

EXPERIMENTS IN TERABYTE SEARCHING, GENOMIC RETRIEVAL
AND NOVELTY DETECTION FOR TREC-2004.

Stephen Blott2, Oisin Boydell3, Fabrice Camous2, Paul Ferguson1, Georgina Gaughan1, Cathal Gurrin1, Gareth J. F. Jones1,
Noel Murphy1, Noel O’Connor1, Alan F. Smeaton1, 4, Barry Smyth3, Peter Wilkins1

1Center for Digital Video Processing, Dublin City University, Glasnevin, Dublin 9, IRELAND
2School of Computing, Dublin City University, Glasnevin, Dublin 9, IRELAND

3Smart Media Institute, Dept. of Computer Science, University College Dublin, Belfield, Dublin 4, IRELAND
4 Contact author: alan.smeaton@computing.dcu.ie)

Abstract: In TREC2004, Dublin City University took part in three tracks, Terabyte (in collaboration with University College
Dublin), Genomic and Novelty. In this paper we will discuss each track separately and present separate conclusions from
this work. In addition, we present a general description of a text retrieval engine that we have developed in the last year to
support our experiments into large scale, distributed information retrieval, which underlies all of the track experiments
described in this document.

1. INTRODUCTION

In TREC2004, Dublin City University took part in three tracks, Terabyte, Genomic and Novelty. In this paper section 2
presents a general description of a text retrieval engine that supports all experiments and sections 3-5 discuss each track
separately and present separate conclusions for each track. Our experiments in Terabyte searching primarily focused on the
integration of document structure and anchor text evidence to support enhanced retrieval performance. For the Genomics
track we experimented with combining MEDLINE abstract searching with MEDLINE MeSH (Medical Subject Headings
controlled thesaurus) field matching and for Novelty we evaluated a number of techniques for identifying novel information
by exploiting various term characteristics though adaptation of traditional IR approaches.

2. GENERAL SEARCH ENGINE DESCRIPTION

This section will detail in general terms the workings of the underlying text retrieval engine (referred to as Físréal) that
we developed within the past year in the Center for Digital Video Processing (CDVP). Since Físréal has been used in all of
our TREC-2004 experiments we briefly discuss its operation and architecture. Section 2.1 will discuss the indexing process
and section 2.2 will cover the retrieval engine architecture and associated retrieval concepts.

Físréal was primarily developed to provide fast search capabilities over very large amounts of data (i.e. of Terabyte size
or greater), whilst at the same time providing a framework that would allow for experimental retrieval approaches to be
quickly deployed and observed. A second requirement of Físréal was that it should be flexible enough to allow non-
envisioned search tasks or the searching heterogeneous data types to be achieved.

As with any type of search system, the first necessary component is a representation of the search candidate data in a
form to allow for retrieval, in this case an index and indexer.

2.1 Indexing

Físréal, as noted previously, was utilised by experiments for all three tracks in which we participated. Each of the data
sets for these tracks was comprised of text, but due to differences between the source data, indexing required different
preprocessing techniques for data from each track. However whilst the method of indexing varied from case to case, the

end result in each instance was an index that was structured similarly to all other indexes created. The structure of the index
we employed relies closely on the underlying filesystem and is to be documented elsewhere.

2.2 Retrieval

The following section will detail at a high level the architecture that was employed by our search engine, and introduce
the concept of ‘pipelines’ which allow us to rapidly configure different retrieval methods.

2.2.1 Retrieval Engine Architecture

The retrieval engine was designed primarily to act as a distributed search engine made up of a series of ‘leaf’ search
engines (or nodes) which would be invoked by an ‘aggregate’ search engine. An aggregate search engine is the same as any
other instance of the search engine (leaf node) except that it handles all incoming search requests. Any given installation of
a retrieval engine could integrate as many leaf nodes as required, or could operate as a single leaf node in a standalone
fashion, see Figure 1:

Figure 1: General Architecture of Físréal

The setup as defined above is the setup used for the Terabyte track (with four leaf nodes1). For each of the other tracks

however only one leaf node was required. Each leaf server is in itself a totally independent instance of a search engine.
Figure 2 provides a high-level architecture overview of each search engine instance:

Figure 2: High-level architecture of a leaf node

As can be seen above, the search engines utilize a two-tier cache, a query cache followed by a term cache. The first tier

or query cache examines incoming queries and if a match is found in the query cache then the result can be directly returned
without further processing. The second or term cache is employed for any terms not picked up by the query cache and
serves to further reduce the number of disk accesses. It is important to note that the caches were turned off for each track.
The diagram also introduces the ‘Pipelines’ file. For any given search engine the retrieval methods that it can employ are
defined by its associated pipeline file. Each incoming query to a search engine defines which pipeline is to process its
query. We now briefly discuss pipelines.

1 The documents were distributed to the four leaf nodes without any examination of their contents for optimisation purposes.

2.2.2 Pipelines

A pipeline is comprised of a series of pipeline components, self contained blocks of code that implement a common
interface. Each pipeline component has only two methods it needs to implement, namely StartUp and Process. StartUp is
invoked at search engine start time and any loading of files or setup actions occur within this method. The Process method
is the only entry point for a pipeline component within an executing search engine. The argument and return value for this
method is a Search Data Unit or SDU. An SDU is an augmented container object that amongst other attributes defines the
following; the initial query, the pipeline to call, the result formatting type and an empty container for results. A pipeline
component will take in a SDU, modify or add to it, then pass it onto the next pipeline component. The following diagram
provides a definition of a basic BM25 pipeline with pipeline components illustrated.

Figure 3: A Basic BM25 Pipeline Component

In Step 1, a SDU has been generated by the server for the standard BM25 pipeline. The first step of this pipeline is

query stopword removal. In step 2, the SDU is moved onto the next component which will stem the stopped query within
the SDU before (in Step 3) the relevant index entries are placed into the SDU. Ranking of these entries occurs utilising
BM25 (in Step 4). This is the end of the pipeline, the SDU exits having had its query modified and result space filled. The
above example pipeline would be represented in the Pipelines.xml file by the following entry:

 <Pipeline name="BM25Pipeline">
 <component id="ie.dcu.cdvp.search.index.QueryStopWordRemovalComponent">
 </component>
 <component id="ie.dcu.cdvp.search.index.QueryStemmerComponent">
 </component>
 <component id="ie.dcu.cdvp.search.index.RetrivalPipelineComponent">
 <Accessor type="ie.dcu.cdvp.search.index.TermFileAccessor"/>
 </component>
 <component id="ie.dcu.cdvp.search.index.BM25PipelineComponent">
 </component>
 </Pipeline>

New pipelines can thus be formed by creating a new entry in a Pipelines.xml configuration file and aligning the various

components into the desired order. This made the reconfiguration of Físreál for different TREC tasks, quite
straightforward.

3. TERABYTE TRACK ACTIVITIES

The TREC2004 Terabyte task used the new .GOV2 collection and required the processing of fifty topics (in standard
TREC format). All of our runs were automatic, with the title of the topic being used as the query for each topic, with no
manual intervention.

Our experiments can be divided into two distinct groups, and will now be presented accordingly. Three of our five runs
were based on utilising either document text, URL text or anchor text. The last two runs, though based on our baseline run,
integrated collaborative search techniques in order to generate improved ranked lists of results. We begin by discussing our
three runs that are based on utilising the document text, URL text and the anchor text for retrieval and refer to these as our
Content Experiments.

3.1 Content-Experiments

Our content experiments consisted of three runs, one a baseline run and two additional runs that utilise additional
sources of evidence (URL text and anchor text) from the collection.

3.1.1 Baseline Run

For our baseline content-only run we used Okapi BM25 (Robertson et al., 2004) to rank the results, with k1=1.2,
k3=1000 and b=0.75. Físréal supports sorted index creation, thus allowing us to sort document instances for terms in
descending order of document normalized TF values. In this way we could read from disk only a subset of the top ranked
entries for each term in order to improve retrieval latency. Given that the query time was an important factor of the
experiments, we choose to read the top ten thousand documents for each term at retrieval time. This figure of ten thousand
was chosen after comparisons between the result sets where all the documents were read versus a subset of the top
documents, as well as taking the query timings into consideration to try and find a good balance between precision and
speed.

For this run we returned the top 10,000 document Ids and refer to this run as DcuTB04Base.

3.2 Weighted BM25

The purpose of our second run was to examine what benefit we could gain by utilizing HTML markup elements to
weight certain terms more than others. In Table 1 we outline what we considered to be the tags that would contain the most
representative words of each document. Then for these tags we defined the extra weighting that we felt any word contained
in these tag deserved. Normal body text was weighted at 1.0.

Table 1, Tag weights employed for DcuTB04Wbm25
Tag TITLE B H1 H2 H3 H4 H5 H6 I EM U A ALT
Weight 6 4 4 4 2 2 2 2 2 2 2 4 6

Again Okapi BM25 is used with similar parameters to rank the top ten thousand documents for each term and this run

was labeled DcuTB04Wbm25.

3.3 BM25, URL & Anchor Text Run

It is believed that integrating anchor text into the retrieval process can be useful in improving retrieval performance for
Web IR (Craswell and Hawking, 2003). We generated anchor text surrogate documents by extracting the anchor text (with a
window of 56 bytes either side) from all documents that link to a given document. We created an index from these
documents and used Okapi BM25 ranking again here, but with parameter values k1=50, k3=1000, and b=0. These
parameters are best guesses and will be the subject of further experimentation.

One additional source of evidence we incorporated into the ranking process for this run was the URL text of each
document, where the document content was based on extracting terms from the URL string utilizing URL syntax to identify
partitioning characters. This provided an additional index which was queried using Okapi BM25 with more conventional
parameter weighting of k1 = 1.2, k3 = 1000 and b = 0.75.

The combination parameters for combining scores from each source of evidence used was as follows (text=0.6,
anchor=0.3, URL=0.15). We were interested to see if these parameters (our best guess) could improve retrieval performance
over a baseline of our Weighted BM25 run. This run is labeled DcuTB04Combo.

3.4 Collaborative Search Experiments

Our other two runs for the TREC Terabyte search track were based on the idea of collaborative search, which we briefly
describe in the following section.

3.4.1 Background

The I-SPY Web search engine (Freyne et al., 2004) developed at University College Dublin proposes an approach to
search known as collaborative search. The basic intuition is that the world of web search can be both repetitive and regular.
Like-minded users tend to use similar queries and select similar results in response to these queries. Collaborative search
takes advantage of this by reusing the past search behavior of similar users within well-defined communities of like-minded
individuals. For example, an I-SPY search box located on a motoring Web site will attract motoring related queries and
result selections so that ambiguous queries such as “jaguar” will result in the selection of car-related sites rather than those
relating to cats or operating systems of the same name.

To achieve this, I-SPY operates as a meta-search engine (See Figure 4), dispatching queries to multiple traditional
(underlying) search engines and merging their result-lists. However, I-SPY also tracks the results that are selected for given
queries and stores this information in a so-called hit-matrix. The importance of the hit-matrix is that it allows I-SPY to
estimate the relevance of a page pi for a query qj in terms of the relative proportion of times that pi has been selected for
those queries that are similar to qj. Crucially, this relevance information can be used directly as a means to promote and rank
those results that have been previously selected for qj or related queries. When I-SPY receives a new target query qT, in
addition to retrieving a set of results from its underlying search engines, it also locates a set of results from its hit-matrix, by
locating all queries that are above a set similarity threshold with the target query as in Formula 1.

(1)

These hit-matrix results are ranked according to their weighted relevance metric, and then combined with those from the
underlying search engines.

Figure 4: The I-SPY architecture and hit-matrix

A separate hit-matrix is maintained for each well-defined community of users, and in this way I-SPY adapts its ranking of
results to reflect the past preferences of a given community by promoting those results that have been preferred in the past.

3.4.2 Applying I-SPY to the Terabyte Track

It is worth noting that I-SPY’s approach is not only limited to the use of user selection information as a source of
relevance. In fact, we can view the hit-matrix as a general mechanism for implementing a wide range of relevance feedback
strategies that are based on any number of factors. To this end we apply I-SPY to two different Terabyte search engines,
both of which are instantiations of the Físréal search engine developed at CDVP, DCU. The first is the search engine that is
based on the standard Terabyte track document index as discussed in Section 1. The second is a similar search engine, but
one that is based on the anchor-text index (as described in section 3.3). Both search engines were configured to use BM25
as the ranking algorithm.

To apply I-SPY to these document collections we must first train its hit-matrix to reflect our relevance model of choice,
which involves the following steps:

p1 pi pn

q1

qj

qm1

5

3

11

Hij

7

8

9

I-SPY ENGINE

S1 S2 Sn

Adapter Adapter Adapter

U

HIT
MATRICES

AdminReporter
q R

R’1 R’2 R’n

R1 R2 Rn
q1 q1 q1

q q q
H

p1 pi pn

q1

qj

qm1

5

3

11

Hij3

11

Hij

7

8

9

I-SPY ENGINE

S1 S2 Sn

Adapter Adapter Adapter

U

HIT
MATRICES

AdminReporter
q R

R’1 R’2 R’n

R1 R2 Rn
q1 q1 q1

q q q
H

2 n

p1 pi pn

q1

qj

qm1

5

3

11

Hij

7

8

9

I-SPY ENGINE

S1 S2 Sn

Adapter Adapter Adapter

U

HIT
MATRICES

AdminReporter
q R

R’1 R’2 R’n

R1 R2 Rn
q1 q1 q1

q q q
H

p1 pi pn

q1

qj

qm1

5

3

11

Hij3

11

Hij

7

8

9

I-SPY ENGINE

S1 S2 Sn

Adapter Adapter Adapter

U

HIT
MATRICES

AdminReporter
q R

R’1 R’2 R’n

R1 R2 Rn
q1 q1 q1

q q q
H

2 n

),(),(Exists

),(),(Relevance
),...,,,(Rel

...1

...1
1

jTni ji

jTnj ji
nTi qqilaritySimqp

qqilaritySimqp
qqqpW

∑
∑

=

=

•

•
=

1) A set of training queries must be generated. In this work we derive these queries by selecting sets of terms from
the narrative and description of each topic.

2) These queries are submitted to I-SPY and the returned results are processed for entry into the hit-matrix
according to a suitable selection model. In Section 3.1.3 we describe the use of a simple selection model based
on the inverse rank of the top 100 returned results.

3.4.3 The I-SPY Terabyte Track Runs

We produced two separate runs of I-SPY which differ in terms of the underlying search engines that I-SPY calls upon
and in the manner in which hit-matrix training occurs. For the first I-SPY run (DcuTB04Ucd1) we configured I-SPY to
operate with both the standard document index and the anchor-text index as underlying search engines. We generated 500
training queries per topic with each query being between 2 and 8 terms in length. Each query was generated by combining
words from the topic’s narrative and description sections after stop-word removal. During training, each query was
submitted to I-SPY and the top 100 results returned were used to update the hit-matrix using a linear inverse ranking
function. The query-result hit-matrix entry for the top result is incremented by 100, with the increment for each subsequent
result reduced by a constant amount.

The second I-SPY run (DcuTB04Ucd2) is similar to the first except that it relied on the anchor-text index alone as its
underlying search engine, only 250 queries per topic were used in training, and the hit-matrix was updated with only the top
20 results per query. When training was completed the system was ready to accept queries.

Figure 5: Generating the final result list

When a new query is submitted to a trained version of I-SPY, it needs to combine the results obtained from its

underlying search engines (described earlier in section 3) with those results obtained from the hit-matrix. For both
DcuTB04Ucd1 and DcuTB04Ucd2, we used the search engine (Físréal) that is based on the standard Terabyte track
document index as the single underlying search engine when submitting the test queries. Each query was used to probe the
hit-matrix, retrieving the entries associated with all similar queries (above a set similarity threshold with the original query)
and ranking these results according to the weighted relevance metric outlined above. In DcuTB04Ucd1 we set the similarity
threshold at ≥50% and in DcuTB04Ucd2 it was set at >0%; the former reused queries that shared 50% or more of their
terms with the test query while the latter reused queries that shared at least 1 term with the test query.

In both of our TREC Terabyte runs we actively promoted the hit-matrix results, which also appear in the top 10,000
results returned from the underlying search engines, ahead of the results from the underlying search engines, and ranked
them by their weighted relevance, as shown in Figure 5. This promotion is intended to improve the search precision. The
promoted results are from related searches using more descriptive terms from the topic’s narrative and description sections,
and also from searches on the anchor text index.

4. GENOMIC TRACK ACTIVITIES

This section describes the methods used to respond to the challenge of the TrecGen 2004 ad hoc retrieval task. It
follows up last year participation to the primary task (ad hoc) of TrecGen 2003 (Blott et al., 2003). For this previous
participation we had used pseudo-relevance feedback, also known as “retrieval feedback”, in order to improve a baseline
provided by Jacques Savoy of the University of Neuchatel, Switzerland. For TrecGen 2004, however, we used Físréal to

provide our own underlying search facility. Físréal allowed us to build different indexes for document representation
(section 4.3.1) and use appropriate algorithms to retrieve and rank documents. The TrecGen 2004 ad hoc task involved
dealing with new types of information needs and a much bigger document collection compared to the previous year, a
subset of MEDLINE consisting of 10 years of completed citations inclusive from 1994 to 2003 and the total number of
documents was 4,591,008. The 50 topics were obtained through interviews with biologists and thus reflect authentic needs.
Each topic included a title (abbreviated statement of the information need), an information need (full statement of the
information need) and a context (background information to put the information need in context). Five sample topics were
provided with partial relevance judgements relative to these topics. This section is organized in the following way: in
section 4.1, we present the main specificity of this year approach and briefly introduce the MEDLINE document record
format (http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html#MEDLINEDisplayFormat) and the Medical
Subject Heading controlled vocabulary (http://www.nlm.nih.gov/mesh/meshhome.html). In section 4.2 we discuss our
retrieval strategy which includes our indexing method, query construction and ranking strategies before presenting our
results in section 4.3.

4.1 The use of MeSH descriptors

MEDLINE records have several fields including title, abstract, author and MeSH fields
(http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html#MEDLINEDisplayFormat). Some fields are not
mandatory and they may not appear in all MEDLINE records. However, very few documents do not have any MeSH fields
in the TrecGen 2004 collection. MeSH is the National Library of Medicine's controlled vocabulary thesaurus
(http://www.nlm.nih.gov/). MeSH descriptors are manually added to the MEDLINE records by experts after the reviewing
the full text of the article. We believe that the use of descriptors in the query should bring some consistency to the retrieval
results as similar articles will have similar or identical descriptors, whereas the vocabulary used in their titles and abstracts
might differ due to synonymy and polysemy of the natural and scientific languages. There are 22,568 unique descriptors
available in the current version of MeSH, and the average number of descriptors per document in the TrecGen 2004
collection is 12. The MeSH thesaurus is organized hierarchically and includes 15 trees where MeSH descriptors or “Main
Headings” (MH) may appear several times (1.8 times on average). In our TrecGen 2004 experiment, we chose to represent
the documents as “bags of descriptors”. We did not use the trees of the hierarchy to compute a tree similarity measures
between documents and queries.

4.1.1 Our approach

As we mentioned above, the terms used in the title and abstract fields of MEDLINE records vary from one author to an
author and they will represent a subset of the terms used in the full article. However, we have seen that MeSH terms are
added to the MEDLINE record by a human expert after reading the full article. Also MeSH terms are part of a controlled
vocabulary and will therefore be more consistent from one expert reviewer to another. A study by Funk and Reid (1983)
showed that the indexing of MEDLINE records was highly consistent and represented “the state of the art in manually
indexed data bases”. Accordingly we decided to have a dual representation for each record: a “bag of title/abstract terms”
and a “bag of descriptors” which allowed us to build two queries for each topic; one was a bag of terms extracted
automatically from the different fields of the topic and the other one was a bag of descriptors that was created manually by a
human expert after reading the topic fields content. The second query can be seen as an expansion of the first. The process
of document representation and query building is described in detail in sections 4.3.1 and 4.3.2. We want to show that
integrating two representations of MEDLINE records, a thesaurus-based one and a “free” text one, can improve the retrieval
performance.

4.1.2 Previous and related work

Using the MeSH vocabulary for query expansion has been studied before. Srinivasan (1996) experimented with query
expansion and retrieval feedback using an inter-field statistical thesaurus with a collection of 2,334 documents with 75 user
queries. The thesaurus was built by looking at co-occurrences in documents of terms from the title/abstract fields and terms

from the MH field. The co-occurrences with the best scores were used to expand the user queries and build MeSH queries
that were used to search the MH fields of the documents. Using Cornell University’s SMART retrieval system, Srinivasan
combined different SMART retrieval strategies with different thesaurus-building strategies. The improvements obtained
over the different baselines by the thesaurus expansion strategies were in the range of 8-10.6%. This approach contrasts
with the experiments described here, in that we did not here build an inter-field thesaurus, but rather, asked an expert to
analyse the 50 TrecGen 2004 queries and search the MeSH vocabulary with the MeSH browser available on the Web. We
intend to build our own statistical inter-field thesaurus in the future and compare its expansion queries to the ones build by
our expert.

4.2 Retrieval Strategy

We will discuss our retrieval strategy in terms of indexing, query construction and ranking strategies.

4.2.1 Indexing Methodology

We built two distinct indices for the TrecGen 2004 document collection: a title/abstract index and a MeSH index. For
the title/abstract index, terms were extracted from the title (TI) and abstract (AB) fields of the MEDLINE records. All
characters were made lowercase and stopwords taken from the MEDLINE stopword list
(http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html#Stopwords) were removed. No stemming was
performed.

For the MeSH index we extracted all the descriptor from the Main Heading (MH) fields of the MEDLINE records. A
star is used in MEDLINE records (e.g. “*Carbohydrate Sequence”) to differentiate a “central concept” from another
descriptor. A central concept is a descriptor that describes the central topic of the article whereas a non-central descriptor
would describe peripheral issues also mentioned in the article. The descriptors are often accompanied by a “qualifier” or
“subheading” that allows the domain of application for the chosen descriptor to be specified. In the MH field of the
MEDLINE record, the subheading is added directly after the Main Heading it qualifies, with a forward slash preceding it.
For example, “Immunoglobulin G/chemistry” is a Main Heading (MH)/subheading (SH) pair. The notion of “central
concept” can also apply to a combination of MH and SH. In that case, a star is added at the beginning of the qualifier (e.g.
“Immunoglobulin G/*metabolism”). Although we intend to use these distinctions in future work, in TrecGen 2004 we
limited our experiments to represent documents as “bags of descriptors” and did not include the subheadings. So we
removed all subheadings and made no distinctions between the “starred” Main Headings and other Main Headings. The
end result of this was that we had two indices where documents were represented as bags of terms.

4.2.2 Query construction

For the title/abstract query construction (referred to as “ta” queries below), we chose two strategies. The first consisted
in only taking terms from the title and the information need fields of the topic (we refer to this as the “tn” strategy). The
second was to extract terms from each field of the topic, but with different query weight depending on the topic field they
were extracted from. The weighting used was 4 for title terms, 2 for information need terms, and 1 for context terms. This
strategy was named the “w” strategy.

In order to face the problem of the morphological variations of biological terms present in medical article abstracts, we
expanded the queries obtained with the two strategies described above with the help of a script provided given to us by De
Bruijn and Martin (2003) from the Institute of Information Technology at the National Research Council of Canada. This
script creates morphological variations on the use of numerical symbols (Roman, Greek, contemporary), and by attaches or
detaches numbers to or from the term they are related to. This expansion strategy was used for the TrecGen 2003 primary
task and showed some success at improving the recall. The result is two non-expanded “ta” query strategies, “tn1” and
“w1”, and two expanded query strategies, “tn2” and “w2”.

The construction of the MeSH queries was done manually. An expert from within the University read each one of the
55 topics (50 main topics plus the 5 sample topics) and chose the appropriate Main Headings with the assistance of the
MeSH browser available on the Web. We also asked our expert to distinguish the most important Main Headings amongst
those she had chosen for the topic. These Main Headings were very important in the sense that all documents deemed

relevant to the topic should contain some or all of them. These we refer to as “Magic” Main Headings. This leads to a
further retrieval strategy “ma” that only yields results that do in fact contain all the magic headings.

Similarly to the “ta” queries, we chose to have an expansion strategy for the MeSH queries. The MeSH vocabulary is
organized into 15 trees. Each tree has a root that represents the most general concept of all the terms contained in the tree.
Example of such concepts are “Anatomy” (tree A), “Chemicals and Drugs” (tree D) or “Geographic Locations” (tree Z).
Further down the tree are represented concepts that are increasingly specific. Main Headings can appear several times in
the hierarchy (1.8 times on average) and therefore can have several parents, siblings and children. However, multiple
occurrences of the same Main Heading tend to be found in the same tree (85% of the time). Our expansion strategy
involved looking up all the possible occurrences of a MeSH query term in the hierarchy and adding the parent(s) and the
children of each to the query. We called the non-expanded MeSH query strategy and the expanded one respectively “m1”
and “m2”.

4.2.3 Ranking strategies

Following the different types of queries we obtained three types of ranking: a “ta” ranking after querying the “ta” index
with either strategy “tn” of “w” (expanded or not), a MeSH ranking after querying the MeSH index with strategy “m”
(expanded or not), and a “magic” ranking after querying the MeSH index with the “magic” Main Headings only.

When the three types of ranking were used together, we used the “magic” ranking as a filter to the “m” ranking, i.e.
documents retrieved in the “m” ranking but not retrieved in the “magic” ranking were removed from the “m” ranking. The
resulting “m” ranking was then merged with the “ta” ranking as follows. Scores in each ranking were normalized with the
best score in each ranking. A document found in only one ranking kept its original score in the merged ranking. A
document found in both rankings would be integrated into the merged ranking with a score equal to the sum of its scores
from both original rankings. The documents were then re-ranked according to their new score, and only the top 1000 were
kept. To represent this new ranking, we used, for example, tn1_ma_m1, which describe the combination in which the non-
expanded version of “tn” and “m” is used, a “magic” filtering of the “m1” ranking is completed, and the resulting “m1”
ranking and “tn1” ranking are merged in the way we described above. The possible combinations including cases where the
“ma” ranking was not used as a filter but as a proper MeSH ranking that was merged with a “ta” ranking (tn1, tn2, w1, w2)
and cases where no filtering was used, and also where only one ranking was used on its own.

4.3 Genomic Results

The evaluation of these rankings or combinations of rankings uses the mean average precision over the 5 sample topics
provided for the TrecGen 2004 ad hoc task. We used the trec_eval program along with the partial relevance judgements
provided.

Table 2: Mean Average Precision and Recall for each Ranking Strategy
Ranking
Strategy

Mean Average Precison Recall (over the 5 queries) Ranking
Strategy

Mean Average Precison Recall (over the 5 queries)

m1 0.0201 64.5% m1_ma_tn1 0.0205 60.2%
m2 0.0011 41.9% m1_ma_tn2 0.0189 66.7%
tn1 0.0044 48.4% m2_ma_tn1 0.0100 48.4%
tn2 0.0035 37.6% m2_ma_tn2 0.0086 43%
w1 0.0035 49.5% m1_ma_w1 0.0206 59.1%
w2 0.0026 38.7% m1_ma_w2 0.0199 64.5%
m1_tn1 0.0201 59.1% m2_ma_w1 0.0092 49.5%
m1_tn2 0.0182 66.7% m2_ma_w2 0.0075 45.2%
m2_tn1 0.0065 47.3% Ma 0.0356 72%
m2_tn2 0.0055 39.8% ma_tn1 0.0215 48.4%
m1_w1 0.0202 59.1% ma_tn2 0.0221 49.5%
m1_w2 0.0190 62.4% ma_w1 0.0222 41.9%
m2_w1 0.0057 45.2% ma_w2 0.0226 41.9%
m2_w2 0.0045 37.6%

Table 2 (above) shows the Mean Average Precision and Recall values for each ranking strategies described in section
4.2.3. We evaluated rankings from using each strategy on their own, the “ta” strategies (tn1, tn2, w1, w2) and the “m”
strategies (m1, m2). Even if the performance was low for each one of these unique strategies, we notice a significant
difference between the “m1” strategy and all the others. With 2.01% average precision and 64.5% recall, “m1” is the best
of the unique strategies. The ranking obtained from the expanded query versions has lower performance than the non-
expanded ones, especially “m2”. Our morphological text expansion that we applied in “tn2” and “w2” decreases the Mean
Average Precision (MAP) without improving the recall. Our policy of adding the parents and children of a MeSH Main
Heading in “w2” also has a clear negative effect on both MAP and recall.

The rankings obtained from the combinations of the “text” or “ta” strategies with the MeSH or “m” strategies give better
results on average than the unique strategies. Any combinations with “m1” would outperform any combinations with “m2”
and given a combination with “m1” or “m2”, the expanded “ta” strategies, “tn2” and “w2”, yield lower MAP, as the early
results seemed to suggest. However, in the case of “m1_tn2” and “m1_w2”, we observe improvements in recall.

Next, consider text and MeSH strategy combinations where the “magic” filter was used. As explained above, this
filtering process takes away from the MeSH ranking the documents which were not retrieved in the top 1000 documents
ranked as a result of the “ma” query. This “ma” query contains descriptors that were judged as highly important by our
expert. The results suggest that filtering always improves the MAP, and either improves the recall or leaves it unchanged.
This suggests in turn that the “magic” descriptors provided by the expert were helping in the selection of relevant document
and were not harming the recall level.

The rest of the table gives the results for the “ma” ranking on its own as well as the merging of the “ma” ranking with
all the rankings resulting from “ta” or title/abstract queries. Although “ma” ranking was originally intended to be used as a
filter to improve precision, it gave us the best result of all rankings and merging of rankings in both MAP and recall. As a
consequence we proceeded to merge it with the “ta” strategies (tn1, tn2, w1, w2). The results show that those combinations
yield a better MAP than any combination of strategies and unique strategies (except the “ma” ranking). However the recall
is inferior to the one obtained when the “ta” strategies are merged with m1 (see m1_tn1, m1_tn2, m1_w1, m1_w2).

4.4 Genomic conclusions and future work

In order to select the two runs for submission, we decided to take a broad look at the results. Table 1 allows us to
compare the different elements of the ranking combinations more than it allows us to choose a particular combination, given
the partial nature of the relevance judgments. We thus conclude that the expanded text queries (“tn2” and “w2”) did not
seem to work and that the terms extracted from the title and information need fields (“tn”) of the topics were better query
terms than the ones extracted from all the topic fields with weights (“w”). We inferred that the “tn1” ranking strategy
should be part of the run submitted. The expanded version of the MeSH queries damaged the performance and the magic
queries gave the best performance in both Mean Average Precision and recall. We were confident that a combination of
“tn1” and “ma” would give satisfactory results and we submitted the “ma_tn1” combination as our first choice. As a second
choice we submitted the “ma” ranking on its own because it’s high performance with the 5 sample topics although we had
little confidence that it would perform well over the 50 topics.

 The “bag of descriptors” representation of documents does not allow us to calculate a suitable similarity measure
between documents that have few terms in common but which terms are related in the MeSH trees. We plan to make full
use the MeSH hierarchy and experiment with several tree similarity measures in order to build a better document
representation and more appropriate similarity measures. We also want to exploit the distinction made in the MEDLINE
manual indexing process between “central concepts” and “peripheral concepts” and integrate the use of “qualifiers” during
the document representation building process (as discussed in section 4.2.1).

5. NOVELTY TRACK ACTIVITIES

The TREC 2004 Novelty Track was structured into three distinct tasks. Participants in the first task were required to
retrieve a subset of the twenty-five relevant documents for each of the fifty topics. Once this task was performed,
participants were required to extract from within those retrieved documents all the sentences that were relevant to each of

the fifty topics. Finally, given this list of retrieved relevant sentences, which were ranked in a predetermined order,
participants were required to select a subset of sentences that provided novel or new information on the topic.

A sentence Sn is considered novel if and only if its similarity with all previously seen and

highlighted novel sentences S1…..Sn-1, is below a certain threshold.

As this is the first year that DCU has participated in the Novelty Track, we first investigated various methods employed
in the previous two years the Novelty Track has run. We present here the algorithms we developed to complete Task 1 and
Task 2. We built three models; the first focused on retrieving the twenty-five documents that were relevant to each topic;
the second focused on retrieving relevant sentences from this list of retrieved documents to satisfy each individual topic; the
third focused on the detection of novel sentences from this relevant list.

In Task 1 we were given a collection of documents and are asked to retrieve all new and relevant information for each of
the fifty topics. We used Físréal, an information retrieval system developed by the CDVP for the Terabyte Track (described
in section 2), as a basis for our experiments, which was configured to use BM25 weighting. In Task 2 we were given the
relevant sentences and are asked to find the novel sentences. This allows us to accurately assess our novelty models, as we
are not depending on a system’s ability to retrieve sentences. In this task we regarded sentences as documents, and
developed two formulas, which exploit traditional document similarity methods.

5.1 Task1 : Redundancy

Traditionally in Information Retrieval, implementation and experimentation of retrieval algorithms have dealt with large
collections, containing many documents. However, the Novelty Track explores various methods to find relevant sentences
within a document. It has been shown over the last two years that sentence retrieval is more difficult to accomplish than
traditional document retrieval as there are less words in each document, and hence less accuracy and more ambiguity (Min
et al., 2003). Our approach to improving performance was to extend the document and the query data using Dekang’s
(http://www.cs.ualberta.ca/~linkdek/downloads.htm) dictionary of both similarity and proximity term dependency. This
dictionary was successfully employed to improve system performance by THUIR at TREC2003. We submitted five runs
which we discuss later.

5.1.1 Stage One

This involved the detection of the relevant twenty-five documents in the collection supplied by NIST for each of the fifty
individual topics. We automatically generated a query for each topic, which concatenated together the title, the description
and the narrative (negative information from the narrative was automatically removed) from the TREC query. The top
twenty-five highest ranked documents returned from Físréal were chosen as our relevant documents.

5.1.2 Stage Two

This involved the detection of relevant sentences for each of the fifty topics, where our input was the set of documents
retrieved in stage one. We experimented with different combinations of query and document expansion, utilising Dekang’s
dependency dictionary. In Run 1 (cdvp4CnS101), we queried the system using a long query against document expanded
using the similarity dictionary. In Run 2 (cdvp4QePnD2), we examined the effects of expanding the query alone using the
proximity dictionary. Run 3 (cdvp4CnQry2), used traditional searching with no performance enhancement on either the
query or document. In Run 4 (cdvp4QePDPC2), we experimented with a combination of query and document expansion
using the proximity dictionary and in the final Run 5 (cdvp4QeSnD1), we investigated the benefits of using just query
expansion which utilised term similarity dictionary.

5.1.3 Stage Three

This stage takes as input the ranked list of relevant sentences produced in the previous step, and returns only those
sentences that provide new or novel information for each topic. This novelty model cannot be accurately assessed as its

overall performance is dependent on the results of both stages one and two, in which the initial detection of relevant data is
carried out. With so many contributing factors, it is difficult to decipher whether the novelty algorithms are performing
well. The first method used in Task 1 to detect sentences that were novel was based on the UniqueHistory formula (Section
5.2) using a threshold of 3. The second method used was the NewSentenceValue formula (Section 5.2) using a threshold of
0.08.

5.2 Task 2 : Novelty

In this task, participants were given an ordered list of relevant sentences for each of the fifty topics and were required to
detect a subset of this ranked list, which will provide novel or new information to the users. We evaluated the performance
of our system using variations of three different formulas ImportanceValue (Section 5.2.1), NewSentenceValue (Section
5.2.2) or UniqueHistory (5.2.3). We submitted a total of five runs (see Table 3). Given a sentence Sn in the ordered list of
relevant sentences, we evaluated the number of unique words Us that occur in the set of words Ss in the current sentence Sn,
against an accumulating list of all unique words UH encountered to this point (for a particular topic). We then evaluated Us

using one of the three formulas, and assigned to each sentence its novelty score. If this score was above a predefined
threshold, the set of unique terms Us was added to the history set UH and the sentence was added to the list of novel
sentences to be returned to the user. The Baseline run (cdvp4NSnoH4) used the UniqueHistory formula however we did not
keep an accumulated history set of all the previous sentences. The results were very poor for this run, which in retrospect,
was not surprising.

5.2.1 The Importance Value

This function (see Formula 2) exploits the properties of a term from both within a sentence and the collection of
sentences from which it originates. It models the assumption that a term with a high term frequency (tf) and a high inverse
document frequency (idf) would most likely be a valuable term in providing new and valuable information about a topic. A
sentence assigned a novel score, higher than a predefined threshold, is considered a novel sentence.

(2)

5.2.2 The NewSentenceValue

The NewSentenceValue formula (see Formula 3) exploits the characteristics of a term within a collection of sentences.
We analyse the importance-value of the unique terms Us and assess their overall benefit, in contributing novel information
to the user. A sentence with a novel score above a predefined threshold is considered a novel sentence.

(3)

Definitions: Let
Current sentence = Sn Set of words for the current sentence= Ss |Ss| the size of the current sentence set= N
All previously seen sentences= S1…..Sn-1
Set of Unique Words in current sentence= Us |Us| the size the of unique set = n
Accumulating set(History Set) of unique words over a particular topic = UH

Term Frequency = tf Inverse document frequency = idf
 Unique terms in a sentence =

sUtu∈
Terms of the History set =

HUth∈ Current terms of a sentence= sStc∈

∑
∑

∑
=

=

= ⋅
l

k
thm

j
tc

n

i
tu

k

j

i

idf
idf

idf

1

1

1

N
idftf

n

i

n

i
tutu ii

1
1 1

⋅⎟
⎠

⎞
⎜
⎝

⎛
⋅∑ ∑

= =

5.2.3 The UniqueHistory

The novel score of a sentence was determined by the evaluating the number of unique words Us that occurred in the
sentence word set against an accumulating list of all unique words UH encountered to this point (for a particular topic). If
the number of unique words exceeds a particular threshold then the sentence was considered novel. This is a crude way to
determine novelty but as the results show it is a method which gives comparable results.

5.3 Novelty Results

It can be observed (Table 3) that all relevance runs performed equally well and all were above the mean results for the
track. The highest F-scores (marginally) were achieved by applying query expansion, using the term proximity only (run
cdvp4QePnD2). When we compare the novel results of Task 1 to the overall results of Task 2, it can be seen that the
performance of Task 1, in which used a combination of two methods, is substantially lower than Task 2. These results
could be caused by the dependency of Task 1’s novelty system on relevant results.

Table 3: Task1 - Results , Relevance and Novelty

Table 4 displays the results of task2. It can be clearly seen that the performance of run (cdvp4NTerFr1) implementing

the ImportanceValue formula at threshold 1.5 was better than that of other runs and all runs, except the Baseline, were
above the mean.

Table 4: Task2 Results , Precision, Recall and F-score

Analysing the performance of runs by topic type, we find that in detecting relevance (task1, Table 5) our F-scores show
that there is a variance between the systems performance on event and opinion topics. This variance can also been seen in
detecting the novel sentences between opinion and event topics of task1.

Table 5, Task1 Performance of the system over Event and Opinion Topics

Task1 Relevance Run Precision Recall F-Score
Average(mean) 0.388
CnQueryDocExpSim cdvp4CnS101 0.30 0.73 0.402
QeProxnoDocExpUniqclr cdvp4QePnD2 0.31 0.71 0.406
CnQueryUniqHistory cdvp4CnQry2 0.32 0.67 0.405
QeProxDocExpProxUnqH cdvp4QePDPC2 0.29 0.78 0.397
QeSnoDocExpNewSenVal cdvp4QeSnD1 0.31 0.72 0.404

Task1 Novelty Precision Recall F-Score
 0.203
 0.13 0.71 0.201
 0.13 0.70 0.205
 0.15 0.55 0.221
 0.14 0.63 0.212
 0.14 0.64 0.216

Task2 Novelty Run Precision Recall F-Score
Average(mean) 0.597
ImportanceValue >1.5 cdvp4NTerFr1 0.49 0.90 0.622
ImportanceValue >3.5 cdvp4NTerFr3 0.51 0.83 0.616
NewSentenceValue>0.08 cdvp4NSen4 0.47 0.91 0.609
UniqueHistory >3 cdvp4UnHis3 0.50 0.84 0.615
Baseline cdvp4NSnoH4 0.38 0.49 0.383

Task1 Relevance Run Events Opinion
Average(mean) 0.472 0.304
CnQueryDocExpSim cdvp4CnS101 0.473 0.330
QeProxnoDocExpUniqclr cdvp4QePnD2 0.477 0.335
CnQueryUniqHistory cdvp4CnQry2 0.472 0.339
QeProxDocExpProxUnqH cdvp4QePDPC2 0.471 0.322
QeSnoDocExpNewSenVal cdvp4QeSnD1 0.475 0.333

Task1 Novelty Event Opinion
 0.251 0.148
 0.248 0.153
 0.252 0.158
 0.267 0.176
 0.263 0.161
 0.266 0.167

In Task2 (see Table 6) where the relevant judgments have been provided we notice that the performance of our system in
detecting opinions and events is very comparable and once again, all our results except baseline are above the mean..

Table 6, Task2 Performance of the system over Event and Opinion Topics

6. ACKNOWLEDGEMENTS

The support of the Informatics Directorate of Enterprise Ireland is gratefully acknowledged. Part of this material is based
on work supported by Science Foundation Ireland under Grant Nos. 03/IN.3/I361. The work described in section 4 is part of
project GenIRL that is funded by Enterprise Ireland under the Basic Research Grants Scheme, project number SC-2003-
0047-Y. We would like to thank our biology domain expert Fionnuala McDyer for helping us by manually annotating each
topic with terms from the MeSH controlled thesaurus.

7. REFERENCES

Blott S, Gurrin C, Jones G J F, Smeaton A F and Sodring T (2003). “On the use of MeSH headings to improve retrieval effectiveness”.
In Proceedings of the 12th TREC Conference, Gaithersburg, Md, November 2003.

De Bruijn B and Martin J (2003). Finding Gene Function using LitMiner. The Twelfth Text REtrieval Conference, TREC 2003,

Gaithersburg, MD. NIST.

Craswell N and Hawking D (2003). Overview of the TREC 2003 Web Track, Proceedings of the Twelfth Text REtrieval Conference,

pg78-92, 2003.

Freyne J, Smyth B, Coyle M, Balfe E, and Briggs P (2004). Further Experiments on Collaborative Ranking in Community-Based Web

Search. In: Artificial Intelligence Review: An International Science and Engineering Journal, 21 (3-4):229-252, June 2004.

Funk M E and Reid C A (1983). Indexing consistency in MEDLINE. Bulletin of the Medical Library Association. 71(2):176–83.

Min Z, Lin C, Liu Y, Zhao L, Ma L, Ma S (2003). THUIR at TREC 2003: Novelty, Robust, Web and Hard, State Key Lab of Intelligent

tech & Sys, CST Dept, Tsinghua University, Beijing 100084, China

Robertson S E, Walker S, Hancock-Beaulieu MM and Gatford M (2004). Okapi at TREC-3. Proceedings of the Third Text REtrieval

Conference, pg109–126, 1994

Srinivasan P (1996). Query Expansion and MEDLINE. Information Processing and Management, 32(4): 431-443.

Task2 Novelty Run Events Opinion
Average(mean) 0.598 0.596
ImportanceValue >1.5 cdvp4NTerFr1 0.634 0.609
ImportanceValue >3.5 cdvp4NTerFr3 0.624 0.607
NewSentenceValue>0.08 cdvp4NSen4 0.612 0.606
UniqueHistory >3 cdvp4UnHis3 0.626 0.603
Baseline cdvp4NSnoH4 0.375 0.390

