

ABSTRACT
We approached the problem of classifying papers for the
TREC 2004 Genomics Track triage task as a four step
process: feature generation, feature selection, classifier
training, and finally, classification. Section specific binary
features that discriminated significantly between positive
and negative training samples were chosen using the Chi-
square statistic. Three classifiers were trained on this
feature set: a simple Naive Bayes classifier, the SVMLight
support vector machine implementation, and a voting
perceptron extended to support variable learning rates.
Comparing the classifiers on the training data we found
that neither Naive Bayes nor SVMLight was able to
adequately account for the factor of 20 in the utility
function. The voting perceptron classifier performed much
better at this. The performance on the test collection was
lower for all classifiers, although consistent with the
relative values of the training cross-validation. Feature
subsetting showed no significant differences in precision
or recall, implying that there was some redundancy among
the features. We also examined how well the feature set
derived from the 2002 training collection represented the
papers in the 2003 test collection, and found a low level of
similarity between feature sets derived from the two
collections. This supports the hypothesis that important
classification terms change quickly over time.

1 INTRODUCTION
The 2004 Text Retrieval Conference (TREC) Genomics
track was divided into two main tasks: categorization, and
ad-hoc retrieval. The categorization task was composed of
a document triage subtask and an annotation subtask to
detect the presence of evidence in the document for each
of the three main Gene Ontology (GO) code hierarchies.
Our work focused on the document triage subtask. We
also participated in the ad-hoc retrieval task

2 BACKGROUND
Document classification is a common problem in
biomedicine. Training a support vector machine (SVM)
on vectors created from stemmed and/or stopped
document word counts has proven to be a basic and
typically successful approach (Yeh et al., 2003).
However we believed that the triage problem posed here
had several distinctive features that would require
modification to the basic approach.

First, the number of true positives in both the training
and test collection was known to be small, between 6-7%.
Second, the utility function chosen as the metric of record
was heavily weighted to reward recall and not precision.
This was based on an analysis of the current working
procedures of the annotators at the Mouse Genome
Institute (MGI), and an approximation of how they
currently value false negative and false positive
classification. The official utility function weights a false
negative as twenty times more serious than a false
positive. By this measure the current work practice of
MGI, which is read all documents in test collection, has a
utility of 0.25.

Additionally, the training and test collections were not
randomly drawn from the same sample but instead were
collected from documents published in two sequential
years. While this is a more realistic simulation of a
system as it would be put into use at MGI, it raises the
issue of how well the feature set derived from one year of
literature represents the literature of subsequent years.

Because of these issues our approach included a rich set
of feature types, statistically based feature selection,
several classifiers, and an analysis of how well the feature
set derived from the year 2002 corpus represented the
documents in the 2003 corpus.

3 SYSTEM AND METHODS
We approached the triage problem in four stages: Feature
generation, feature selection, classifier selection and
training, and finally, test document classification. The
first three steps were performed using only the training
set. The final step was performed on the test collection to
generate the submitted results.

During system development we used ten-fold cross-
validation on the training set to compare approaches and
set system parameters. This entailed performing the first
two steps on the entire training collection. Then 90% of
the training data was used to train the classifiers which
were then applied to the remaining 10% of the training
data. This was repeated nine more times, so that all of the
training data was classified once. The results were then
aggregated to compute cross validation metrics on the
training corpus. Figure 1 presents this process
diagrammatically.

Feature generation, feature selection, classifiers,

and conceptual drift for biomedical document triage
A. M. Cohen, R.T. Bhupatiraju, W.R. Hersh

Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University,
Portland, OR, USA

Fig. 1. Step-wise approach to text classification

3.1 Feature generation
The full text corpus with SGML mark-up provided
opportunity to investigate the use of many types of
features. While many text classification approaches treat
the text as a “bag-of-words”, we chose to use the
information contained in the SGML mark-up to generate
section type specific features. Because we combined
features that could occur multiple times in a single
document with features that could occur only once, after
some initial testing we choose to treat each feature as
binary, that is, each feature was either present in a
document or it was absent.

One type of feature that we generated consisted of pairs
of section names and stemmed words, using the Porter
stemming algorithm. After applying a stop list of the 300
most common English words, individual parts of the
document processed were processed to include sections
for the abstract, body paragraphs, captions, and section
titles. We also created similar combination section,
stemmed word features using the stopped and stemmed
section title in combination with the stopped and stemmed
words within the named section.

In addition we downloaded the corresponding
MEDLINE records from PubMed. The corresponding

MeSH headings were extracted for each article. We
included MeSH-based feature types based on the full
MeSH headings, the MeSH main headings, and the MeSH
subheadings.

Finally we included feature types based on information
in the references section of each document. The main
author of each reference was taken as a feature type. We
also included long form of references as a feature type, by
including the primary author, the journal name, volume,
year, and page number.

Running the feature generation process on the full set of
5837 training documents produced over 100,000
potentially useful features along with counts of the
number of documents containing each feature.

3.2 Feature selection
We chose to use the Chi-square selection method to select
the features that best discriminated between positive and
negative documents in the training corpus. The 2x2 Chi-
square table is constructed as shown in Table 1, using the
document counts obtained in the previous step. During
system tuning it was found that an alpha value of 0.025
produced the best results. Using this value as a cut-off,
1885 features were selected as the most significant. The
number and type of each feature found significant and
used in the following steps are shown in Table 2.

3.3 Classifier selection and training
We applied three different classifiers to the problem:
Naive Bayes, SVM, and Voting Perceptron. While it is
commonly thought that the best classifiers are based on
the SVM approach of Vapnik (Vapnik, 2000), the
distinctive aspects of the current classification problem
discussed above motivated us to apply three different
classifiers. By using the same feature set with each of the
classifiers, this allowed us to compare the effectiveness of
the classifier algorithms for the particular requirements of
the triage task.

Table 1. 2x2 arrangement for testing feature significance

 Feature is the one under test?

 Yes No

Yes

Number of times
feature seen in
positive
documents

Number of times
other features
seen in positive
documents

Training
document
is triage
positive?

No

Number of times
feature seen in
negative
documents

Number of times
other features
seen in
negative
documents

Test Corpus

Training Corpus

Document Classification

Classifier Selection
& Training

Feature Generation

Feature Selection

Table 2. Number and type of features used

Neither Naive Bayes, nor the implementation of SVM

we used, SVMLight (Joachims, 2004), provided adequate
means of adjusting for the low frequency of positives and
the high utility of true positives relative to false positives.
For Naive Bayes, we used our own implementation.
Naive Bayes provides a classification probability
threshold that can be used to trade off between precision
and recall. However, this is an indirect means of
compensation, and in practice for this classification task,
we found adjusting the probability threshold did not have
a significant effect.

We fully expected SVMLight to perform better than
Naive Bayes, since it included a cost factor parameter that
can be adjusted to allow unequal penalties for false
positives and false negatives. However, we found that the
amount of influence this parameter has is small, and was
inadequate to compensate for the factor of 20 difference
between the cost of false positives and negatives. Since
neither Naive Bayes nor one of the most popular
implementations of SVM addressed our requirements,
something else was needed.

A review of the classification literature shows
significant work in modifying the classic Perceptron
algorithm of Rosenblatt (Rosenblatt, 1958) to achieve
performance at or near that of SVM for many problems.
One algorithm in particular, the Voting Perceptron
algorithm (Freund and Schapire, 1999), has very good
performance, is quite fast, and is easy to implement.
While the algorithm as published does not include a
means of compensating for asymmetric false positive and
negative penalties, we have created a modification to the
algorithm that does.

A perceptron is essentially an equation for a linear
combination of the values of the feature set. There is one
term in the perceptron for each feature in the feature set,
plus an optional bias term. A document is classified by
taking the dot product of a document’s feature vector with
the perceptron, and adding in the bias term. If the result is

greater than zero, then the document is classified as
positive, if less than or equal to zero, then the document is
classified as negative.

Rosenblatt’s original algorithm trained the perceptron
by applying it to each sample in the training data. If the
sample was incorrectly classified, the perceptron was
modified by adding or subtracting the a sample back into
the perceptron, adding when the sample was a true
positive, and subtracting when the sample was a true
negative. Over a large number of training samples the
perceptron converges on the solution that best
approximates the separation between positive and
negative documents in the training set.

Freund and Schapire improved the perceptron’s
performance by modifying the algorithm to produce a
series of perceptrons, each which makes a prediction on
the class of each document and gets a number of “votes”
depending upon how many documents that perceptron
classified correctly in the training set. The class with the
most votes is the predicted class assigned to the
document.

Our extension to this algorithm is based upon adjusting
the learning rate of the perceptron differently for false
negatives and false positives. While in the typical
implementation, incorrectly classified samples are directly
added or subtracted back into the perceptron, we first
multiply the sample by a factor known as the learning
rate. Furthermore, we use different learning rates for false
positives and false negatives. Given the definition of the
utility function, we expected that the optimal learning rate
for false negatives to be about 20 times that of false
positives. This is indeed what we found during training.
We used a learning rate of 20.0 for false negatives, and
1.0 for false positives.

Each of the three classifiers was applied to the training
corpus. Ten-fold cross-validation was used to optimize
any free parameters. The Naive Bayes classifier had one
free parameter, the probability classification threshold.
This was left at the default value of 0.50. The SVM-Light
classifier settings chosen used the linear kernel and a cost
factor of 20.0. The Voting Perceptron classifier was used
with a linear kernel, and the learning rates were given
above. This created a trained classifier model for each of
the three methods.

3.4 Classification of test documents
Finally, the models created by the Naive Bayes, SVM,
and Voting Perceptron classifiers were applied to the test
corpus. This is done in two steps. First the documents in
the test corpus were analyzed for the presence or absence
of the significant features found during the feature
selection step. This created a feature vector for each test
document. Then the documents were classified by
applying each of the three trained classifiers.

Feature type Number
significant

Abstract stemmed words 127
Body paragraph stemmed words 778
Caption stemmed words 291
MeSH full headings 15
MeSH main headings 52
MeSH subheadings 5
Author of referenced work 35
Reference 4
Section title stemmed words 69
Section title with stemmed section words 509
Total number of features significant features 1885

Table 3. Performance of classification system on test and training corpi

3.5 Evaluation of conceptual drift
One important issue in applying text classification
systems to documents of interest to curators and
annotators is how well the available training data
represents the documents to be classified. When
classifying a biomedical text, the available training
documents must have been written before the text to be
classified. However, by its very nature the field of science
changes over time, as does the language used to describe
it. How rapidly the written literature of science changes
has a direct influence on the development of biomedical
text classification systems in terms of how features are
generated and chosen, how often the systems need to be
retrained, how large the training increment should be, and
may effect the maximum performance that can be
expected out of these systems.

We wanted to begin to understand this important issue
of conceptual drift in the biomedical literature. In order to
measure how well the features chosen from the training
collection represented the information important in
classifying the document in the test collection, we
performed additional steps of feature generation and
selection on the test collection. The exact same system
and parameters were applied to the test collection as the
training collection. Then we measured how well the
training collection feature set represented the test
collection feature set by computing similarity metrics
between the two sets (Dunham, 2003).

4 RESULTS

4.1 Classification performance
The results of applying our classification systems to both
the training and test collections are presented in Table 3.
As previously stated, ten-fold cross validation was used to
evaluate performance on the training data. The results on
the test data were created blindly, running the algorithms
on the test corpus and sending the results in for evaluation
by the TREC 2004 Genomics Track staff.

As can be seen in the table, the Voting Perceptron
algorithm had the best utility of 0.6600, Naive Bayes
next, and SVMLight worst on both the training and test
corpi. The highest recall obtained was 0.8453 by the
Voting Perceptron algorithm on the training collection.
The highest precision of 0.3140 was obtained by
SVMLight on the training collection, and the highest
overall F-score was obtained by SVMLight also on the
training collection.

The same relative performance was obtained for all
three algorithms for precision, recall, F-score, and utility
on the test collection, however the actual numbers are
much lower. Voting Perceptron utility fell to 0.4983, and
recall fell to 0.6571. SVMLight’s precision and F-score
fell to 0.2309 and 0.2790 respectively. Also the F-score of
the Voting Perceptron algorithm on the test data was
0.2719, almost equal to that of SVMLight.

Figure 2 presents the results of applying the Voting
Perceptron classifier to the training data using ten-fold
cross validation and leaving out feature types. Each
vertical row shows the recall and precision obtained when
leaving out one type of feature. For comparison, the
leftmost column shows the performance of the full feature
set. No significant differences in recall or precision were
found by leaving out single feature types. This may
indicate that there is redundancy in the feature set. In fact
there is some textual overlap between the body paragraph
stemmed words feature type and the section title with
stemmed section words feature type, and also between the
author of referenced work and reference feature types.

4.2 Conceptual drift
Because the metrics on the test collection are much lower
than the cross validation on the training set, it useful to
understand how well the feature set extracted from the
training collection represents the test collection. We
performed the same process of feature generation and
selection on the test collection. The process generated a
set of 1899 significant features, a quantity very close to
the 1885 features extracted from the training collection.

Corpus Classifier Precision Recall Fscore Utility

Naive Bayes 0.1556 0.7650 0.2587 0.5577

SVMLight 0.3140 0.5550 0.4010 0.4940

Training
corpus

Voting Perceptron 0.1857 0.8453 0.3045 0.6600

Naive Bayes 0.1290 0.6548 0.2155 0.4337

SVMLight 0.2309 0.3524 0.2790 0.2937

Test
corpus

Voting Perceptron 0.1714 0.6571 0.2719 0.4983

Fig. 2. Precision and recall when leaving out feature types

We computed similarity measures between these two
sets of features. The Dice similarity coefficient was
0.2489, the Jaccard similarity was 0.1422, cosine
similarity was 0.2489, and the overlap measure was
0.2499. All similarity measures showed a low level of
similarity between the two sets.

This conceptual drift is not simply a reflection of a
wholesale change in vocabulary. We performed
equivalent similarity measures on the individual word
frequencies in the training and test collection, filtered out
common English words as before, and sorted the words
most frequent to least frequent for both sets. Computing
similarity measures between the top 100, 1000, and
10,000 words in both sets showed consistently high
similarity measures, with the maximum being the Dice
similarity coefficient of 0.9618 at 100 words, and the
minimum being a Jaccard similarity of 0.9232 at 10,000
words.

5 DISCUSSION
These results show that document classification can be a
useful technique to aid the MGI curators in screening
documents for annotation. The utility of the Voting
Perceptron system on the test collection is about twice
that of the estimate of the current work practice of MGI,
and is ~14% better than the next best classifier. Clearly it
is important for biomedical document classifiers to be
able to flexibly incorporate utility measures specific to the
task, as we have done here with the Voting Perceptron
classifier.

Nevertheless, the performance measures on the test
collection are significantly lower than those on the
training set. One possible explanation for this can be
found in the low similarity between the two sets of
significant features extracted for the two text corpi. The
maximum similarity metric, the overlap measure, only
shows about 25% overlap between the two sets.
Therefore, many of the features found significant during
training were in fact not significant for triaging the test
collection.

There may be many factors influencing why this is so.
As the vocabulary similarity measures show, it is not

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

FU
LL

_FEA
TU

RE_
SET

M
IN

US_A
BSTRACT

M
IN

US_B
ODY_PA

RAGRAPH

M
IN

US_CAPTIO
N

M
IN

US_M
ES

H_FU
LL

_HEA
DIN

GS

M
IN

US_M
ES

H_HEA
DIN

GS

M
IN

US_M
ES

H_S
UBHEA

DIN
GS

M
IN

US_REF_
AUTHO

R

M
IN

US_REFER
ENCE

M
IN

US_S
ECTIO

N

M
IN

US_S
ECTIO

N_T
IT

LE

Feature Set

Precision
Recall

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

FU
LL

_FEA
TU

RE_
SET

M
IN

US_A
BSTRACT

M
IN

US_B
ODY_PA

RAGRAPH

M
IN

US_CAPTIO
N

M
IN

US_M
ES

H_FU
LL

_HEA
DIN

GS

M
IN

US_M
ES

H_HEA
DIN

GS

M
IN

US_M
ES

H_S
UBHEA

DIN
GS

M
IN

US_REF_
AUTHO

R

M
IN

US_REFER
ENCE

M
IN

US_S
ECTIO

N

M
IN

US_S
ECTIO

N_T
IT

LE

Feature Set

Precision
Recall

simply a wholesale change in the language used in journal
articles. The cause is something more subtle, and more
specific to the terms and concepts that are important in the
classification of these documents for annotation triage.

One possible explanation is that the important words
and concepts that signify inclusion in the positive triage
set changed between the years during which the
documents in the test and training sets were written, 2002
and 2003 respectively. This may be due to authors using
new concepts or different language. It may also signify
that the criteria used by the annotators when triaging a
document has changed.

Clearly this issue needs more study if we are to apply
text classification in a manner that best addresses the
needs of annotators. Document triage systems may need
to be re- trained more frequently, or even continuously
trained. It may also be important to develop methods of
extracting sets of features that have greater longevity than
the Chi-square method used here.

6 CONCLUSIONS
Automated document triage as presented here can be a
useful aid to the MGI triage process. The current state of
the art provides a notable increase in utility above the
current work process. However, more work needs to be
done to verify that the utility metric used here actually
represents value as perceived by the MGI curators.
Furthermore, the best means of deriving and updating the
classification feature set over time is an open question and
needs further study.

7 AD-HOC INFORMATION RETRIEVAL
TASK

OHSU also took part in the ad hoc retrieval task of the
Genomics Track. For the task, we decided to see how
known simple but effective indexing and retrieval
strategies would fare with the test collection. As such, we
used the Lucene system, which is part of the Jakarta open
source distribution of Web tools. Lucene implements a
variant of TF*IDF term weighting that includes additional
parameters for query term boosting and document length
normalization (Apache Software Foundation, 2004). We
did not use boosting and manual inspection showed length
normalization to be detrimental. Therefore our runs were
based on TF*IDF term weighting for document ranking.

We submitted two official runs, one that used just the
information needs statement of the query (OHSUNeeds)
and the other, which used all of the text, including the
title, information need, and context (OHAUAll). Both of
these runs performed above the median in mean average
precision (MAP), with the OHSUNeeds run scoring
slightly better. Determining why these simple approaches
worked better than many others requires further analysis,

but could be due to more elaborate methods having
detrimental effects.

ACKNOWLEDGEMENTS
This work was supported in part by Grant number 2 T15
LM07088-11 from the National Library of Medicine, and
Grant ITR-0325160 from the National Science
Foundation.

REFERENCES
Apache Software Foundation (2004) Class Similarity,

Lucene 1.4.2 API.
http://jakarta.apache.org/lucene/docs/api/org/apache/luc
ene/search/Similarity.html

Dunham, M. H. (2003) Data mining introductory and
advanced topics. Prentice Hall/Pearson Education,
Upper Saddle River, N.J.

Freund, Y. and Schapire, R. E. (1999) Large Margin
Classification Using the Perceptron Algorithm.
Machine Learning, 37, 277-296.

Joachims, T. (2004) SVM-Light Support Vector Machine.
http://svmlight.joachims.org/

Rosenblatt, F. (1958) The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological Review, 386–407.

Vapnik, V. N. (2000) The nature of statistical learning
theory. Springer, New York.

Yeh, A. S., Hirschman, L. and Morgan, A. A. (2003)
Evaluation of text data mining for database curation:
lessons learned from the KDD Challenge Cup.
Bioinformatics, 19 Suppl 1, i331-9.

