KFY'02, Kat97]

e ITCirst’s Diogene systems which shows—in
the TREC 2004 version—some similarities to
QuALiM. [TKMO04]

8 Discussion

We see our syntactic patterns as a generic approach
to handle various linguistic phenomena:

e We can combine different variants of the same
underlying question in one pattern. (The
rephrasing algorithm allows to have patterns
with more than one sequence, although this fea-
ture was not used in the TREC 2004 runs.)

e We can distinguish a question like “Who is

the Queen of England” (Who+is+NP+7?)
form “Who is Albert Einstein?”
(Who+is+Person_Name+7?). This can be

done because information from named entity
recognition can be included in the sequences
and it is is useful because both questions require
different answer types.

e We can perform reformulations that introduce
words which are not in the question into
the answer sentence: E.g, we can reformu-
late “When+was+Person+born+?” to “Per-
son+’s+birthday+is/was+ANSWER”.

e Almost all syntactic phenomena the parser can
handle can be described with the patterns: ap-
positions, active/passive transformations, da-
tive shift, subordinate clauses, NP-gerunds and
many more.

Although we use the complete syntactic structure
returned from the parser to determine phrase bound-
aries, we abstract away from that by using flat de-
scriptions in our patterns. As a result, we cannot
describe some linguistic phenomena, for example PP-
attachment.

Furthermore, currently all patterns have to be
written manually, which takes up a lot of time. This
is the reason why we performed the TREC runs with
only 157 patterns. We simply had no time to write
more of them.

9 Evaluation

9.1 TREC Evaluation

Table 1 shows the results QuALIM received in TREC
2004. The runs differed in parameter settings (e.g.
the number of NIL answers returned for factoid ques-
tions, the length of the answer list when answering
list questions etc.)

runl | run 2 | run 3 | rank
Factoid 0.343 | 0.339 | 0.343 | 4th
List 0.096 | 0.111 | 0.125 | 9th
Other 0.145 | 0.181 | 0.211 | 10th
Combined | 0.232 | 0.242 | 0.256 | 6th

Table 1: TREC 2004 results for the QuALIM system.

9.2 Post-TREC Evaluation

After TREC 2004 we conducted several evaluations
here at DFKI. We were mainly interested in the per-

strict | fuzzy | fallback | combined
correct 46 58 91 105
inexact 6 10 9 7
wrong 20 31 114 106
answers returned 72 98 214 218
no answer found 158 132 16 11
accuracy 0.200 | 0.252 0.395 0.456

Table 2: Results of the QuALiM system in our

formance and behavior of the different algorithms im-
plemented. For the additional runs performed and
evaluated at DFKI, we used the TREC 2004 ques-
tion set, but we resolved the questions manually. So
we changed the Question “When was he born?” in
the “Franz Kafka” series to “When was Franz Kafka
born?” and told the system to process the questions
as they are in the file and not to combine them with
the target. Furthermore, we turned the document
localization module off. So the system returned just
answers, but no AQUAINT documents. This means
that there can be no “NIL” answers and no “unsup-
ported” judgments. Naturally—as we disabled two er-
ror sources—the results we received are better than the
results we received in TREC 2004.! We performed
four more runs, telling the system it should only an-
swer factoid questions and ignore list and definitional
questions.
Here is a short description of the runs:

strict In this run we only used the rephrasing algo-
rithm in its strict version as described in section
3.1.

fuzzy For this runs we used the fuzzy version of the
rephrasing algorithm. See section 3.2 (Note that
NPs at the exact position still received a weight
four times higher as NPs not being at the exact
position.)

1In our additional runs, when all questions finding methods
are combined, we receive an accuracy of 0.456. We think that
this is quite reasonable. In TREC 2004 our best run returned
79 correct and 20 unsupported answers. As we performed no
document localization we can expect an accuracy of roughly
99/230=0.430. The additional 0.026 points result from the
fact that we used resolved questions. (We actually would have
expected that this results in a larger performance gain.)

post-TREC evaluations. See the text for details.

fallback This run used only the Google fallback
mechanism as described in section 4.

combined This run combined the lazy rephrasing
algorithm with the Google fallback mechanism.

Table 2 shows the results we obtained.

After the system answered all 230 factoid ques-
tions, we sorted the results by their confidence val-
ues. (Similar to the TREC 2002 QA task, where all
participants had to do this, see [Vor02].) Then we
calculated what fraction of the best x answers are
correct answers. The results can be seen in figure 2.
If you draw for example an imaginary vertical line
from 41 on the x axis, it will cut the strict curve at
0.94, meaning that 94% of the 41 answers the sys-
tem was most sure of, were correct. This line cuts
the fallback curve at 0.72, so only 72% of the best
41 answers from the fallback mechanism are correct.
Figure 3 is based on the same data as figure 2, but
this time we computed the fraction of correct and in-
exact answers. The little diamonds that can be seen
on the curves mark the last correct answer the sys-
tem returned, while the boxes mark the point from
where on the system found no more data to process
and therefore could only return an “answer unknown”
response with a confidence value of 0.

We think that these results are quite interesting:

e Generally, it has to be said that the fallback
mechanism performs better than the rephrasing
algorithm, at least when the results are measured
using accuracy as in TREC 2004. (In the di-
agrams accuracy can be seen at the rightmost
point of the diagram, where the fraction of the
top 230 (i.e., of all) questions was computed.

—strict

—fuzzy
fallback

—— combined

fraction of correct answers

oM o2 3 4 81 BT 81 81 101 1M1 121 131 14 181 BT 171 181 191 201 211 221

number of questions

Figure 2: Fraction of correct answers of the top x answers returned, when ordering them by their confidence

0.4

03

values.
1.0
09
0.5
4]
% 07
g
k=]
F 06
_E —strict
= 05 —fuzzy
=
- fallback
2 — comhined
=1
bt
=
=
2
b=
=
=

0z

0.1

oo

1T 1 2 3 4 58 B 71T 81 81 101 111121 131 14 181 181 171 181 191 2001 211 2

number of questions

Figure 3: Fraction of correct and inexact answers of the top x answers returned, when ordering them by
their confidence values.

e The rephrasing algorithms run out of data very
fast. This due to the fact that the TREC 2004
runs were performed with only 157 patterns. For
most of the questions this approach did simply
not catch. Either, because there was no pattern
for this question type, or because the reformula-
tions could not be found on the web. It is left for
further work to evaluate how much performance
gain can be achieved with more patterns.

e As mentioned, the rephrasing algorithms do not
return that many answers, but a large fraction of
them is correct. Also, the confidence values the
algorithms return seem to be really useful. An-
swers with a high confidence value are almost
always correct. Of the 38 answers the strict
rephrasing algorithm was most sure of, 36 were
correct, two were inexact and none were wrong.
Of the next 35 answers 10 were correct, four were
inexact and 21 were wrong.? After these 73 ques-
tions, the algorithm returned no more answers.

e The confidence values of the fallback mechanism
are not that useful. The mechanism returned
215 answers, but it is difficult for the system to
determine whether it has found a correct answer
or not.

e Especially for the rephrasing algorithms, the first
non-correct answers the system returns, are not
completely wrong, but rather inexact. (See the
difference between figures 2 and 3)

10 Conclusion and Further
Directions

Most QA systems use keyword approaches combined
with named entity recognition techniques to locate
the answer to a question in a given document collec-
tion. In this paper we presented a new way to locate

2The confidence values of the rephrasing algorithms reflect
the amount of answer sentences that were found on the web and
how useful they were judged when being checked on the correct
syntax and on the correct answer type. So low confidence
values indicate that there is something wrong: Either not much
data was found or the syntactic structure or the answer type
did not match.

answers: Feeding syntactic reformulations into an
Information Retrieval system and—more important—
using a syntactic analysis of the results in order to
find the exact answer to a question.

Our experiments suggest that linguistic processing
of candidate sentences results in a better knowledge
of when an answer is correct or not. If we adopt the
terms precision and recall from Information Retrieval
(which are not commonly used in Question Answer-
ing), we can conclude that making use of a syntactic
analysis of candidate sentences results in good preci-
sion values. But, because natural language offers so
many different ways to express answers, it is not easy
to obtain good recall values.

This last point leads directly to our future plans:
We want to explore how recall can be improved, with-
out sacrificing the good precision values (or even find
ways to improve precision as well). The most obvious
way to do this is to increase the size of the pattern
set. Because it is very time consuming to write the
patterns manually, we are currently thinking about
making use of Machine Learning techniques in order
to do this.

A Technical Detalils

QuALiM is written in Java 1.4. It uses the following
3rd party modules:

e ANNIE (a named Entity Recognition system):
http://gate.ac.uk/ie/annie.html

e Google (accessed through the GoogleAPI):
http://www.google.com/apis/

e Link Parser:
http://www.link.cs.cmu.edu/link/

e QTag (a POS tagger):
http://web.bham.ac.uk/o.mason/software/tagger/

o WordNet:
http://www.cogsci.princeton.edu/ wn/

e XTAG morphology database:
http://www.cis.upenn.edu/ xtag/

You can find more information about QuALiM here:
http://www.dfki.de/ mkaisser/
For example an electronic copy of my Master’s The-

sis: [Kai04]

References

[Ans]

[Bra]

[DBB*02]

[HMC*03]

[TON]

[Kai04]

[Kat97]

[KEWOL]

AnswerBus Question Answering System.
http://www.answerbus.com.

BrainBoost - Question Answering Search
Engine.
http://www.brainboost.com.

Susan Dumais, Michele Bankom, Eric
Brill, Jimmy Lin, and Andrew Ng. Web
Question Answering: Is More Always
Better? Proceedings of UAI 2003, 2002.

Sanda Harabagiu, Dan Moldovan, Chris-
tine Clark, Mitchell Bowden, John
Williams, and Jeremy Bensley. Answer
Mining by Combining Extraction Tech-
niques with Abductive Reasoning. In The
Proceedings of the 2008 FEdition of the
Text REtrieval Conference, TREC 2003,
2003.

ionaut - The IO question answering sys-
tem. http://www.ionaut.com:8400.

Michael Kaisser. Question Answering by
Searching Large Corpora with Linguistic
Methods. Master’s thesis, Saarland Uni-
versity, Germany, 2004.

Boris Katz. Annotating the World Wide
Web using Natural Language. In Proceed-
ings of the 5th RIAO conference on Com-
puter Assisted Information Searching on

the Internet (RIAO °97), 1997.

Cody C. T. Kwok, Oren Etzioni, and
Daniel S. Weld. Scaling Question An-
swering to the Web. In Proceedings of
the 10th World Wide Web Conference
(WWW 2001), 2001.

10

[KFY*02] Boris Katz, Sue Felshin, Deniz Yuret,

[RFQ*04]

[STA]

[TKMO4]

[Vor02]

Ali Ibrahim, Jimmy Lin, Gregory Mar-
ton, Alton Jerome McFarland, and Baris
Temelkuran. Omnibase: Uniform Ac-
cess to Heterogeneous Data for Question
Answering. In Proceedings of the 7th
International Workshop on Applications
Of Natural Language to Information Sys-
tems (NLDB2002), 2002.

Dragomir Radev, Weiguo Fan, Hong Qi,
Harris Wu, and Amardeep Grewal. Prob-
abilistic Question Answering on the Web.
Journal of the American Society for In-
formation Science and Technology (JA-
SIST), 2004.

The START Natural Language
Question Answering System.
http://www.ai.mit.edu/projects/infolab/.

Hristo Tanev, Milen Kouylekov, and
Bernardo Magnini. Combining Linguis-
tic Processing and Web Mining for Ques-
tion Answering: ITC-irst at TREC-2004.
In The Proceedings of the 2004 Edition
of the Text REtrieval Conference, TREC
2004, 2004.

Ellen M. Vorheese. Overview of the
TREC 2002 Question Answering Track.
In The Proceedings of the 2002 Edition
of the Text REtrieval Conference, TREC
2002, 2002.

