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Abstract

This paper describes the methods we developed for the
three tasks of the TREC Genomics Track, i.e., ad hoc
retrieval, triage, and annotation tasks. For the ad hoc
retrieval task, we used the classic vector space model
and studied the use of query expansion and pseudo-
relevance feedback. Our submitted runs obtained a
MAP of 0.183. For the triage task, we adopted a naı̈ve
Bayes classifier trained on MeSH terms and used gene
names as filters to rule out false positives. The obtained
normalized utility score was 0.435. For the annotation
task, we focused on document representation and ap-
plied a variant of thekNN classifiers. One of our sub-
mitted runs produced anF1 score of 0.561, ranking first
out of 36 runs submitted for the annotation task.

1 Introduction

The volume of the biomedical literature is enormous
and has been rapidly growing. For example, MED-
LINE, a bibliographic database in the biomedical do-
main, currently contains over 13 million records and
2000 records are added daily. This rich resource of
knowledge has motivated various research themes in
the area of information retrieval (IR) for realizing ef-
fective information access.

To foster the IR and related research, specifically
targeting biomedical text, the Text Retrieval Confer-
ence (TREC) launched the genomics track in 2003 [8],
which attracted the second largest group of participants
among all the tracks. This year, the genomics track had
two primary tasks:ad hoc retrievalandcategorization
tasks. The latter mimics some parts of Mouse Genome
Informatics (MGI) database curation processes that are
currently carried out by human experts, and consists of

two subtasks, i.e.,triage andannotation, as described
shortly.

The following sections report our proposed methods
and the results for the ad hoc retrieval, triage, and an-
notation tasks in turn.

2 Ad Hoc Retrieval Task

2.1 Overview

This is a conventional ad hoc retrieval task targeting
the biomedical literature. Participants were provided
with 50 topics, and for each topic, they were required
to retrieve a set of relevant documents sorted according
to the estimated relevance. The topics were collected
through interviews with biologists in order to capture
the real-world information need. Each topic consisted
of three fields, i.e., title, information need, and context
along with topic ID. An example topic is shown in Fig-
ure 1.

ID: 51

TITLE: pBR322 used as a gene vector

NEED: Find information about base

sequences and restriction maps

in plasmids that are used as gene

vectors.

CONTEXT: The researcher would like to

manipulate the plasmid by

removing a particular gene and

needs the original base sequence

or restriction map information of

the plasmid.

Figure 1: An example topic for the ad hoc retrieval task.
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The data set used for this task is 10 years’ worth
of MEDLINE data (1994–2003), containing 4,591,008
bibliographic records. Incidentally, five sample topics
and the corresponding list of relevant documents (not
complete) were provided for the purpose of system de-
sign and tuning.

We submitted two runs (lga1 andlga2) for this task;
only the difference between them is thatlga1 used
pseudo-relevance feedback, whilelga2 did not.

2.2 Methods

Framework The vector space model and the TFIDF
term weighting scheme [13] were adopted as the basic
framework. In addition, the use of query expansion and
pseudo-relevance feedback was explored. Figure 2 de-
picts the overview of our retrieval system.

Topic

Search and
ranking

Pseudo-
relevance
feedback

Output

Query generation

Query expansion

MEDLINE

NP extraction

MeSH

Rules

k times

Dictionary

Figure 2: Framework of our IR system.

The following paragraphs describe the components of
our IR system in more detail.

NP extraction Given a topic, the system first ex-
tracted noun phrases (NPs) from theTITLE andNEED
fields as a potential query terms using a general-
purpose parser [7]. TheCONTEXT field and other cat-
egories of words (e.g., verbs) were not used since they
tended to degrade the system performance on the tuning
data.

Query expansion The extracted NPs were then ex-
panded using three sources of information to form the
final query. Firstly, a gene name dictionary was con-
sulted to find synonyms. The dictionary was com-
piled from the SWISS-PROT [10] and LocusLink [12]
databases and contained 493,473 records. Each record

has a gene/protein name as the keyword and lists its
synonyms such as aliases and symbols where no disam-
biguation was done for multi-sense names. Secondly, a
set of hand-crafted rules was applied to generate name
variants. These rules were designed to tolerate mi-
nor difference (e.g., existence/absence of symbols and
spaces) between strings. Lastly, for each of the poten-
tial query terms, the Medical Subject Heading (MeSH)
vocabulary was searched for the synonyms.

Query generation Since the number of the potential
query terms (phrases) collected through the preceding
steps can be quite large, they were filtered based on
document frequency (DF) and relative frequency ratio
(RFR) [3] for efficiency. Terms with high DF and/or
low RFR are thought to be too general and discarded.
Document frequency of termt, denoted asDF(t), is
the number of documents containingt within the test
collection. RFR(t) is a ratio of relative frequency of
t in the test collection to that oft in the other collec-
tion from a different domain. RFR can be used to dis-
cover terms characteristic of a corpus when compared
to another corpus [3]. For this experiment, we used
5,986 abstracts from Inspec,1 a bibliographic database
for physics, engineering, computing, etc. The thresh-
olds for DF and RFR were empirically set to 30,000 and
5, respectively, based on a preliminary look at the tun-
ing data. Finally, terms which went through the filters
were concatenated by Boolean OR operators, forming
the final query.

Search and ranking Five textual fields (Article-
Title, AbstractText, DescriptorName, Quali-

fierName, andNameOfSubstance) in the MEDLINE
data were indexed in advance. The search module
exhaustively retrieved the documents which contained
any terms/phrases composing the query. As for ranking
the retrieved documents, TFIDF and cosine similarity
were used. The four fields of the topics were not distin-
guished in searching and scoring in the experiments.

Pseudo-relevance feedback The pseudo-relevance
feedback (PRF) module assumed the topn ranked doc-
uments to be relevant and used significant terms in the
documents to refine the query. As a measure of signif-
icance, we used TFIDF values. For each document,m

1http://www.iee.org/Publish/INSPEC/
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terms with highest TFIDF were sent back to the query
generation module to be considered for inclusion in the
refined query. This process can be repeated arbitraryk
times. For the submitted run (lga1), we experimentally
setn=m=10 andk=1.

2.3 Results

We submitted two sets of results, labeled aslga1

andlga2; the former used pseudo-relevance feedback
(PRF), while the latter did not. The mean average pre-
cision (MAP) were 0.183 forlga1 and 0.175 forlga2;
both were found lower than the mean 0.207 of all the
37 submitted runs.

We conducted additional experiments to examine the
usefulness of each system component and the effect of
some parameters. Through the experiments, we ob-
served that:

• Using theCONTEXT field, PRF (k=3), and query
expansion improved the performance in MAP by
24%, 19%, and 8%, respectively, as compared to
the case where they were not used.

• As expected, terms/phrases with high DF values
(more than 1000) did not contribute to the perfor-
mance (at least in our framework). Thus, they may
be safely removed in forming queries.

• Contrary to our expectation, thresholding on RFR
degraded MAP by 9%.

3 Triage Task

The triage task for the TREC 2004 Genomics track asks
a simple, but very important question. We are presented
with a large set of articles and asked to determine which
articles should be considered for further curation of
genes or gene products in relation to mouse genomics
research. The human eye and brain have been the data
processing tools for curation in the past, but this prob-
lem can be abstracted to the computational issue of text
categorization, or more specifically, binary text classi-
fication.

There are many different approaches that can be
taken for this task. There has been a great deal pub-
lished on techniques that implement machine learning,

clustering, and filtering techniques [15], which all ad-
dress different levels of the text categorization prob-
lem. Each of these techniques has been shown to have
strengths and weaknesses, with some outperforming
others in various tasks [1]. It has become our job as
researchers and TREC participants to identify the best
technique for this particular task.

3.1 Overview

There was a great deal of time dedicated to explor-
ing different categorization techniques for the triage
task. After experimenting with support vector ma-
chines (SVM), decision trees, various term filters, and
näıve Bayesian classifiers, it was determined that the
best approach for our group was to implement a naı̈ve
Bayesian classifier, in addition to a filter aimed at the
genes in an article.

Our group submitted two runs to the 2004 triage task
for the TREC conference and results will be discussed
in section 3.3.

3.2 Methods

3.2.1 Feature Selection

Several different techniques were used to select and test
feature sets. For the naı̈ve Bayesian classifier, there
were three different sets of features tested. We looked
at a document frequency (DF) set of stemmed terms,
a chi-squared set of stemmed terms [18], and the set
of Medical Subject Headings (MeSH) terms for each
document. We received the best results, in terms of re-
call and precision, from the collection of all the MeSH
terms within the training set, so this was the set of fea-
tures used for the classifier.

The MeSH terms were collected via a web crawler,
implemented in Perl, which takes a list of PubMed IDs
(PMIDs) and would search the NCBI website with the
assistance of NCBI’s Entrez Programming Utilities (eu-
tils). 2

The Gene filter required a different set of features,
which for each article, is defined as the set of genes
contained in each article.

The first step in identifying the genes was to clean the
data. A file was created for each article from the train-

2http://eutils.ncbi.nlm.nih.gov/entrez/query/

static/eutils help.html
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ing and test sets, which contained only the text from
the abstract and body of the article by parsing out any
unnecessary data, where all of the XML tags were re-
moved.

Next, YAGI (Yet Another Gene Identifier) [16] was
applied to each article to identify all the genes within
an article.

After the features for each article were properly cho-
sen, the classifier could be trained and tested, and the
filter applied.

3.2.2 Näıve Bayesian Classifier

The näıve Bayesian classifier is a simple classification
model that takes into account conditional probabilities
based on Bayes’ Theorem. This model uses a super-
vised training data set to calculate the necessary prob-
abilities and can then be applied to a test data set to
classify documents.

Conceptually, we can think of the classification task
as the following conditional probability:

p(C|F1...Fn) (1)

where,C is a class or category and (F1...Fn) is a set of
features.

The classes for the triage task are simply the set
{pass, f ail}, where the document passes to be further
curated, or fails and is not considered for curation. The
features represent the MeSH terms.

We can now apply Bayes’ Theorem to the condi-
tional probability (Equation (1)) and derive the follow-
ing:

p(C|F1...Fn) =
p(C)p(F1...Fn|C)

p(F1...Fn)
(2)

Ultimately, we are only interested in the numerator of
equation 2, which is the joint probability. We can ignore
the denominator of the equation, asC is not a parame-
ter, and over the entire set of documents, thep(F1...Fn)
can be thought of as a constant. We can then rewrite the
joint probability, as:

p(C, F1...Fn) (3)

With the joint probability, we are still carrying along
the conditional probability for set{F1...Fn}, so by re-
peatedly applying the definition of the conditional prob-

ability, we derive a series of equations as follows:

p(C, F1...Fn)
= p(C)p(F1...Fn|C)
= p(C)p(F1|C)p(F2...Fn|C, F1)
= p(C)p(F1|C)p(F2|C, F1)p(F3...Fn|C, F1, F2)
= ...

(4)
So far the idea of “näıve” from the näıve Bayesian

classifier has not come into play, however, mathemat-
ically this is an important aspect of the classifier and
will now be applied. “näıve” refers to the assumption
that all features within the set{F1...Fn} are indepen-
dent, whereFi , F j . When this is true for each feature,
the probability of each feature does not depend on the
presence or absence of any other feature.

p(Fi |C, F j) = p(Fi |C) (5)

After applying this concept to Equation (4), we can
rewrite the joint probability as [5]:

p(C, F1...Fn) = p(C)p(F1|C)p(F2|C)...p(Fn|C)

OR

p(C, F1...Fn) = p(C)
n∏

i=1

p(Fi |C) (6)

The above explanation of a naı̈ve Bayesian classi-
fier has been implemented in the Perl moduleAlgo-
rithm:NaiveBayes.3 This module was used in conjunc-
tion with Perl code to train the classifier using the arti-
cles in the training set and their associated MeSH terms.
The trained classifier was then applied to the test data
set, which returned a set of data that will be passed on
to the Gene Filter.

3.2.3 Gene Filter

The gene filter was used solely to eliminate false pos-
itives. The näıve Bayesian classifier returned a large
number of documents with high recall, but with low
precision.

Often times, there are a large number of genes,
and/or gene products, that are mentioned within an arti-
cle related to molecular biology. Also, research articles
tend to describe a very specific area of research, where
a specific group of genes, proteins, DNA, or RNA are

3http://search.cpan.org/˜kwilliams/Algorithm-Naive

Bayes-0.03/lib/Algorithm/NaiveBayes.pm
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mentioned. This phenomena can be exploited, by look-
ing for correlations between the genes that are men-
tioned in the articles with curation information, as com-
pared to the genes that are mentioned in the articles that
are not passed on for curation. Trends in genes and gene
products that are present in articles passed on for cura-
tion gives us another measure for the triage task.

The gene filter counts the gene products and genes,
which will be referred to simply as genes, and are iden-
tified by the inserted YAGI tags,<GENE></GENE>. This
is done for all articles within the training set. The set of
genes collected from the entire set of articles are then
separated based on their triage classification. The set of
genes present in the articles deemed worthy of further
curation are notedGp, while the set of genes present in
the articles which are not taken for further curation are
notedGn. The genes that are in union with setGp and
Gn are eliminated from each set. This gives us a unique
set of genes that only appear in the set of articles that
will be used for further curation, notedGpu, and a set of
unique genes that only appear in the set of articles that
are not used for further curation, notedGnu.

SetGnu was then ranked, and if a gene occurred in
more than a certain percentage of the negatively curat-
able articles, it was added to the final gene set, noted
G f . The percentage used in determining if a gene
should be included in setG f was adjusted for our two
submitted runs. SetG f was used to eliminate false pos-
itive articles from the MeSH filtered set of articles. An
article was eliminated from the final set of articles if a
gene from setG f was present in the article.

Overall, after applying the naı̈ve Bayesian classifier
and the gene filter, we derive a set of articles that were
classified as being of interest to further curate by MeSH
terms and genes.

3.3 Results and Discussion

Overall, the use of a naı̈ve Bayesian classifier and
gene filter performed relatively well, as compared to
the other 57 triage task submissions by TREC partici-
pants. Table 1 shows the best, median, and worst per-
formances of the entire group of 59 submissions, as
well as our submissions. The main measure for this task
was the normalized utility score, which takes into ac-
count the true and false positive articles in a submitted
run. Our first run performed well, and our normalized
utility was 0.434, where the best performance was a

Table 1: The top 3 rows represent the Best, Median, and
Worst results from the 59 triage runs that were submit-
ted for 2004. The bottom two rows represent our two
submitted results for the triage task.

Run Precision Recall F-score
Norm.
Utility

Best 0.230 0.988 0.284 0.651
Median 0.136 0.557 0.183 0.342
Worst 0.071 0.014 0.026 0.011
Run 1 0.111 0.721 0.193 0.434
Run 2 0.108 0.581 0.183 0.342

score of 0.651 and the median performance was 0.342.
Our second run did not perform as well as the first, but
still managed to perform at the median with a score of
0.342.

There was only one difference between the first and
the second run, which deals with the gene filter. Both
runs were classified through the naı̈ve Bayesian classi-
fier using the same set of MeSH terms and set of train-
ing articles. However, the gene filter for each run was
adjusted, in regards to the percentage of genes that were
included in setG f (Section 3.2.3). SetG f was used to
eliminate false positive articles from the filtered set of
articles from the näıve Bayesian classifier and the per-
centage of genes used in the first run was much stricter
than the percentage of genes used in the second run.
For the first run, a gene needed to occur in at least 10%
of the negatively curatable articles to be included in set
G f , while a gene needed to be present in only 5% of the
negatively curatable articles to be included in setG f for
run 2.

By increasing the amount of genes that are used to
eliminate an article from the final run, we are increasing
the amount of true positive articles that are eliminated,
which is what happened in our second run. The first run
had an appropriate amount of genes to eliminate false
positives, while not eliminating true positives.

Overall, we feel that our solution of using a naı̈ve
Bayesian classifier and gene filter to the 2004 Ge-
nomics Triage Task was a success. Both of our submit-
ted runs normalized utility scores were above the me-
dian of the 57 TREC run submissions, higlighted by our
first run score, which was well above the median score.
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4 Annotation Task

4.1 Overview

The goal of the annotation task is to assign GO hierar-
chy and evidence codes to a given〈article, gene〉 pair.
There are three hierarchy codes and 12 evidence codes
possibly assigned.4 For this task, we were allowed to
submit results only for hierarchy code assignment and
for hierarchy and evidence code assignment. Hereafter,
we call the formerTask1and the latterTask2.

For the data sets, 504 and 378 full-text articles in
SGML format were provided as the training and test
data, respectively. Before use, they were automati-
cally converted to XML format by a UNIX command
SGML2XML. In addition, the character entities represent-
ing Greek alphabets (e.g.,&agr;) were converted to the
corresponding English spellings (e.g.,alpha).

4.2 Methods

Framework As in the triage task, the annotation task
is a classification problem, where GO hierarchy codes
or combinations of hierarchy and evidence codes are re-
garded as classes. For this task, we adoptedkNN clas-
sifiers which have been reported as one of the best clas-
sifiers for text categorization [17]. To apply the classi-
fiers, each〈article, gene〉 pair was first represented by a
term weight vector. Since an entire article is not neces-
sarily relevant to the particular gene, we used only the
paragraphs mentioning the gene name. Figure 3 depicts
the flow of the processes.

Finding synonyms First, aliases and abbreviations
of the given gene name were searched for in the arti-
cle itself. Specifically, we looked at<KEYWORD> and
<GLOSSARY> fields that may explicitly define a pair of
original name and corresponding abbreviation.5 We
also examined the use of body text because gene name
abbreviations often appear immediately following the
original names [14]. However, it slightly degraded the
classification performance and thus was disabled for
our submitted runs. Additionally, the gene name dictio-
nary used in the ad hoc retrieval task was consulted for
finding synonyms. Hereafter, “gene names” refers to
the original names, aliases, and abbreviations for short.

4http://www.geneontology.org
5http://highwire.stanford.edu/about/dtd/

〈article, gene〉 pairs

Finding
synonyms

Locating gene
names in article

Text fragments 
mentioning the genes

+ MeSH terms

Vector space representation

Dictionary

Feature selection

Iterate for
each pair

MEDLINE
Obtaining

MeSH terms

Data manipulation

Figure 3: A data processing flow to represent input by
term weight vectors.

Locating gene names in the given article Next step
is to find text fragments mentioning the gene in ques-
tion within the paired article, since the entire article
may not be necessarily relevant to the particular gene.
As gene names generally have many variants due to the
inconsistent use of symbols, spaces, etc. [6], both gene
names and text were preprocessed as follows, so as to
tolerate such minor difference:

• Replace symbols with spaces

• Insert space between different character types,
such as alphabets and numerals (e.g.,Diet1 →
Diet 1)

• Insert space between Greek alphabets and other
words (e.g.,NF-kappaB→ NF kappa B)

• Lowercase all characters

Then, each paragraph in the article was checked if it
was likely to contain any of the gene names associated
with the gene. Note that section titles were appended
to each paragraph within the sections since they were
often found to be descriptive. In addition, if the para-
graph referred to figures and/or tables for the first time,
the captions were also appended to it. For each gene
name and each context mentioning any word of the
gene name, the word-overlap score defined below was
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computed.

Overlap(gene, context) =
M − α · U

N + β
(7)

whereM andU denote the numbers of matching and
unmatching words, respectively;α is a penalty for un-
matching words (set to 0.3);N is the number of words
composing the gene name; andβ penalizes shorter gene
names (set to 2). If any of the scores associated with a
paragraph exceeded a predefined threshold (set to 0.3),
all terms in the paragraph were added to the feature set
representing the〈article, gene〉 pair. The values of the
parameters were determined based on our preliminary
experiments on the training data.

Obtaining MeSH terms For each input article, all
the associated MeSH terms were obtained from MED-
LINE using Entrez Utilities,6 irrespective of the genes
that were paired with the article. These MeSH terms
were also added to the feature set representing the
〈article, gene〉 pairs. However, a special symbolMESH+

was concatenated to each MeSH term in order to distin-
guish MeSH from other terms.

Feature selection The features (terms) extracted in
the previous steps were preprocessed by stopword re-
moval based on the PubMed stopword list7 and stem-
ming. We used Lovins stemmer [9] for our official
runs but also examined Porter stemmer [11] and non-
stemming. For feature selection, we used chi-square
statistic [18] defined as:

χ2(t, c) =
N(AD−CB)2

(A + C) (B + D) (A + B) (C + D)
(8)

whereA is the number of documents containing termt
in classc, B is the number of documents containingt
in classes other thanc, C is the number of documents
not containingt in c, D is the number of documents
not containingt in classes other thanc, and N is the
total number of documents. For a given termt, the chi-
square statistic was computed for each class (either a
hierarchy code or a combination of hierarchy and ev-
idence codes depending on the task). The maximum

6http://www.ncbi.nlm.nih.gov/entrez/query/static/

eutils help.html
7http://www.ncbi.nlm.nih.gov/entrez/query/static/

help/pmhelp.html

score was taken as the chi-square statistic for termt,
that is,χ2(t) = maxi χ

2(t, ci). Only the topn terms with
higher chi-square statistics were used for the following
processes. For the official runs,n was set to 2000 and
3000 for Task1and Task2, respectively, based on the
preliminary experiments.

Data manipulation Each〈article, gene〉 pair was rep-
resented by a term vector using the term set ob-
tained through the preceding steps. As term weighting
schemes, we compared TFIDF and TFCHI as well as
raw term frequency (TF). The following shows the def-
initions of TFIDF and TFCHI of termt in document
d.

TFIDF(t,d) = (1 + log(TF(t, d)) · N
DF(t)

TFCHI(t,d) = (1 + log(TF(t, d)) · log(χ2(t))
(9)

The latter scheme, TFCHI, is an instance ofsuper-
vised term weightingschemes proposed by Debole
and Sebastiani [4]. It takes into account pre-labeled
class information in the training data and re-uses statis-
tics computed in the feature selection step (chi-square
statistics in this case) in place of IDF. Since TFCHI
produced slightly betterF-scores than the others in
our preliminary experiments, it was used for our of-
ficial runs. In addition, singular value decomposition
(SVD) [2] was applied to compensate for the small size
of the training data. The number of singular values used
for reconstructing the matrix (i.e., the number of dimen-
sions after reduction) was empirically set to 50 and 70
for Task1andTask2, respectively.

Classification Using the matrix created by the proce-
dure above, each input (a pair of article and gene) was
classified into one or more predefined classes by a vari-
ant of kNN classifiers. First, the input〈article, gene〉
was represented by a term weight vector following the
same procedure illustrated in Figure 3 except for feature
selection and data manipulation. The features previ-
ously identified on the training data were used as filters
and the other terms not found in the feature set were
discarded. Then, the remaining terms were weighted
by the same scheme as applied to the training data, but
global term weights (either IDF or CHI) were obtained
from the training data as we were not allowed to use
those statistics from the test data. After that, the input
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term vector was transformed into lower dimensions (50
for Task1or 70 for Task2) using the matrix of singu-
lar vectors computed earlier on the training data. Given
an input vector, the (original)kNN algorithm findsk
neighbors most similar to the input among the train-
ing data, and aggregates similarity scores associated
with the k neighbors for each class. If these scores
are greater than per-class thresholds, the corresponding
classes are assigned to the input. We further weighted
the aggregated scores by the number of thek neighbors
having classc. Equation (10) shows the scoring scheme
given classc and input vectorv.

Score(c, v) =
∑

i

sim(v,nc,i) × |nc| − tc (10)

wherenc is thek nearest neighbors having classc, |nc|
is the number ofnc, tc is a per-class threshold, and
sim(·) returns the cosine similarity between the argu-
ments. Thresholdtc was optimized so as to maximize
the micro-averagedF-score over all the training data.
The use of|nc| intends to give higher weights to classes
more frequent in thek neighbors.

4.3 Results and discussions

We submitted two sets of results for each of the sub-
tasks. They were denoted aslgcad for Task1(hierar-
chy code assignment) andlgcab for Task2(hierarchy
and evidence code assignment). The only difference is
that lgcad1 andlgcab1 used SVD for feature space
dimensionality reduction, whilelgcad2 and lgcab2

did not. Table 2 summarizes the results for the submit-
ted runs. After submission, however, we found a few
bugs related to approximate word matching and term
weighting in our codes. Table 3 presents the results pro-
duced by the corrected codes.

Table 2: The official results for the annotation task.
Mean is the meanF1 score over all the submissions.

Runtag Prec Recall F1 score Mean

Task1
lgcad1 0.441 0.769 0.561

0.382
lgcad2 0.427 0.785 0.553

Task2
lgcab1 0.341 0.492 0.403

–
lgcab2 0.323 0.607 0.422

Additional experiments were conducted to inves-
tigate what factors contributed to the performance.

Table 3: The corrected results (not official) for the an-
notation task. Mean is the meanF1 score over all the
submissions.

Runtag Prec Recall F1 score Mean

Task1
lgcad1 0.514 0.729 0.603

0.382
lgcad2 0.509 0.719 0.596

Task2
lgcab1 0.403 0.519 0.454

–
lgcab2 0.382 0.498 0.433

Specifically, we examined the effects of the following
factors:

• Threshold for approximate word matching in iden-
tifying relevant paragraphs (see Equation (10)):
We tested 0 (meaning to use all the paragraphs
irrespective of gene name occurrences), 0.3 (our
default), 0.5 (more restrictive). In addition, exact
word matching (denoted as “Exact”) was tested in-
stead of approximate word matching.

• Use of the gene name dictionary: Our system was
tested with/without the gene name dictionary.

• Use of section titles: Same as above.

• Use of MeSH terms: Same as above.

• Stemming algorithms: Porter’s and Lovins’ algo-
rithms were compared as well as non-stemming.

• Term weighting schemes: Raw term frequencies
(TF), TFIDF, and TFCHI were compared.

• kNN scoring: The original and our proposed vari-
ant were compared.

• Use of SVD for dimensionality reduction: Our
system was tested with/without SVD.

In the experiments, only the factor under consider-
ation was changed with other features remaining the
same aslgcad1 or lgcab1. Notice that, however, the
per-class thresholdtc for kNN was optimized for each
setting in order to compare the best possibleF1 scores
under different settings. Tables 4 and 5 shows the re-
sults, where asterisks (*) indicate the default settings
used to producelgcad1 or lgcab1.

The following summarizes the empirical observa-
tions from Tables 4 and 5.
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Table 4: Results for GO hierarchy code assignment (Task1). Numbers in parentheses are percent increase/decrease
relative to the default setting indicated by an asterisk.

Feature
Training data Test data

Precision Recall F1 score Precision Recall F1 score

Threshold for
gene name
match

0 (output all) 0.367 0.713 0.484 (−11.5%) 0.479 0.802 0.600 (−4.9%)
0.3* 0.477 0.642 0.547 0.548 0.746 0.631
0.5 0.385 0.346 0.365 (−33.3%) 0.413 0.434 0.423 (−33.0%)
Exact 0.434 0.297 0.353 (−35.5%) 0.543 0.331 0.412 (−34.7%)

Dictionary
Not used 0.361 0.593 0.449 (−17.9%) 0.420 0.543 0.474 (−24.9%)
Used* 0.477 0.642 0.547 0.548 0.746 0.631

Section titles
Not used 0.479 0.628 0.543 (−0.7%) 0.545 0.764 0.636 (+0.8%)
Used 0.477 0.642 0.547 0.548 0.746 0.631

MeSH terms
Not used 0.479 0.632 0.545 (−0.3%) 0.567 0.731 0.638 (+1.1%)
Used* 0.477 0.642 0.547 0.548 0.746 0.631

Stemmer
None 0.479 0.633 0.546 (−0.2%) 0.554 0.739 0.633 (−0.3%)
Porter 0.472 0.632 0.540 (−1.3%) 0.529 0.772 0.628 (−0.5%)
Lovins* 0.477 0.642 0.547 0.548 0.746 0.631

Term
weighting

TF 0.379 0.706 0.493 (−9.9%) 0.430 0.721 0.539 (−14.6%)
TFIDF 0.435 0.756 0.552 (+0.9%) 0.531 0.731 0.615 (−2.5%)
TFCHI* 0.477 0.642 0.547 0.548 0.746 0.631

kNN scoring
Original 0.465 0.652 0.543 (−0.7%) 0.556 0.750 0.639 (+1.3%)
Variant* 0.477 0.642 0.547 0.548 0.746 0.631

SVD
Not used 0.447 0.664 0.535 (−2.2%) 0.506 0.812 0.623 (−1.3%)
Used* 0.477 0.642 0.547 0.548 0.746 0.631

Table 5: Results for GO hierarchy and evidence code assignment (Task2). Numbers in parentheses are percent
increase/decrease relative to the default setting indicated by an asterisk.

Feature
Training data Test data

Precision Recall F1 score Precision Recall F1 score

Threshold for
gene name
match

0 (output all) 0.249 0.152 0.188 (−53.3%) 0.356 0.607 0.449 (−3.2%)
0.3* 0.369 0.444 0.403 0.370 0.623 0.464
0.5 0.263 0.213 0.235 (−41.7%) 0.228 0.399 0.290 (−37.5%)
Exact 0.278 0.266 0.272 (−32.5%) 0.321 0.259 0.287 (−38.1%)

Dictionary
Not used 0.288 0.358 0.319 (−20.8%) 0.280 0.510 0.361 (−22.2%)
Used* 0.369 0.444 0.403 0.370 0.623 0.464

Section titles
Not used 0.371 0.458 0.410 (+1.7%) 0.383 0.590 0.464 (0%)
Used 0.369 0.444 0.403 0.370 0.623 0.464

MeSH terms
Not used 0.368 0.463 0.410 (+1.7%) 0.395 0.561 0.464 (0%)
Used* 0.369 0.444 0.403 0.370 0.623 0.464

Stemmer
Not used 0.371 0.483 0.420 (+4.2%) 0.397 0.544 0.459 (−1.1%)
Porter 0.381 0.413 0.396 (−1.7%) 0.413 0.529 0.463 (−0.2%)
Lovins* 0.369 0.444 0.403 0.370 0.623 0.464

Term
weighting

TF 0.353 0.363 0.357 (−11.4%) 0.213 0.736 0.330 (−28.9%)
TFIDF 0.313 0.506 0.387 (−4.0%) 0.295 0.667 0.409 (−11.9%)
TFCHI* 0.369 0.444 0.403 0.370 0.623 0.464

kNN scoring
Original 0.336 0.494 0.400 (−0.7%) 0.364 0.621 0.459 (−1.1%)
Variant* 0.369 0.444 0.403 0.370 0.623 0.464

SVD
Not used 0.338 0.463 0.391 (−3.0%) 0.374 0.552 0.446 (−3.9%)
Used* 0.369 0.444 0.403 0.370 0.623 0.464
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• For the threshold for approximate word matching,
our default (threshold=0.3) outperformed others
in most cases, indicating the effectiveness of our
framework to use only paragraphs containing the
target gene names and the importance of approx-
imate term matching as well as the choice of the
threshold.

• The use of gene name dictionary drastically im-
proved the performance (around 20% inF1 score).
It proves the widespread use of gene synonyms
and their importance in this domain.

• The use of section titles and MeSH terms had little
effect for both tasks.

• The different stemming algorithms made little dif-
ference except for the case where stemmer was not
used on the training data forTask2, which showed
4.3% increase relative to the case where Lovins
stemmer was used (our default).

• For term weighting schemes, TFCHI and TFIDF
consistently worked better than TF. In addition,
TFCHI worked notably better than TFIDF for
Task2, partly supporting the idea of the supervised
term weighting schemes [4] that class-based term
weights (e.g., chi-square statistics as used for this
work) is more appropriate for classification.

• The differentkNN scoring schemes had little effect
for both tasks.

• The use of SVD marginally improved classifica-
tion in F1, especially forTask2.

5 Summary

We took part in the three tasks of the Genomics Track.
For the ad hoc retrieval task, we adopted the vector
space model and applied several existing IR techniques
including noun phrase extraction, query expansion, and
pseudo-relevance feedback. Our submitted run using
all the features obtained 0.183 MAP. For the triage task,
we applied the näıve Bayes classifier trained solely on
MeSH terms and obtained a normalized utility score
of 0.434. Additionally, we examined the use of gene
names as a filter to rule out false positives, which, how-
ever, deteriorated the performance to 0.342 contrary to

our expectation. Lastly, for the annotation task, we rep-
resented each input (i.e., a pair of article and gene) by
a set of terms extracted from text fragments mention-
ing the gene in question, where we paid special atten-
tion to dealing with various forms of gene synonyms
and variants. Then, we applied akNN classifier to
assign hierarchy codes and optionally evidence codes.
Our submitted runs achieved anF1 of 0.561 for hierar-
chy code annotation and 0.422 for hierarchy plus evi-
dence code annotation, which were found to be the best
scores among all the participants. Further experiments
showed that approximate gene name matching and the
gene name dictionary contributed the most to the per-
formance, followed by the use of SVD and the term
weighting schemes.
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