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Abstract

AnswerFinder combines lexical, syntac-
tic, and semantic information in various
stages of the question answering pro-
cess. The candidate sentences are prese-
lected on the basis of (i) the presence of
named entity types compatible with the
expected answer type, and (ii) a score
combination of the overlap of words,
grammatical relations, and flat logical
forms. The candidate answers, in turn,
are extracted from (i) the set of compat-
ible named entities and (ii) the output
of a logical-form pattern matching algo-
rithm.

1 Introduction

This document describes the AnswerFinder sys-
tem as it stood at the time of the TREC 2004 ques-
tion answering track.1 Section 2 describes the ar-
chitecture of the system as a whole, Section 3 de-
tails the function of each module within the An-
swerFinder system, Section 4 gives the system
performance on the TREC 2004 question set and
Section 5 gives the conclusions and future work.

The AnswerFinder question answering system
is designed to answer TREC-style factoid ques-
tions with an exact answer as below:

Q: How far is it from Mars to Earth?

A: 416 million miles
1This work is supported by the Australian Research Coun-

cil, ARC Discovery grant n. DP0450750.

In 2004, TREC questions consisted of factoid,
list, and “other” questions and they were XML-
formatted in groups of questions about a single
topic as shown in Figure 1.

All the questions in the example of Figure 1
refer to Fred Durst, so question with ID num-
ber 2.2 is a factoid question askingWhat record
company is Fred Durst with?. Question with ID
number 2.3 is a list question in which all correct
factoids should be listed in response, and ques-
tion with ID number 2.5 is an “other” question in
which relevant nuggets of information not given in
response to earlier questions should be returned.

We spent most of our effort to handle the factoid
questions and very little effort was done for the list
and “other” questions. In this paper we will there-
fore focus on AnswerFinder’s handling of factoid
questions.

2 System Overview

The question answering procedure used by An-
swerFinder follows the pipeline structure that is
typical of rule-based question answering systems.
The process is outlined in Figure 2 and is as fol-
lows:

1. The questions are normalised by resolving
pronominal anaphora, so thatWhat record
company is he with?becomesWhat record
company is Fred Durst with?

2. The questions are classified into types based
upon their expected answer. So the question
How far is it from Mars to Earth?would be
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Figure 2: System overview

<target id = "2" text = "Fred Durst">

<qa>
<q id = "2.1" type="FACTOID">
What is the name of Durst’s group?

</q>
</qa>

<qa>
<q id = "2.2" type="FACTOID">
What record company is he with?

</q>
</qa>

<qa>
<q id = "2.3" type="LIST">
What are titles of the group’s releases?

</q>
</qa>

<qa>
<q id = "2.4" type="FACTOID">
Where was Durst born?

</q>
</qa>

<qa>
<q id = "2.5" type="OTHER">
Other

</q>
</qa>

</target>

Figure 1: An example of a group of questions us-
ing the TREC 2004 format

classified as a “Number” question as it ex-
pects a numeric value in response.

3. 100 candidate answer sentences are extracted
from the corpus.

4. The 100 sentences are re-scored based upon
their word overlap, grammatical relations
overlap, and flat logical form overlap with the
question text.

5. Exact answers — fragments like416 million
miles— are extracted from the candidate an-
swer sentences.

6. The exact answer list is sorted, re-scored and
filtered for duplicate exact answers.

7. A number of exact answers from the top of
the list are selected, depending on the ques-
tion being factoid, list, or “other”.

AnswerFinder uses the following knowledge
sources to analyse the question and to select from
among possible answers:� Named entity data generated by the GATE

system (Gaizauskas et al., 1996). The named
entity types are listed in Table 1. The named
entity detector was run off-line and all the
named entities of the AQUAINT corpus was
stored in a set of files prior to the processing
of any questions.� The list of documents provided by NIST, con-
taining for each target entity the 1000 top
scoring documents for that entity.



Date
Location
Money
Organization
Person

Table 1: Named entity types recognised by GATE

3 Modules

3.1 Question Normalisation

Given that the questions may contain anaphoric
references to information external to the questions,
AnswerFinder performs simple anaphora resolu-
tion on question strings.

Questions in the TREC 2004 competition co-
referred with previous questions or with their tar-
get in a number of ways.

Questions might co-refer with their target
pronominally:

Target2: Fred Durst

Q2:2: What record company is he with?

Questions might co-refer with their target using
a definite noun phrase:

Target21: Club Med

Q21:1: How many Club Med vacation
spots are there worldwide?

Q21:2: List the spots in the United
States.

Questions might co-refer with another question:

Target2: Fred Durst

Q2:1: What is the name of Durst’s
group?

Q2:3: What are titles of the group’s re-
leases?

Finally, questions may relate to their target as-
sociatively, that is, there may not be a direct co-
reference:

Target46: Heaven’s Gate

Q46:3: When did the mass suicide oc-
cur?

AnswerFinder normalises questions in the first
case only, where the question co-refers with the
target pronominally. It performs a simple replac-
ing of the pronouns of the question with the tar-
get’s identity. Since AnswerFinder needs syntac-
tically correct questions, the target is transformed
to the plural form or the possessive form where
necessary. The transformation uses very simple
morphological rules to transform the questions as
shown in Table 2.

In addition, “other” type questions containing
the single wordOtherare transformed intoWhat is
TARGET?so that question 2.5 in Figure 1 is trans-
formed intoWhat is Fred Durst?. This is a very
crude attempt at doing something useful with the
“other” type questions. Clearly more targeted pro-
cessing of these questions is advisable.

3.2 Question Classification

Particular questions signal particular named entity
types expected as responses. Thus, the example
below expects a person’s name in response to the
question:

Who founded the Black Panthers orga-
nization?

AnswerFinder uses a set of 29 regular expres-
sions to determine the expected named entity type.
These regular expressions are the same used in our
contribution to TREC 2003 and they target the oc-
currence ofWh-question words. In addition, spe-
cific keywords in the questions indicate expected
answer types as shown in Table 3.

3.3 Candidate Sentence Extraction

Given the set of AQUAINT documents preselected
by the NIST information extraction system, An-
swerFinder selects 100 sentences from these doc-
uments as candidate answer sentences.

Candidate sentences are selected in the follow-
ing way:

1. The 1000 preselected documents provided by
NIST for each target are split into sentences.
The sentence splitter follows a simple ap-
proach based on the use of a fixed list of sen-
tence delimiters.



What record company ishe with? �! What record company isFred Durst with?
How many ofits members committed sui-
cide?

�! How many ofHeaven’s Gate’s members
committed suicide?

In what countries arethey found? �! In what countries areagoutis found?

Table 2: Examples of pronoun resolution performed by AnswerFinder

Keyword Answer Type
city, cities Location
percentage Number
first name, middle name Person
range Number
rate Number
river, rivers Location
what is, what are, what do Person, Organisation or Location
how far, how long Number

Table 3: Examples of question keywords and associated answer types

2. Each sentence is assigned a numeric score:
1 point for each non-stopword overlapping
with the question string, and 10 points for the
presence of a named entity of the expected
answer type.

3. The 100 top scoring sentences are returned as
candidate answer sentences.

As an example of the scoring mechanism, con-
sider this question/sentence pair:

Q: How far is it fromMars to Earth?

A: According to evidence from the SNC
meteorite, which fell fromMars to
Earth in ancient times, the water con-
centration in Martian mantle is esti-
mated to be40 ppm, far less than the
terrestrial equivalents.

The question and sentence have 2 shared non-
stopwords:MarsandEarth. Further, this sentence
has a named entity of the required type (Number):
40 ppm, making the total score for this sentence
12 points.

3.4 Sentence Re-scoring

The 100 candidate sentences are re-scored based
upon the combination of lexical, syntactic, and se-
mantic features:

Lexical: The combined word overlap and named
entity score.

Syntactic: The grammatical relation overlap
score.

Semantic: Two ways of computing overlaps with
flat logical form patterns.

The use of lexical information has been de-
scribed in Section 3.3. Below we will briefly ex-
plain the use of syntactic and semantic informa-
tion.

3.4.1 Grammatical Relation Overlap Score

The grammatical relations devised by
Carroll et al. (1998) encode the syntactic in-
formation of questions and candidate answer
sentences. We decided to use grammatical re-
lations and not, say, parse trees or dependency
structures for two reasons:

1. Unlike parse trees, and like dependency
structures, grammatical relations are easily
incorporated into an overlap-based similarity
measure.

2. Parse trees and dependency structures are de-
pendent on the grammar formalism. In con-
trast, the grammatical relations have been de-
vised as a means to normalise the output of



parsers for their comparative evaluation. As
a result, the grammatical relations are inde-
pendent of the grammar formalism or the ac-
tual parser used. Our choice of parser was the
Connexor Dependency Functional Grammar
and parser (Tapanainen and Järvinen, 1997).
Since it is dependency-based, the transfor-
mation to grammatical relations is relatively
straightforward.

An example of the grammatical relations for
question and candidate sentence follows:

Q: How far is it from Mars to Earth?
(subj be it )
(xcomp from be mars)
(ncmod be far)
(ncmod far how)
(ncmod earth from to)

A: It is 416 million miles from Mars to
Earth.
(ncmod earth from to)
(subj be it )
(ncmod from be mars)
(xcomp be mile)
(ncmod million 416)
(ncmod mile million)

The similarity-based score is the number of re-
lations shared between question and sentence. In
example 3.4.1, the overlap between the grammat-
ical relations of question and candidate sentence
is 2: (subj be it ) and (ncmod earth from to).

3.4.2 Flat Logical Form Patterns

Semantic information is represented by means
of flat logical forms (Mollá, 2001). These logi-
cal forms use reification to flatten out nested ex-
pressions in a way similar to other QA systems
(Harabagiu et al., 2001; Lin, 2001; Mollá et al.,
2000, for example). The logical forms are pro-
duced by means of a process of bottom-up traver-
sal of the dependency structures returned by Con-
nexor (Mollá and Hutchinson, 2002).

Our contribution to TREC 2003 (Mollá, 2003)
manipulated flat logical forms in the same way as
grammatical relations are manipulated above, so
that the score of example 3.4.2 would be computed
as follows:

Q: What is the population of Iceland?
object(iceland, o6, [x6])
object(population, o4, [x1])
object(what, o1, [x1])
prop(of, p5, [x1, x6])

A: Iceland has a population of 270000
dep(270000, d6, [x6])
object(population,o4,[x4])
object(iceland,o1,[x1])
evt(have,e2,[x1,x4])
prop(of,p5,[x4,x6])

In our 2003 system, the flat logical form score
of example 3.4.2 would have been 2, as the num-
ber of overlaps between the logical form of ques-
tion and answer is 2. Note that the process to com-
pute the overlap of logical forms must map the
variables from the question to variables from the
candidate answer sentence. AnswerFinder uses
Prolog unification for this process.

With the goal to take in consideration the dif-
ferences between a question and the various forms
to answer it, AnswerFinder in TREC 2004 uses
patterns to capture the expected form of the an-
swer sentence and locate the exact answer. Thus,
if a question is of the formwhat is X of Y?, then
a likely answer can be found in sentences likeY
has a X of ANSWER. In contrast with other ap-
proaches, AnswerFinder uses flat logical form pat-
terns. For example, the pattern forwhat is X of Y?
is:

Question Pattern:
object(ObjX,VobjX,[VeX]),
object(what,,[VeWHAT]),
object(ObjY,VobjY,[VeWHAT]),
prop(of, ,[VexistWHAT,VeX])

And the pattern ofY has a X of ANSWERis:

Answer Pattern:
dep(ANSWER,ANSW,[VeANSW]),
prop(of, ,[VeY,VeANSW]),
object(ObjX,VobjX,[VeX]),
evt(have,,[VeX,VeWHAT]),
object(ObjY,VobjY,[VeY])

Borrowing Prolog notation, the above patterns
use uppercase forms or ‘’ to express the argu-
ments that can unify with logical form arguments.



As the logical form ofWhat is the population of
Iceland?matches the above question pattern, then
its logical form is transformed into:

Q: What is the population of Iceland?
dep(ANSWER,ANSW,[VeANSW]),
prop(of, ,[VeY,VeANSW]),
object(iceland,o6,[x6]),
evt(have,,[x6,x1]),
object(population,o4,[VeY])

Now the transformed logical form shares all five
terms with the logical form ofIceland has a pop-
ulation of 270000, hence the score of this answer
sentence is 5. In addition, AnswerFinder knows
that the answer is270000, since this is the value
that fills the slotANSWER.

The use of flat logical forms makes it possible to
handle certain types of paraphrases (Rinaldi et al.,
2003) and therefore we believe that patterns based
on flat logical forms such as the ones described
above are more appropriate than patterns based on
syntactic information or surface strings for the task
of identifying answer sentences. However, the re-
sulting patterns are difficult to read by humans and
the process of developing the patterns becomes
very time-consuming. Due to time constraints we
developed 10 generic templates only. Each tem-
plate consists of a pattern to match the question,
and one or more replacement patterns. The above
example is one of the question/replacement pat-
terns.

There were two flat logical form pattern overlap
algorithms used by AnswerFinder in TREC 2004:
an algorithm which can extract one value for the
ANSWER variable, and an algorithm which can
extract all possible values.

3.5 Exact Answer Extraction, Filtering and
Scoring

Having selected and re-ranked the 100 candidate
sentences, AnswerFinder then selects an exact an-
swer string from within them. Ideally, the logi-
cal form patterns will have identified the exact an-
swer. In practise, given the reduced number of pat-
terns developed, many good answer sentence or
even questions would not have a logical form that
matches any of the patterns. As a result we in-
tegrate the expected answer type provided by the

question analyser and the results of the named en-
tity recogniser. In particular:

1. For each candidate sentence, extract all
named entities that match the question clas-
sification.

2. For each candidate sentence, extract AN-
SWER values from any matching flat logical
form pattern.

Exact answers are scored in this way:

1. If the exact answer is an identified named en-
tity of the expected answer type, its score is
the score of the candidate sentence it is found
in.

2. If the exact answer is an ANSWER value
from a flat logical form answer pattern, its
score is the score of the candidate sentence
it is found in.

3. If the exact answer is both a named entity and
an ANSWER value from a flat logical form
answer pattern, its score is twice the score of
the candidate sentence it is found in.

If an answer is a duplicate of a higher scoring
answer, the two answers are merged and the score
becomes the sum of the scores of the duplicate an-
swers.

3.6 Exact Answer Selection

AnswerFinder selects the answers in the following
ways:

Factoid questions requiring exactly one answer,
or “NIL” indicating no answer:� if there are no answers with a score more

than 0, return “NIL”; otherwise� return one of the top scoring answers

List questions and “other” questions requiring
a number of answers: return all top scoring
exact answers. If there is no exact answer
with a score of more than 0, return the top
scoring candidate sentence.



4 Performance

We submitted three runs based on combinations of
candidate answer sentence re-ranking scores and
the use or not of all the possible answers returned
by the logical form patterns:

answfind1 used the overlap of logical forms (lfo)
and the logical form patterns returned the first
possible answer (single).

answfind2 used 3 times the grammatical relation
overlap score added to the flat logical form
pattern overlap score (3gro+lfo). This com-
bination was determined empirically. The
logical form patterns returned the first pos-
sible exact answer (single).

answfind3 used the same score combination as
“answfind2” (3gro + lfo), but this time the
logical form patterns returned all the possible
exact answers (multi).

The results of the three runs (Table 4) were sur-
prisingly similar. The F measure of the list ques-
tion is remarkably close to the median consider-
ing our simple treatment, and the F measure of the
“other” questions is understandably low given that
we treated them as list questions of the formwhat
is TARGET?.

Run Factoid List “Other” Final
Name Accuracy F F Score
answfind1 0.100 0.081 0.080 0.090
answfind2 0.100 0.080 0.080 0.090
answfind3 0.100 0.080 0.080 0.090
TREC 0.170 0.094 0.184

Table 4: TREC 2004 results

A subsequent analysis of the code revealed a
bug that made the program to effectively ignore
the use of the logical form patterns. This explains
the nearly similar results in all runs. After fix-
ing the bug the accuracy of our system changed as
shown in Table 5. The evaluation was performed
using Ken Litkowsky’s patterns. Since this is an
automatic evaluation, the results had lower accu-
racy than the ones presented in Table 4, but the
relative increase or decrease of accuracy was sig-
nificant.

Run Before After Accuracy
Name Fixes Fixes Increase
answfind1 0.086 0.071 -17%
answfind2 0.086 0.066 -23%
answfind3 0.086 0.096 11%

Table 5: Automatic analysis of factoid accuracy
with Ken Litkowsky’s patterns

The results of our internal evaluation indicate
that the first answer returned by a logical form pat-
tern is not usually the correct one. As a result,
incorrect answers were given a score boost. The
main reason for logical form patterns not giving
the correct answer is that some of them were so
general that they identified a large set of possible
answers within a sentence. As an indication, Ta-
ble 6 shows the coverage of the patterns used.

Template ID Number of Template ID Number of
Questions Questions

howmany1 0 how1 1
howmany2 0 who generic 39
what2 3 what generic 116
what3 0 what noun 69
what6 1 no match 78
when1 47

Table 6: Number of questions triggering each
question pattern; note that a question may trigger
several patterns

The most frequent pattern by far is
“what generic”, which was defined as:

Question Pattern:
object(what,,[XWho])

Answer Pattern:
object( ,ANSWER,[XWho])

Clearly, this pattern will match any object of
the candidate answer sentence. In the “answfind1”
and “answfind3” runs, more often than not the an-
swer chosen was the wrong one. However, in the
“answfind3” run, since all matching answers were
returned, those that were of the correct expected
answer type would have an additional score boost.

Our results also indicate that even a small set of
patterns such as the ones used in our system can
help to obtain better results. By extending the set
of patterns and reducing the use of general patterns
the overall performance is expected to increase.



5 Conclusions and Future Work

AnswerFinder combines lexical, syntactic, and se-
mantic information in a simple pipeline-based sys-
tem. Lexical information is based on the list of
non-stop words. Syntactic information is based on
the use of grammatical relations. Semantic infor-
mation is based on the use of flat logical forms.
The main differences from the system participat-
ing in TREC 2003 are the use of named entities
and the development of a process to handle logical
form patterns and exact answer extraction.

Further work includes the fine-tuning of vari-
ous parameters used by AnswerFinder such as the
ideal combination of the lexical, syntactic, and se-
mantic information. Time and resource permit-
ting we will use machine learning methods to opti-
mise the weights of each element in the final scor-
ing formula. Another parameter that may be op-
timised by means of machine learning methods is
the scoring threshold for NIL answers and for re-
turning an answer to a list question.

An obvious direction of further research is the
treatment of “other” questions. The transforma-
tion from other to what is TARGET?performed
by AnswerFinder assumes that these questions are
answered as definitions but this is not necessarily
the case. We will explore the use of logical form
patterns inspired in methods to answer definition
questions.

Additional further research includes the refining
of the candidate sentence scoring and the exact an-
swer scoring, and the development of a more com-
prehensive and detailed set of logical form pat-
terns.
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