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The TREC 2004 Genomics Track consisted of two 
tasks.  The first task was a standard ad hoc retrieval 
task using topics obtained from real biomedical 
research scientists and documents from a large 
subset of the MEDLINE bibliographic database.  The 
second task focused on categorization of full-text 
documents, simulating the task of curators of the 
Mouse Genome Informatics (MGI) system and 
consisting of three subtasks.  One subtask focused on 
the triage of articles likely to have experimental 
evidence warranting the assignment of GO terms, 
while the other two subtasks focused on the 
assignment of the three top-level GO categories.  The 
track had 33 participating groups. 
 
 
1.  Motivations and Background 
 
The goal of the TREC Genomics Track is to create 
test collections for evaluation of information retrieval 
(IR) and related tasks in the genomics domain.  The 
Genomics Track differs from all other TREC tracks 
in that it is focused on retrieval in a specific domain 
as opposed to general retrieval tasks, such as Web 
searching or question answering. 
 
To date, the track has focused on advanced users 
accessing the scientific literature.  The advanced 
users include biomedical scientists and database 
curators or annotators.  New advances in 
biotechnologies have changed the face of biological 
research, particularly “high-throughput” techniques 
such as gene microarrays [1].  These not only 
generate massive amounts of data but also have led to 
an explosion of new scientific knowledge.  As a 
result, this domain is ripe for improved information 
access and management. 
 
The scientific literature plays a key role in the growth 
of biomedical research data and knowledge.  
Experiments identify new genes, diseases, and other 
biological processes that require further investigation.  
Furthermore, the literature itself becomes a source of 
“experiments” as researchers turn to it to search for 
knowledge that drives new hypotheses and research.  

Thus there are considerable challenges not only for 
better IR systems, but also for improvements in 
related techniques, such as information extraction and 
text mining [2]. 
 
Because of the growing size and complexity of the 
biomedical literature, there is increasing effort 
devoted to structuring knowledge in databases.  The 
use of these databases is made pervasive by the 
growth of the Internet and Web as well as a 
commitment of the research community to put as 
much data as possible into the public domain.  Figure 
1 depicts the overall process of “funneling” the 
literature to structure knowledge, showing the 
information system tasks used at different levels 
along the way.  This figure shows our view of the 
optimal uses for IR and the related areas of 
information extraction and text mining. 
 
One of the many key efforts is to annotate the 
function of genes.  To facilitate this, the research 
community has come together to develop the Gene 
Ontology (GO, www.geneontology.org) [3].  While 
the GO is not an ontology in the purists’ sense, it is a 
large, controlled vocabulary based on three axes or 
hierarchies: 

• Molecular function - the activity of the gene 
product at the molecular (biochemical) level, 
e.g. protein binding 

• Biological process - the biological activity 
carried out by the gene process, e.g., cell 
differentiation 

• Cellular component - where in the cell the 
gene product functions, e.g., the nucleus 

 
A major use of the GO has been to annotate the 
genomes of organisms used in biological research.  
The annotations are often linked to other information, 
such as literature, the gene sequence, the structure of 
the resulting protein, etc..  An increasingly common 
approach is to develop “model organism databases” 
that bring together all this information in an easy to 
use format.  Some of the better known model 
organism databases include those devoted to the 
mouse (Mouse Genome Informatics, MGI,   



 

 
Figure 1 - The steps in deriving knowledge from the biomedical literature and the associated information systems 
used along the way. 
 
 
www.informatics.jax.org) and the yeast 
(Saccharomyces Genome Database, SGD, 
www.yeastgenome.org).  These databases require 
extensive human effort for annotation or curation, 
which is usually done by PhD-level researchers. 
 
These curators could be aided substantially by high-
quality information tools, including IR systems. 
 
The 2004 track was the second year of the TREC 
Genomics Track.  This year was different from the 
first year, as we had resources available to us from a 
National Science Foundation (NSF) Information 
Technology Research (ITR) grant that allowed for 
programming support and relevance judgments.  In 
contrast, for the 2003 track we had to rely on proxies 
for relevance judgments and other gold standard data 
[4]. 
 
The Genomics Track is overseen by a steering 
committee of individuals with a background in IR 
and/or genomics.  In early 2003, the committee 
produced a “road map” that called for modifying one 
experimental “facet” each year.  For the purposes of 
the roadmap (based on the NSF grant proposal), the 
original year (2003) was Year 0, making 2004 Year 
1.  The original plan was to add new types of content 

in Year 1 and new types of information needs in Year 
2.  Because we were unable to secure substantial 
numbers of full text documents for the ad hoc 
retrieval task in 2004, we decided to reverse the order 
of the roadmap for Years 1 and 2.  This meant we 
focused on new types of information needs for 2004 
(and hopefully new types of content in 2005).  
However, it should be noted that even in this era of 
virtually all biomedical journals being available 
electronically, most users of the literature start their 
searches using MEDLINE. 
 
2.  Overview of Track 
 
In TREC 2004, the Genomics Track had two tasks, 
the second of which was subdivided into subtasks.  
The first task was a standard ad hoc retrieval task 
using topics obtained from surveying real research 
scientists and searching in a large subset of the 
MEDLINE bibliographic database.  The second task 
focused on categorization of full-text documents, 
simulating the task of curators for the MGI system.  
One subtask focused on the triage of articles likely to 
have experimental evidence warranting the 
assignment of GO terms, while the other two 
subtasks focused on the assignment of the three GO 
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categories (indicating the assignment of a term within 
them). 
 
A total of 145 runs were submitted for scoring.  
There were 47 runs from 27 groups submitted for the 
ad hoc task.  There were 98 runs submitted from 20 
groups for the categorization task.  These were 
distributed across the subtasks of the categorization 
task as follows:  59 for the triage subtask, 36 for the 
annotation hierarchy subtask, and three for the 
annotation hierarchy plus evidence code subtask.  A 
total of 33 groups participated in the 2004 Genomics 
Track, making it the track with the most participants 
in all of TREC 2004. 
 
The data are currently available to track participants 
on password-protected Web sites but will be made 
available to non-TREC participants in early 2005.  
The version of data released in early 2005 will be 
updated to correct some minor errors associated with 
the official TREC 2004 data. 
 
3.  Ad Hoc Retrieval Task 
 
The goal of the ad hoc task was to mimic 
conventional searching.  The use case was a scientist 
with a specific information need, searching the 
MEDLINE bibliographic database to find relevant 
articles to retrieve. 
 
3.1  Documents 
 
The document collection for the ad hoc retrieval task 
was a 10-year subset of MEDLINE.  We 
contemplated the use of full-text documents in this 
task but were unable to procure an adequate amount 
to represent real-world searching.  As such, we chose 
to use MEDLINE.  As noted above, however, despite 
the widespread availability of on-line, full-text 
scientific journals at present, most searchers of the 
biomedical literature still use MEDLINE as an entry 
point.  Consequently, there is great value in being 
able to search MEDLINE effectively.  
 
The subset of MEDLINE used for the track consisted 
of 10 years of completed citations from the database 
inclusive from 1994 to 2003.  Records were extracted 
using the Date Completed (DCOM) field for all 
references in the range of 19940101 - 20031231.  
This provided a total of 4,591,008 records.  We used 
the DCOM field and not the Date Published (DP).  
As a result, some records were published but not 
completed prior to 1994, i.e., the collection had: 

• 2,814 ( 0.06%) DPs prior to 1980  
• 8,388 ( 0.18%) DPs prior to 1990     
• 138,384 ( 3.01%) DPs prior to 1994  

The remaining 4,452,624 (96.99%) DPs were within 
the 10 year period of 1994-2004. 
 
The data was made available in two formats: 

• MEDLINE - the standard NLM format in 
ASCII text with fields indicated and 
delimited by 2-4 character abbreviations 
(uncompressed - 9,587,370,116 bytes, 
gzipped - 2,797,589,659 bytes)  

• XML - the newer NLM XML format 
(uncompressed - 20,567,278,551 bytes, 
gzipped - 3,030,576,659 bytes) 

 
3.2  Topics 
 
The topics for the ad hoc retrieval task were 
developed from the information needs of real 
biologists and modified as little as possible to create 
needs statements with a reasonable estimated amount 
of relevant articles (i.e., more than zero but less than 
one thousand).  The information needs capture began 
with interviews by 12 volunteers who sought 
biologists in their local environments.  A total of 43 
interviews yielded 74 information needs.  Some of 
these volunteers, as well as an additional four 
individuals, created topics in the proposed format 
from the original interview data.  We aimed to have 
each information need reviewed more than once but 
were only able to do this with some, ending up with a 
total of 91 draft topics.  The same individuals then 
were assigned different draft topics for searching on 
PubMed so they could be modified to generate final 
topics with a reasonable number of relevant articles.  
The track chair made one last pass to make the 
formatting consistent and extract the 50 that seemed 
most suitable as topics for the track. 
 
The topics were formatted in XML and had the 
following fields: 

• ID - 1 to 50  
• Title - abbreviated statement of information 

need  
• Information need - full statement 

information need  
• Context - background information to place 

information need in context  
We created an additional five “sample” topics, one of 
which is displayed in Figure 2. 



 
<TOPIC> 
  <ID>51</ID>  
  <TITLE>pBR322 used as a gene vector</TITLE>  
  <NEED>Find information about base sequences and restriction maps in plasmids that are used  
 as gene vectors.</NEED>  
  <CONTEXT>The researcher would like to manipulate the plasmid by removing a particular  
 gene and needs the original base sequence or restriction map information of the  
 plasmid.</CONTEXT>  
  </TOPIC> 
 
Figure 2 - Sample topic for ad hoc retrieval task. 
 
 
3.3  Relevance Judgments 
 
Relevance judgments were done using the 
conventional “pooling method” whereby a fixed 
number of top-ranking documents from each official 
run were pooled and provided to an individual 
(blinded to the number of groups who retrieved the 
document and what their search statements were).  
The relevance assessor then judged each document 
for the specific topic query as definitely relevant 
(DR), possibly relevant (PR), or not relevant (NR).  
A subset of documents were also judged in duplicate 
to assess interjudge reliability using the kappa 
measure [5].  For the official results, which required 
binary relevance judgments, documents that were 
rated DR or PR were considered relevant. 
 
The pools were built as follows.  Each of the 27 
groups designated a top-precedence run that would be 
used for relevance judgments, typically what they 
thought would be their best-performing run.  We 
took, on average, the top 75 documents for each topic 
from these 27 runs and eliminated the duplicates to 
create a single pool for each topic.  The average pool 
size (average number of documents judged per topic) 
was 976, with a range of 476-1450. 
 
The judgments were done by two individuals with 
backgrounds in biology.  One was a PhD biologist 
and the other an undergraduate biology student.  
Table 1 shows the pool size and number of relevant 
documents for each topic.  (It also shows the overall 
results, to be described later.) 
 
For the kappa measurements, we selected every tenth 
article from six topics.  As each judge had already 
judged the documents for three of the topics, we 
compared these extra judgments with the regular ones 
done by the other judge.  The results of the duplicate 
judgments are shown in Table 2.  The resulting kappa 

score was 0.51, indicating a “fair” level of agreement 
but not being too different from similar relevance 
judgment activities in other domains, e.g., [6].  In 
general, the PhD biologist assigned more articles in 
the relevant category than the undergraduate. 
 
3.4  Evaluation Measures 
 
The primary evaluation measure for the task was 
mean average precision (MAP).  Results were 
calculated using the trec_eval program, a standard 
scoring system for TREC.  A statistical analysis was 
performed using a repeated measures analysis of 
variance, with posthoc Tukey tests for pairwise 
comparisons.  In addition to analyzing MAP, we also 
assessed precision at 10 and 100 documents. 
 
3.5  Results 
 
The results of all participating groups are shown in 
Table 3.  The statistical analysis for MAP 
demonstrated significance across all the runs, with 
the pairwise significance for the top run (pllsgen4a2) 
not obtained until the run RMITa about one-quarter 
of the way down the results. 
 
The best official run was achieved by Patolis Corp. 
[7].  This run used a combination of Okapi weighting 
(BM25 for term frequency but with standard inverse 
document frequency), Porter stemming, expansion of 
symbols by LocusLink and MeSH records, blind 
relevance feedback (also known as blind query 
expansion), and use of all three fields in the query.  
This group also reported a post-submission run that 
added the language modeling technique of Dirichlet-
Prior smoothing to achieve an even higher MAP of 
0.4264.



Table 1 - Ad hoc retrieval topics, number of relevant documents, and average results for all runs. 
 
Topic Pool Definitely 

Relevant 
Possibly 
Relevant 

Not 
Relevant 

D & P 
Relevant 

MAP 
average 

P@10 
average 

P@100 
average 

1 879 38 41 800 79 0.3073 0.7383 0.2891 
2 1264 40 61 1163 101 0.0579 0.2787 0.1166 
3 1189 149 32 1008 181 0.0950 0.3298 0.2040 
4 1170 12 18 1140 30 0.0298 0.0894 0.0360 
5 1171 5 19 1147 24 0.0564 0.1340 0.0349 
6 787 41 53 693 94 0.3993 0.8468 0.3938 
7 730 56 59 615 115 0.2006 0.4936 0.2704 
8 938 76 85 777 161 0.0975 0.3872 0.2094 
9 593 103 12 478 115 0.6114 0.7957 0.6196 
10 1126 3 1 1122 4 0.5811 0.2532 0.0277 
11 742 87 24 631 111 0.3269 0.5894 0.3843 
12 810 166 90 554 256 0.4225 0.7234 0.5866 
13 1118 5 19 1094 24 0.0288 0.1021 0.0274 
14 948 13 8 927 21 0.0479 0.0894 0.0270 
15 1111 50 40 1021 90 0.1388 0.2915 0.1800 
16 1078 94 53 931 147 0.1926 0.4489 0.2883 
17 1150 2 1 1147 3 0.0885 0.0511 0.0115 
18 1392 0 1 1391 1 0.6254 0.0660 0.0072 
19 1135 0 1 1134 1 0.1594 0.0362 0.0062 
20 814 55 61 698 116 0.1466 0.3957 0.2238 
21 676 26 54 596 80 0.2671 0.4702 0.2796 
22 1085 125 85 875 210 0.1354 0.4234 0.2709 
23 915 137 21 757 158 0.1835 0.3745 0.2747 
24 952 7 19 926 26 0.5970 0.7468 0.1685 
25 1142 6 26 1110 32 0.0331 0.1000 0.0330 
26 792 35 12 745 47 0.4401 0.7298 0.2411 
27 755 19 10 726 29 0.2640 0.4319 0.1355 
28 836 6 7 823 13 0.2031 0.2532 0.0643 
29 756 33 10 713 43 0.1352 0.1809 0.1515 
30 1082 101 64 917 165 0.2116 0.4872 0.3113 
31 877 0 138 739 138 0.0956 0.2489 0.2072 
32 1107 441 55 611 496 0.1804 0.6085 0.4787 
33 812 30 34 748 64 0.1396 0.2234 0.1647 
34 778 1 30 747 31 0.0644 0.0830 0.0668 
35 717 253 18 446 271 0.3481 0.8213 0.6528 
36 676 164 90 422 254 0.4887 0.7638 0.6700 
37 476 138 11 327 149 0.5345 0.7426 0.6564 
38 1165 334 89 742 423 0.1400 0.5915 0.4043 
39 1350 146 171 1033 317 0.0984 0.3936 0.2689 
40 1168 134 143 891 277 0.1080 0.3936 0.2796 
41 880 333 249 298 582 0.3356 0.6766 0.6521 
42 1005 191 506 308 697 0.1587 0.6596 0.5702 
43 739 25 170 544 195 0.1185 0.6915 0.2553 
44 1224 485 164 575 649 0.1323 0.6149 0.4632 
45 1139 108 48 983 156 0.0286 0.1574 0.0711 
46 742 111 86 545 197 0.2630 0.7362 0.4981 
47 1450 81 284 1085 365 0.0673 0.3149 0.2355 
48 1121 53 102 966 155 0.1712 0.4021 0.2557 
49 1100 32 41 1027 73 0.2279 0.5404 0.2049 
50 1091 79 223 789 302 0.0731 0.3447 0.2534 
Mean 975.1 92.6 72.8 809.7 165.4 0.2171 0.4269 0.2637 
Median 978.5 54 44.5 783 115.5 0.1590 0.3989 0.2472 
Min 476 0 1 298 1 0.0286 0.0362 0.0062 
Max 1450 485 506 1391 697 0.6254 0.8468 0.6700 
 



 
Table 2 - Kappa results for interjudge agreement in relevant judgments for ad hoc retrieval task. 
 

Judge 2    Definitely relevant     Possibly relevant   Not relevant Total 
Judge 1     
Definitely relevant 62 35 8 105 
Possibly relevant 11 11 5 27 
Not relevant 14 57 456 527 
Total 87 103 469 659 
 
The next best run was achieved by the University of 
Waterloo [8].  This group used a variety of 
approaches including Okapi weighting, blind 
relevance feedback, and various forms of domain-
specific query expansion.  Their blind relevance 
feedback made use of usual document feedback as 
well as feedback from passages.  Their domain-
specific query expansion included expanding lexical 
variants as well as expanding acronym, gene, and 
protein name synonyms. 
 
A number of groups used boosting of word weights 
in queries or documents.  Tsinghua University 
boosted words in titles and abstracts, along with 
using blind query expansion [9].  Alias-i Corp. 
boosted query words in the title and need statements 
[10].  University of Tampere found value in 
identifying and using bi-gram phrases [11]. 
 
A number of groups implemented techniques, 
however, that were detrimental.  This is evidenced by 
the OHSU runs, which used the Lucene system “out 
of the box” that applies TF*IDF weighting [12].  
Approaches that attempted to map to controlled 
vocabulary terms did not fare as well, such as Indiana 
University [13], University of California Berkeley 
[14], and the National Library of Medicine [15].  
Many groups tried a variety of approaches, beneficial 
or otherwise, but usually without comparing common 
baseline or running exhaustive experiments, making 
it difficult to discern exactly which techniques 
provided benefit.  Figure 3 shows the official results 
graphically with annotations for the first run 
statistically significant from the top run as well as the 
OHSU “baseline.” 
 
As typically occurs in TREC ad hoc runs, there was a 
great deal of variation within individual topics, as is 
seen in Table 1.  Figure 4 shows the average MAP 
across groups for each topic.  Figure 5 presents the 
same data sorted to give a better indication of the 
variation across topics.  There was a fairly strong 
relationship between the average and maximum MAP 
for each topic (Figure 6), while the number of 

relevant per topic versus MAP was less associated 
(Figure 7). 
 
4.  Categorization Task 
 
In the categorization task, we simulated two of the 
classification activities carried out by human 
annotators for the MGI system:  a triage task and two 
simplified variations of MGI’s annotation task.  
Systems were required to classify full-text documents 
from a two-year span (2002-2003) of three journals, 
with the first year’s (2002) documents comprising the 
training data and the second year’s (2003) documents 
making up the test data. 
 
One of the goals of MGI is to provide structured, 
coded annotation of gene function from the biological 
literature.  Human curators identify genes and assign 
GO codes about gene function with another code 
describing the type of experimental evidence 
supporting assignment of the GO code.  The huge 
amount of literature requiring curation creates a 
challenge for MGI, as their resources are not 
unlimited.  As such, they employ a three-step process 
to identify the papers most likely to describe gene 
function: 

1. About mouse - The first step is to identify 
articles about mouse genomics biology.  The 
full text of articles from several hundred 
journals are searched for the words mouse, 
mice, or murine.  Articles passing this step 
are further analyzed for inclusion in MGI.  
At present, articles are searched in a Web 
browser one at a time because full-text 
searching is not available for all of the 
journals included in MGI. 



Table 3 - Ad hoc retrieval results, sorted by mean average precision. 
 
Run Group (reference) Manual/ 

Automatic 
Mean Average 
Precision 

Relevant at 10 
documents 

Relevant at 100 
documents 

pllsgen4a2 patolis.fujita [7] A 0.4075 6.04 41.96 
uwmtDg04tn u.waterloo.clarke [8] A 0.3867 6.24 42.1 
pllsgen4a1 patolis.fujita [7] A 0.3689 5.7 39.36 
THUIRgen01 tsinghua.ma [9] M 0.3435 5.82 39.24 
THUIRgen02 tsinghua.ma [9] A 0.3434 5.94 39.44 
utaauto u.tampere [11] A 0.3324 5.02 32.26 
uwmtDg04n u.waterloo.clarke [8] A 0.3318 5.68 36.84 
PSE german.u.cairo [18] A 0.3308 5.86 36.66 
tnog3 tno.kraaij [19] A 0.3247 5.6 36.56 
tnog2 tno.kraaij [19] A 0.3196 5.62 36.04 
utamanu u.tampere [11] M 0.3128 6.52 38.88 
aliasiBase alias-i [10] A 0.3094 5.38 34.58 
ConversManu converspeech [20] M 0.2931 5.82 37.18 
RMITa rmit.scholer [21] A 0.2796 5.12 31.4 
aliasiTerms alias-i [10] A 0.2656 4.8 30.3 
akoike u.tokyo (none) M 0.2427 4.48 31.3 
OHSUNeeds ohsu.hersh [12] A 0.2343 3.84 26.46 
tgnSplit tarragon [22] A 0.2319 4.86 29.26 
UIowaGN1 u.iowa [23] A 0.2316 4.76 28.5 
tq0 nlm.umd.ul [15] A 0.2277 5.12 30.1 
OHSUAll ohsu.hersh [12] A 0.2272 4.32 27.76 
LHCUMDSE nlm.umd.ul [15] A 0.2191 3.9 24.18 
akoyama u.tokyo (none) M 0.2155 4.52 25.62 
PDTNsmp4 u.padova [24] A 0.2074 4.56 23.18 
PD50501 u.padova [24] A 0.2059 4.42 25.18 
RMITb rmit.scholer [21] A 0.2059 4.56 27.26 
UBgtNormJM1 suny.buffalo [25] A 0.2043 4.34 25.38 
ConversAuto converspeech [20] A 0.2013 3.88 22.8 
york04g2 york.u [26] M 0.2011 5.5 25.8 
tgnNecaux tarragon [22] A 0.1951 4.08 23.58 
lga1 indiana.u.seki [13] A 0.1833 3.08 22.86 
york04g1 york.u [26] A 0.1794 4.14 26.96 
lga2 indiana.u.seki [13] A 0.1754 3.1 20.22 
rutgersGAH1 rutgers.dayanik [16] A 0.1702 4.66 26.76 
wdvqlxa1 indiana.u.yang [27] A 0.1582 4.2 24.78 
wdvqlx1 indiana.u.yang [27] A 0.1569 4.26 24.26 
DCUmatn1 dubblincity.u [28] M 0.1388 3.28 17.84 
BioTextAdHoc u.cberkeley.hearst [14] A 0.1384 3.76 23.76 
shefauto2 u.sheffield.gaizauskas [29] A 0.1304 3.66 18.5 
rutgersGAH2 rutgers.dayanik [16] A 0.1303 3.42 19.48 
shefauto1 u.sheffield.gaizauskas [29] A 0.1294 3.54 18.92 
run1 utwente (none) M 0.1176 1.5 10.5 
MeijiHilG meiji.u [30] A 0.0924 2.1 15.24 
DCUma dubblincity.u [28] M 0.0895 2.4 15.46 
csusm u.sanmarcos [31] M 0.0123 0.44 1.6 
edinauto2 u.edinburgh.sinclair [32] A 0.0017 0.46 1.6 
edinauto5 u.edinburgh.sinclair [32] A 0.0012 0.36 1.3 
Mean   0.2074 4.48 26.46 
 
 
 



 
Figure 3 - Ad hoc retrieval runs sorted by MAP score.  The highest run to obtain statistical significance (RMITa) 
from the top run (pllsgen4a2) is denoted, along with the “out of the box” TF*IDF run (OHSUNeeds) are annotated. 
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Figure 4 - MAP by topic for the ad hoc task. 
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Figure 5 - MAP by topic for the ad hoc task sorted by MAP. 
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Figure 6 - The maximum MAP plotted vs. average MAP for the ad hoc retrieval task runs. 
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Figure 7 - The number of relevant per topic plotted vs. MAP for the ad hoc retrieval task. 
 
 



2. Triage - The second step is to determine 
whether the identified articles should be sent 
for curation.  MGI curates articles not only 
for GO terms, but also for other aspects of 
biology, such as gene mapping, gene 
expression data, phenotype description, and 
more.  The goal of this triage process is to 
limit the number of articles sent to human 
curators for more exhaustive analysis.  
Articles that pass this step go into the MGI 
system with a tag for GO, mapping, 
expression, etc..  The rest of the articles do 
not go into MGI.  Our triage task involved 
correctly classifying which documents had 
been selected for GO annotation in this 
process. 

3. Annotation - The third step is the actual 
curation with GO terms.  Curators identify 
genes for which there is experimental 
evidence to warrant assignment of GO 
codes.  Those GO codes are assigned, along 
with a code for each indicating the type of 
experimental evidence.  There can more 
than one gene assigned GO codes in a given 
paper and there can be more than one GO 
code assigned to a gene.  In general, and in 
our collection, there is only one evidence 
code per GO code assignment per paper.  
Our annotation task involved a modification 
of this annotation step as described below. 

 
4.1  Documents 
 
The documents for the categorization task consisted 
of articles from three journals over two years, 
reflecting the full-text documents we were able to 
obtain from Highwire Press (www.highwire.org).  
Highwire is a “value added” electronic publisher of 
scientific journals.  Most journals in their collection 
are published by professional associations, with the 
copyright remaining with the associations.  Highwire 
originally began with biomedical journals, but in 
recent years has expanded into other disciplines.  
They have also supported IR and related research by 
acting as an intermediary between consenting 
publishers and information systems research groups 
who want to use their journals, such as the Genomics 
Track. 
 
The journals available and used by our track this year 
were Journal of Biological Chemistry (JBC), Journal 
of Cell Biology (JCB), and Proceedings of the 
National Academy of Science (PNAS).  These 
journals have a good proportion of mouse genome 
articles.  Each of the papers from these journals was 
provided in SGML format based on Highwire’s 

Document Type Definition (DTD).  We used articles 
from the year 2002 for training data and from 2003 
for test data.  The documents for the categorization 
tasks came from a subset of articles having the words 
mouse, mice or murine as described above.  We 
created a crosswalk file (look-up table) that matched 
an identifier for each Highwire article (its file name) 
and its corresponding PubMed ID (PMID).  Table 4 
shows the total number of articles in each journal and 
the number in each journal included in subset used by 
the track.  The SGML training document collection 
was 150 megabytes in size compressed and 449 
megabytes uncompressed.  The SGML test document 
collection was 140 megabytes compressed and 397 
megabytes uncompressed. 
 
Since MGI annotation lags behind article publication, 
a not insubstantial number of papers have been 
selected for annotation but not yet annotated.  From 
the standpoint of the triage subtask, we wanted to use 
all of these articles as positive examples, since they 
all were selected for GO annotation.  However, we 
could not use the articles not yet annotated for the 
annotation hierarchy task, since we did not have the 
annotations.  We also needed a set of negative 
examples for the annotation hierarchy task and chose 
to use articles selected for action by MGI for other 
(i.e., non-GO annotation) actions.  Figure 8 shows the 
groups of documents and how they were assigned 
into being positive and negative examples for the 
subtasks. 
 
4.2  Triage Subtask 
 
The goal of this task was to correctly identify papers 
that were deemed to have experimental evidence 
warranting annotation with GO codes.  Positive 
examples included papers designated for GO 
annotation by MGI.  As noted above, some of these 
papers had not yet been annotated.  Negative 
examples were all papers not designated for GO 
annotation in the operational MGI system.  For the 
training data (2002), there were 375 positive 
examples, meaning that there were 5837-375 = 5462 
negative examples.  For the test data (2003), there 
were 420 positive examples, meaning that there were 
6043-420 = 5623 negative examples.  It should also 
be noted that the MGI system is, like most 
operational databases, continuously updated, so the 
data for the track represented a snapshot of the 
database obtained in May, 2004.  (As described later, 
an updated version of the data will be available in 
2005.) 
 



Table 4 - Number of papers total and available in the mouse, mus, or murine subset. 
 
Journal 2002 papers - total, 

subset 
2003 papers - total, 
subset 

Total papers - total, 
subset 

JBC 6566, 4199 6593, 4282 13159, 8481 
JCB 530, 256 715, 359 1245, 615 
PNAS 3041, 1382 2888, 1402 5929, 2784 
Total papers 10137, 5837 10196, 6043 20333, 11880 
 
 

 
Figure 8 - Grouping of documents for categorization subtasks. 
 
 
The evaluation measure for the triage task was the 
utility measure often applied in text categorization 
research and used by the former TREC Filtering 
Track.  This measure contains coefficients for the 
utility of retrieving a relevant and retrieving a 
nonrelevant document.  We used a version that was 
normalized by the best possible score: 
 Unorm = Uraw / Umax 
where Unorm was the normalized score, Uraw the raw 
score, and Umax the best possible score. 
 
The coefficients for the utility measure were derived 
as follows.  For a test collection of documents to 
categorize, Uraw is calculated as: 
Uraw = (ur * relevant-docs-retrieved) + (unr * 
nonrelevant-docs-retrieved)  
where: 

• ur = relative utility of relevant document 
• unr = relative utility of nonrelevant document 

 

We used values for ur and unr that were driven by 
boundary cases for different results.  In particular, we 
wanted (thought it was important) the measure to 
have the following characteristics: 

• Completely perfect prediction - Unorm = 1 
• All documents designated positive (triage 

everything) - 1 > Unorm > 0 
• All documents designated negative (triage 

nothing) - Unorm = 0 
• Completely imperfect prediction - Unorm  < 0 

 
In order to achieve the above boundary cases, we had 
to set ur > 1.  The ideal approach would have been to 
interview MGI curators and use decision-theoretic 
approaches to determine their utility.  However, time 
constraints did not allow this.  Deciding that the 
triage-everything approach should have a higher 
score than the triage-nothing approach, we estimated 
that a Unorm in the range of 0.25-0.3 for the triage-
everything condition would be appropriate.  Solving 



for the above boundary cases with Unorm ~ 0.25-0.3 
for that case, we obtained a value for ur ~ 20.  To 
keep calculations simple, we choose a value of ur = 
20.  Table 5 shows the value of Unorm for the 
boundary cases. 
 
The measure Umax was calculated by assuming all 
relevant documents were retrieved and no 
nonrelevant documents were retrieved, i.e., Umax = ur 
* all-relevant-docs-retrieved. 
 
Thus, for the training data,  
 Uraw = (20 * relevant-docs-retrieved) - 
nonrelevant-docs-retrieved 
 Umax =  20 * 375 = 7500 
 Unorm = [(20 * relevant-docs-retrieved) - 
nonrelevant-docs-retrieved] / 7500 
 
Likewise, for the test data,  
 Uraw = (20 * relevant-docs-retrieved) - 
nonrelevant-docs-retrieved 
 Umax =  20 * 420 = 8400 
 Unorm = [(20 * relevant-docs-retrieved) - 
nonrelevant-docs-retrieved] / 8400 
 
The results of the triage subtask are shown in Table 
6.  A variety of groups used classifiers based on 
machine learning techniques.  The higher scoring 
runs tended to make use of MeSH terms in some 
fashion.  The best performing run came from Rutgers 
University, using the MEDLINE record, weighting, 
and filtering by the MeSH term Mice [16].  They 
achieved a Unorm of 0.6512.  However, this group also 
noted that the MeSH term Mice alone scored better 
than all but the single top run, with a Unorm of 0.6404.  
This meant that no other approach was better able to 
classify documents for triage than simply using the 
MeSH term Mice from the MEDLINE record.  Of 
course, this run only achieved a recall of about 15% 
(with a recall of 89%), so this feature is far from a 
perfect predictor.  In an another analysis of the data, 
Cohen noted that there was conceptual drift across 
the collection, with the features identified as strong 
predictors in the training data not necessarily 
continuing to be strong predictors in the test data 
[12].  All of the triage subtask results are shown 
graphically in Figure 9, along with the utility for the 
MeSH term Mice and the decision to select all 
articles. 
 
4.3  Annotation Subtask 
 
The primary goal of this task was, given an article 
and gene name, to correctly identify which of the GO 
hierarchies (also called domains) had terms within 
them that were annotated by the MGI curators.  Note 

that the goal of this task was not to select the actual 
GO term, but rather to select the one or more GO 
hierarchies (molecular function, biological process, 
or cellular component) from which terms had been 
selected to annotate the gene for the article.  Papers 
that were annotated had terms from one to three 
hierarchies. 
 
For negative examples, we used 555 papers that had a 
gene name assigned but were used for other purposes 
by MGI.  As such, these papers had no GO 
annotations.  These papers did, however, have one or 
more gene assigned by MGI for the other annotation 
purposes. 
 
A secondary subtask was to identify the correct GO 
evidence code that went with the hierarchy code.  
Only two groups took part in this subtask. 
 
Table 7 shows the contents and counts of the data 
files for this subtask.  For the training data, there 
were a total of 504 documents that were either 
positive (one or more GO terms assigned) or negative 
(no GO terms assigned) examples.  From these 
documents, a total of 1291 genes had been assigned 
by MGI.  (The Genes file contained the MGI 
identifier, the gene symbol, and the gene name.  It did 
not contain any other synonyms.)  There were 1418 
unique possible document-gene pairs in the training 
data.  The data from the first three rows of Table 7 
differ from the rest in that they contained data 
merged from positive and negative examples.  These 
were what would be used as input for systems to 
nominate GO domains or the GO domains plus their 
evidence codes per the annotation task.  When the 
test data were released, these three files were the only 
ones that were provided. 
 
For the positive examples in the training data, there 
were 178 documents and 346 document-gene pairs.  
There were 589 document-gene name-GO domain 
tuples (out of a possible 346 * 3 = 1038).  There were 
640 document-gene name-GO domain-evidence code 
tuples.  A total of 872 GO plus evidence codes had 
been assigned to these documents.  For the negative 
examples, there were 326 documents and 1072 
document-gene pairs.  This meant that systems could 
possibly assign 1072*3 = 3216 document-gene name-
GO domain tuples. 
 



Table 5 - Boundary cases for utility measure of triage task for training and test data. 
 
Situation Unorm - Training Unorm - Test 
Completely perfect prediction 1.0 1.0 
Triage everything 0.27 0.33 
Triage nothing 0 0 
Completely imperfect prediction -0.73 -0.67 
 
 
 

Figure 9 - Triage subtask runs sorted by Unorm score.  The Unorm for the MeSH term Mice as well as for selecting all 
articles as positive is shown. 
 
 
 
The evaluation measures for the annotation subtasks 
were based on the notion of identifying tuples of 
data.  Given the article and gene, systems designated 
one or both of the following tuples: 

• <article, gene, GO hierarchy code>  
• <article, gene, GO hierarchy code, evidence 

code>  
 
We employed a global recall, precision, and F 
measure evaluation measure for each subtask: 
 Recall = number of tuples correctly 
identified / number of correct tuples 
 Precision = number of tuples correctly 
identified / number of tuples identified 
 F = (2 * recall * precision) / (recall + 
precision) 

For the training data, the number of correct <article, 
gene, GO hierarchy code> tuples was 589, while the 
number of correct <article, gene, GO hierarchy code, 
evidence code> tuples was 640. 
 
The annotation hierarchy subtask results are shown in 
Table 8, while the annotation hierarchy subtask plus 
evidence code results are shown in Table 9.  As noted 
above, the primary evaluation measure for this task 
was the F-score.  Due to their only being a single 
measure per run, we were unable to perform 
comparative statistics.  Figure 10 shows the 
annotation hierarchy subtask results graphically. 
 



 
Table 6 - Triage subtask runs, sorted by utility. 
 
Run Group (reference) Precision Recall F-score Utility 
dimacsTfl9d rutgers.dayanik [16] 0.1579 0.8881 0.2681 0.6512 
dimacsTl9mhg rutgers.dayanik [16] 0.1514 0.8952 0.259 0.6443 
dimacsTfl9w rutgers.dayanik [16] 0.1553 0.8833 0.2642 0.6431 
dimacsTl9md rutgers.dayanik [16] 0.173 0.7952 0.2841 0.6051 
pllsgen4t3 patolis.fujita [7] 0.149 0.769 0.2496 0.5494 
pllsgen4t4 patolis.fujita [7] 0.1259 0.831 0.2186 0.5424 
pllsgen4t2 patolis.fujita [7] 0.1618 0.7238 0.2645 0.5363 
pllsgen4t5 patolis.fujita [7] 0.174 0.6976 0.2785 0.532 
pllsgen4t1 patolis.fujita [7] 0.1694 0.7024 0.273 0.5302 
GUCwdply2000 german.u.cairo [18] 0.151 0.719 0.2496 0.5169 
KoikeyaTri1 u.tokyo (none) 0.0938 0.9643 0.171 0.4986 
OHSUVP ohsu.hersh [12] 0.1714 0.6571 0.2719 0.4983 
KoikeyaTri3 u.tokyo (none) 0.0955 0.9452 0.1734 0.4974 
KoikeyaTri2 u.tokyo (none) 0.0913 0.9738 0.167 0.4893 
NLMT2SVM nlm.umd.ul [15] 0.1286 0.7333 0.2188 0.4849 
dimacsTl9w rutgers.dayanik [16] 0.1456 0.6643 0.2389 0.4694 
nusbird2004c mlg.nus [33] 0.1731 0.5833 0.267 0.444 
lgct1 indiana.u.seki [13] 0.1118 0.7214 0.1935 0.4348 
OHSUNBAYES ohsu.hersh [12] 0.129 0.6548 0.2155 0.4337 
NLMT2BAYES nlm.umd.ul [15] 0.0902 0.869 0.1635 0.4308 
THIRcat04 tsinghua.ma [9] 0.0908 0.7881 0.1628 0.3935 
GUClin1700 german.u.cairo [18] 0.1382 0.5595 0.2217 0.3851 
NLMT22 nlm.umd.ul [15] 0.1986 0.481 0.2811 0.3839 
NTU2v3N1 ntu.chen [34] 0.1003 0.6905 0.1752 0.381 
NLMT21 nlm.umd.ul [15] 0.195 0.4643 0.2746 0.3685 
GUCply1700 german.u.cairo [18] 0.1324 0.5357 0.2123 0.3601 
NTU3v3N1 ntu.chen [34] 0.0953 0.6857 0.1673 0.3601 
NLMT2ADA nlm.umd.ul [15] 0.0713 0.9881 0.133 0.3448 
lgct2 indiana.u.seki [13] 0.1086 0.581 0.183 0.3426 
GUClin1260 german.u.cairo [18] 0.1563 0.469 0.2345 0.3425 
THIRcat01 tsinghua.ma [9] 0.1021 0.6024 0.1746 0.3375 
NTU4v3N1416 ntu.chen [34] 0.0948 0.6357 0.165 0.3323 
THIRcat02 tsinghua.ma [9] 0.1033 0.5571 0.1743 0.3154 
biotext1trge u.cberkeley.hearst [14] 0.0831 0.7 0.1486 0.3139 
GUCply1260 german.u.cairo [18] 0.1444 0.4333 0.2167 0.305 
OHSUSVMJ20 ohsu.hersh [12] 0.2309 0.3524 0.279 0.2937 
biotext2trge u.cberkeley.hearst [14] 0.095 0.5548 0.1622 0.2905 
THIRcat03 tsinghua.ma [9] 0.0914 0.55 0.1567 0.2765 
THIRcat05 tsinghua.ma [9] 0.1082 0.4167 0.1718 0.245 
biotext3trge u.cberkeley.hearst [14] 0.1096 0.4024 0.1723 0.2389 
nusbird2004a mlg.nus [33] 0.1373 0.3357 0.1949 0.2302 
nusbird2004d mlg.nus [33] 0.1349 0.2881 0.1838 0.1957 
nusbird2004b mlg.nus [33] 0.1163 0.3 0.1677 0.1861 
eres2 u.edinburgh.sinclair [32] 0.1647 0.231 0.1923 0.1724 
biotext4trge u.cberkeley.hearst [14] 0.1271 0.2571 0.1701 0.1688 
emet2 u.edinburgh.sinclair [32] 0.1847 0.2071 0.1953 0.1614 
epub2 u.edinburgh.sinclair [32] 0.1729 0.2095 0.1895 0.1594 
nusbird2004e mlg.nus [33] 0.136 0.231 0.1712 0.1576 
geneteam3 u.hospital.geneva [35] 0.1829 0.1833 0.1831 0.1424 
edis2 u.edinburgh.sinclair [32] 0.1602 0.1857 0.172 0.137 
wdtriage1 indiana.u.yang [27] 0.202 0.1476 0.1706 0.1185 
eint2 u.edinburgh.sinclair [32] 0.1538 0.1619 0.1578 0.1174 
NTU3v3N1c2 ntu.chen [34] 0.1553 0.1357 0.1449 0.0988 
geneteam1 u.hospital.geneva [35] 0.1333 0.1333 0.1333 0.09 
geneteam2 u.hospital.geneva [35] 0.1333 0.1333 0.1333 0.09 
biotext5trge u.cberkeley.hearst [14] 0.1192 0.1214 0.1203 0.0765 
TRICSUSM u.sanmarcos [31] 0.0792 0.1762 0.1093 0.0738 
IBMIRLver1 ibm.india (none) 0.2053 0.0738 0.1086 0.0595 
EMCTNOT1 tno.kraaij [19] 0.2 0.0143 0.0267 0.0114 
Mean  0.1381 0.5194 0.1946 0.3303 
MeSH Mice rutgers.dayanik [16] 0.1502 0.8929 0.2572 0.6404 
 



Table 7 - Data file contents and counts for annotation hierarchy subtasks. 
 
File contents Training data 

count 
Test data 

count 
Documents - PMIDs 504 378 
Genes - Gene symbol, MGI identifier, and gene name for all used 1294 777 
Document gene pairs - PMID-gene pairs 1418 877 
Positive examples - PMIDs 178 149 
Positive examples - PMID-gene pairs 346 295 
Positive examples - PMID-gene-domain tuples 589 495 
Positive examples - PMID-gene-domain-evidence tuples 640 522 
Positive examples - all PMID-gene-GO-evidence tuples 872 693 
Negative examples - PMIDs 326 229 
Negative examples - PMID-gene pairs 1072 582 
 
Table 8 - Annotation hierarchy subtask, sorted by F-score. 
 
Run Group (reference) Precision Recall F-score 
lgcad1 indiana.u.seki [13] 0.4415 0.7697 0.5611 
lgcad2 indiana.u.seki [13] 0.4275 0.7859 0.5537 
wiscWRT u.wisconsin [17] 0.4386 0.6202 0.5138 
wiscWT u.wisconsin [17] 0.4218 0.6263 0.5041 
dimacsAg3mh rutgers.dayanik [16] 0.5344 0.4545 0.4913 
NLMA1 nlm.umd.ul [15] 0.4306 0.5515 0.4836 
wiscWR u.wisconsin [17] 0.4255 0.5596 0.4834 
NLMA2 nlm.umd.ul [15] 0.427 0.5374 0.4758 
wiscW u.wisconsin [17] 0.3935 0.5596 0.4621 
KoikeyaHi1 u.tokyo (none) 0.3178 0.7293 0.4427 
iowarun3 u.iowa [23] 0.3207 0.6 0.418 
iowarun1 u.iowa [23] 0.3371 0.5434 0.4161 
iowarun2 u.iowa [23] 0.3812 0.4505 0.413 
BIOTEXT22 u.cberkeley.hearst [14] 0.2708 0.796 0.4041 
BIOTEXT21 u.cberkeley.hearst [14] 0.2658 0.8141 0.4008 
dimacsAl3w rutgers.dayanik [16] 0.5015 0.3273 0.3961 
GUCsvm0 german.u.cairo [18] 0.2372 0.7414 0.3595 
GUCir50 german.u.cairo [18] 0.2303 0.8081 0.3584 
geneteamA5 u.hospital.geneva [35] 0.2274 0.7859 0.3527 
GUCir30 german.u.cairo [18] 0.2212 0.8404 0.3502 
geneteamA4 u.hospital.geneva [35] 0.209 0.9354 0.3417 
BIOTEXT24 u.cberkeley.hearst [14] 0.4452 0.2707 0.3367 
GUCsvm5 german.u.cairo [18] 0.2052 0.9354 0.3366 
cuhkrun3 chinese.u.hongkong (none) 0.4174 0.2808 0.3357 
geneteamA2 u.hospital.geneva [35] 0.2025 0.9535 0.334 
dimacsAabsw1 rutgers.dayanik [16] 0.5979 0.2283 0.3304 
BIOTEXT23 u.cberkeley.hearst [14] 0.4437 0.2626 0.3299 
geneteamA1 u.hospital.geneva [35] 0.1948 0.9778 0.3248 
geneteamA3 u.hospital.geneva [35] 0.1938 0.9798 0.3235 
GUCbase german.u.cairo [18] 0.1881 1 0.3167 
BIOTEXT25 u.cberkeley.hearst [14] 0.4181 0.2525 0.3149 
cuhkrun2 chinese.u.hongkong (none) 0.4385 0.2303 0.302 
cuhkrun1 chinese.u.hongkong (none) 0.4431 0.2283 0.3013 
dimacsAp5w5 rutgers.dayanik [16] 0.5424 0.1939 0.2857 
dimacsAw20w5 rutgers.dayanik [16] 0.6014 0.1677 0.2622 
iowarun4 u.iowa [23] 0.1692 0.1333 0.1492 
Mean  0.3600 0.5814 0.3824 



 
Table 9 - Annotation hierarchy plus evidence code subtask, sorted by F-score. 
 
Tag Group (reference) Precision Recall F-score 
lgcab2 indiana.u.seki [13] 0.3238 0.6073 0.4224 
lgcab1 indiana.u.seki [13] 0.3413 0.4923 0.4031 
KoikeyaHiev1 u.tokyo (none) 0.2025 0.4406 0.2774 
Mean  0.2892 0.5134 0.3676 
 

 
Figure 10 - Annotation hierarchy subtask results sorted by F-score. 
 
 
In the annotation hierarchy subtask, the runs varied 
widely in recall and precision.  The best runs, i.e., 
those with the highest F-scores, had medium levels of 
recall and precision.  The top run came from Indiana 
University and used a variety of approaches, 
including a k-nearest neighbor model, mapping terms 
to MeSH, using keyword and glossary fields of 
documents, and recognizing gene names [13].  
Further post-submission runs raised their F-score to 
0.639.  Across a number of groups, benefit was found 
from matching gene names appropriately.  University 
of Wisconsin also found identifying gene names in 
sentences and modeling features in those sentences 
provided value [17]. 
 
5.  Discussion 
 
The TREC 2004 Genomics Track was very 
successful, with a great deal of enthusiastic 

participation.  In all of the tasks, a diversity of 
approaches were used, resulting in wide variation 
across the results.  Trying to discern the relative 
value of them is challenging, since few groups 
performed parameterized experiments or used 
common baselines. 
 
In the ad hoc retrieval task, the best approaches 
employed techniques known to be effective in non-
biomedical TREC tasks.  These included Okapi 
weighting, blind relevance feedback, and language 
modeling.  However, some domain-specific 
approaches appeared to be beneficial, such as 
expanding queries with synonyms from controlled 
vocabularies that are widely available.  There also 
appeared to be some benefit for boosting parts of the 
queries.  However, it was also easy for many groups 
to do detrimental things, as evidenced by the OHSU 
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run of a TF*IDF system “out of the box” that scored 
well above the median. 
 
The triage subtask was limited by the fact that using 
the MeSH term Mice assigned by the MEDLINE 
indexers was a better predictor of the MGI triage 
decision than anything else, including the complex 
feature extraction and machine learning algorithms of 
many participating groups.  Some expressed concern 
that MGI might give preference to basing annotation 
decisions on maximizing coverage of genes instead 
of exhaustively cataloging the literature, something 
that would be useful for users of its system but 
compromise the value of its data in tasks like 
automated article triage.  We were assured by the 
MGI director (J. Blake, personal communication) that 
the initial triage decision for an article was made 
independent of the prior coverage of gene, even 
though priority decisions made later in the pipeline 
did take coverage into account.  As such, the triage 
decision upon which our data were based was sound 
from the standpoint of document classification.  The 
annotation decision was also not effected by this 
since the positive and negative are not exhaustive 
(and do not need to be) for this subtask. 
 
Another concern about the MGI data was whether the 
snapshot obtained in mid-2004 was significantly 
updated by the time the track was completed.  This 
was analyzed in early 2005, and it was indeed found 
that the number of PMIDs in the triage subtask had 
increased in size by about 10%, with a very small 
number now negatively triaged.  While this change is 
unlikely to have major impact on results, an updated 
data set will be released in early 2005. 
 
But the remaining question for the triage subtask is 
why systems were unable to outperform the MeSH 
term Mice.  It should be noted that this term was far 
from perfect, achieving a recall of 89% but a 
precision of only 15%.  So why cannot more 
elaborate systems outperform this?  There are a 
variety of explanations: 

• MGI data is problematic - while MGI does 
some internal quality checking, they do not 
carry it out at the level that research groups 
would, e.g., with kappa scores 

• Our algorithms and systems are imperfect - 
we do not know or there do not exist better 
predictive features 

• Our metrics may be problematic - is the 
factor = 20 in the utility formula 
appropriate? 

We believe that the triage subtask data represents an 
important task (i.e., document triage is valuable in a 
variety of biomedical settings, such as discerning the 

best evidence in clinical studies) and that these data 
provide the substrate for work to continue in this 
area. 
 
The annotation hierarchy task had lower 
participation, and the value of picking the correct 
hierarchy is unclear.  However, there would be great 
value to systems that could perform automated GO 
annotation, even though the task is very challenging 
[2].  These results demonstrated a value identifying 
gene names and other controlled vocabulary terms in 
documents for this task. 
 
The TREC Genomics Track will be continuing in 
2005.  In addition, the data for the 2004 track will be 
released to the general community for continued 
experimentation.  The categorization task data will be 
updated before its release, and both the old and new 
data will be made available.  We hope that all of this 
will continue to facilitate in IR in the genomics 
domain. 
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