
Task-Specific Query Expansion
(MultiText Experiments for TREC 2003)

David L. Yeung Charles L. A. Clarke Gordon V. Cormack Thomas R. Lynam Egidio L. Terra

School of Computer Science, University of Waterloo, Canada
mt@plg.uwaterloo.ca

I. INTRODUCTION

For TREC 2003 the MultiText Project focused its efforts on
the Genomics and Robust tracks. We also submitted passage-
retrieval runs for the QA track. For the Genomics Track
primary task, we used an amalgamation of retrieval and
query expansion techniques, including tiering, term re-writing
and pseudo-relevance feedback. For the Robust Track, we
examined the impact of pseudo-relevance feedback on retrieval
effectiveness under the new robustness measures.

All of our TREC runs were generated by the MultiText
System, a collection of tools and techniques for information
retrieval, question answering and structured text search. The
MultiText Project at the University of Waterloo has been
developing this system since 1993 and has participated in
TREC annually since TREC-4 in 1995.

In the next section, we briefly review the retrieval methods
used in our TREC 2003 runs. Depending on the track, various
combinations of these methods were used to generate our
runs. The remaining sections describe our activities for the
individual tracks, with the bulk of the report covering our
Genomics Track results.

II. RETRIEVAL METHODS

The MultiText System implements a variety of retrieval
methods, three of which were used in our TREC 2003 ex-
periments:

1) Shortest Substring Ranking (SSR), a ranked retrieval
method for extended boolean queries [1];

2) Qap, a passage-retrieval technique originally developed
for question answering [3], [4];

3) Okapi BM25 [8].
Our Genomics runs use a combination of SSR and Okapi
methods, generating and executing a number of different term
sets and boolean queries, and merging the results to produce
a final ranked document set. Our Robust runs use Qap to
generate passages for pseudo-relevance feedback and Okapi
to evaluate the expanded queries. For our QA track runs, 250-
byte answer passages are selected from passages generated by
Qap.

In the next few sections, we provide brief overviews of the
retrieval methods. Please consult the associated references if
further details are required.

A. Shortest Substring Ranking

The MultiText project has used variants of the SSR al-
gorithm in TREC experiments since TREC-4 in 1995. The
SSR algorithm operates by locating passages that satisfy a
boolean query. A passage may consist of any substring of any
document in the target corpus. The algorithm identifies all
document substrings that satisfy the query and do not contain
shorter substrings that also satisfy the query. This shortest
substring rule serves to limit the number of passages that must
be considered by the SSR algorithm. For ranking purposes, a
document’s score is computed from the lengths of the passages
contained within it.

For example, along with other queries, our system generates
the following query for Genomics topic 23:

“c gamma” ˆ (“phospholipase”
�

“phospholipases”)

where the
�

symbol represents boolean OR and the ˆ symbol
represents boolean AND. Since the algorithm locates the
shortest substrings that satisfy the query, a passage located by
the algorithm will begin (or end) with the phrase “c gamma”
and end (or begin) with one of the words “phospholipase” or
“phospholipases”. None of these terms will appear elsewhere
in the passage, since otherwise the passage would contain a
shorter substring that also satisfies the query.

In some cases, structural constraints are applied to the query.
For example, the query:

(“ � NameOfSubstance � ”..“ � /NameOfSubstance � ”) � “cip1”

identifies instances of the NameOfSubstance field that contain
the term “cip1”, where the � symbol is used to express the
CONTAINS relationship.

Assume that document � contains passages �����	��
�������	��� ,
sorted by increasing length, with each passage satisfying the
query under the shortest substring rule. We compute a score
for � that rewards shorter passages and documents that contain
more passages. For a passage � define:

��� �����
� ������ � if ! � ���#"%$&

if ! � ���#'%$ (1)

where ! � �(� is the length of � as measured by the number
of alphanumeric tokens it contains. For any passage � , we

have �(� ��� �(� ' &
. The score for � is then computed by the

formula: �� � ��� � � � � ��� (2)

For our TREC 2003 experiments we use the parameters $ �&	�
and
 ��� � .

SSR is most valuable when a boolean query matches a large
number of documents. However, in many cases, a boolean
query matches few or no documents. To address this case, we
often generate tiers of boolean queries, with earlier tiers pro-
viding higher precision and later tiers providing higher recall.
The tiers are executed in order, with the documents generated
by earlier tiers ranked before the documents generated by later
tiers. Once a document is generated by a tier, it is eliminated
from later tiers. Section III-B describes the tiered boolean
queries used in our Genomics Track runs.

A complete discussion and analysis of the SSR algorithm
may be found in Clarke and Cormack [1]. That paper also
provides an efficient algorithm to implement SSR.

B. Passage Retrieval

The Qap passage retrieval algorithm is related to the SSR
algorithm, in that it may return any substring of any document.
The algorithm locates “hotspots” within the corpus where
query terms cluster in close proximity. The score of a hotspot
is based on its length and the weights of the terms occurring
within it. A hotspot is usually less than 50 words in length,
but may be longer. It may start or end at any word and is not
constrained by sentence or paragraph boundaries. At most one
hotspot is selected from a document, since additional hotspots
from the same document may not exhibit the independence
properties assumed by our feedback and QA methods.

Given a query � , document substring � , and a term set��� � , we compute a score for � as follows:������������ ��� �"! � �$#&% � % ���"� � ! � � � � (3)

where
! � is the total number of times ' appears in the corpus

and
�

is the total length of all documents in the corpus. In
effect, the Qap algorithm considers every substring of every
document in the corpus and locates the (substrings with
the highest score. Details of the Qap algorithm, its efficient
implementation and its application to question answering may
be found in Clarke et al. [4].

C. Okapi

Our implementation of Okapi BM25 follows the description
of Robertson et al. [8] with standard parameters:) � � & * ,+ �,� -�� ,)
 �.� ,)�/ �,0 . Specifically, given a term set � ,
a document � is assigned the score����"132 � � ��4 � �) � � & � � �5 � � � (4)

where

2 � � � � ���"� 687 # 7 � � � �7 � � � � 97 � number of documents in the corpus7 � � number of documents containing '4 � � frequency that ' occurs in the topic

� � � frequency that ' occurs in �5 �) � � � & # + � � +;: !=< � ! avg �
! < � length of �
! avg � average document length

As an extension, our implementation of BM25 allows
phrases (and extended boolean queries) to be used as query
terms, a facility used in our Genomic runs to allow multi-
token gene names and bigrams extracted from gene names to
be treated as individual terms.

III. GENOMICS TRACK - METHODOLOGY

For the Genomics track we experimented with a number of
different retrieval, feedback and fusion techniques. The follow-
ing sections describe the various aspects of the experimental
methodology. Analysis of the results obtained from the training
data is found in the Section IV. Section V discusses the results
of our official TREC test runs.

In Section III-A, we investigate the effects of query formula-
tion using the Okapi retrieval model. Section III-B deals with
our experiments on using tiers of boolean queries to match
against the metadata fields in the MEDLINE records. Then,
in Section III-C, we explore the idea of merging the document
sets retrieved by Okapi and the query tiering techniques.
We describe the use of query expansion and feedback in
Section III-D. In Section IV, we assemble the techniques into
complete runs.

A. Okapi Query Formulation for the Genomics Track

Two important facts were discovered in preliminary experi-
ments which influenced the design of the Okapi experiments.
First, the gene name type did not seem to matter. A document
discussing a particular gene was as likely to use an official
name as an alternate one. Second, spacing and punctuation had
a large effect on performance in some cases. The gene name
in the original LocusLink-derived query may differ from the
gene or protein name as it actually appears in the corpus only
by the addition or removal of spaces or dashes. In a model
based on term sets, such as Okapi, these slight variations may
significantly affect the results.

We investigated the effects of query formulation on IR in the
Genomics domain by generating multiple term sets from the
original query, and comparing the effects of using these term
sets to retrieve documents using the Okapi retrieval model.
The three rules used to generate the term sets were:

� Okapi 1: Each gene name in the original query, which
may consist of multiple alphanumeric tokens, is consid-
ered as a phrase and treated as a single term, the only
change being the removal of punctuation.

� Okapi 2: Heuristics were used to split up gene names
containing semi-colons, commas, and brackets. Heuristics
were also used to guess “plurals” for some of the terms.

� Okapi 3: First, the gene names were separated into
two sets, one containing those gene names which were
comprised of a single token, and another containing gene
names which were comprised of multiple tokens. The
Okapi term set was created from these two sets by
first concatenating all pairs of single-token gene names
together, and adding all the token-bigrams from the
multiple-token gene names.

The name of the species was also included in each of
the term vectors. The three rules are in decreasing order
of strictness. Documents retrieved by Okapi 1 will contain
the terms exactly as given in the original query (ignoring
punctuation), while those retrieved by Okapi 2 will contain
terms which are similar to but not exactly like those in the
original query. Documents retrieved by Okapi 3 contain the
same bigrams as found in the original query.

Each query formulation has its own advantages and disad-
vantages. The top documents returned by Okapi 1 are likely
to be relevant, since they contain the query exactly, but many
relevant documents may be missed because the gene name
in the document appears differently than in the query. On
the other hand, Okapi 3 retrieves many relevant documents
in which the gene name does not appear exactly as in the
query. However, it also retrieves many documents that are not
relevant. The documents retrieved by Okapi 2 are intermediate
between the two.

We found that the document sets retrieved using the term
vectors generated by the three rules were quite different.
Therefore, it was decided that the document sets produced
by Okapi 1, Okapi 2, and Okapi 3 would be fused together.
The fusion was accomplished in the following manner:

� Okapi Fusion: The document sets retrieved by Okapi
1, Okapi 2, and Okapi 3 are combined by taking the
intersection of the three result sets. A document’s score
is taken to be the product of the three scores. This list
is then followed by the remainder of Okapi 3, with the
scores appropriately scaled.

The rationale behind the fusion is that a document that
scores highly on all three query formulations is very likely to
be relevant. Taking the product of the scores allows each of the
three document sets to vote on the relative distance between
similarity values equally. Since Okapi 3 is the most relaxed
of the three query formulations, it retrieves most if not all of
the relevant documents retrieved by Okapi 1 and 2. Thus, the
intersection of the three document sets likely contains most of
the relevant documents in the document sets returned by Okapi
1 and 2, while it might miss relevant documents retrieved
by Okapi 3. For that reason, the remainder of the Okapi 3

document set is appended to the end of the combined list.
While there are other fusion techniques, the above seemed

to work very well in preliminary trials, and thus was the only
technique used in the final completed runs. The performance
of Okapi 1 is considered to be the baseline for comparison
purposes in the rest of this report.

B. Boolean Query Formulation for the Genomics Track

Preliminary experiments showed that there was a correlation
between some of the metadata fields in the MEDLINE record
and the relevance of the document. In particular, there was a
strong correspondence between the query terms and the terms
that appeared in the RN (registry number) field of the MED-
LINE record. The RN field contains a list of the chemicals
discussed in the document. Many of these chemical names
can be matched to the gene names found in the query. The
chemical list is a better indicator of a document’s relevance
than the document’s title, which in turn is a better indicator
than the abstract. To capture this hierarchical structure among
the metadata fields, we experimented with using a number of
query tiers. The final tiering system had the following tiers,
in decreasing order of relevance:

1) Tier 1: The gene name is found in the chemical list, or
it is found in the chemical list preceded or followed by
the word “protein”, optionally followed by the name or
description of the species. Spaces and punctuation are
ignored for the purposes of comparison. (From training
topic 5, “glycine receptor, alpha 1” is considered to be
equivalent to “glycine receptor alpha1”.)

2) Tier 2: This tier is similar to Tier 1, except that the
chemical name is allowed to have additional terms.
(From training topic 11, “RAC1” retrieves documents
in which “rac1 GTP-Binding Protein” appears in the
chemical list.)

3) Tier 3: An attempt is made to find the conjunction of
the terms from the gene name in the chemical list. If
the gene name consists of a class name followed by a
sequence of letters and numbers that specifies an object
of that class, the name is successively weakened until
a match is made. A set of heuristics are also used to
recognize plurals. (From training topic 32, “estrogen
receptor 1” is weakened until the documents retrieved
contain “Receptors, Estrogen” in the chemical list.)

4) Tier 4: The query is converted into a boolean expression
by turning each gene name into the conjunction of its
terms, and taking the disjunction of all gene names. The
boolean expression is applied to the title.

5) Tier 5: The boolean expression is applied to the chemical
list.

6) Tier 6: The boolean expression is applied to the abstract.
In addition, the documents are restricted to those in which

the name of the species appears in the MeSH (Medical Subject
Heading) metadata field. This does not completely eliminate
documents which are not relevant to the species, since it is
possible for the name of the species to appear in the MeSH
field even if the focus of the paper is another species. It is quite

common for an article about a gene in one species to mention
a homologue in a related species. Nevertheless, if the name
of the wanted species does not appear in the MeSH heading,
then the article is (almost certainly) not relevant. Thus, using
species data in the MeSH metadata field may result in false
positives but not (or rarely) in false negatives.

Based on the query tiering model described above, we tested
three different ways of retrieving documents:

� All Tiers: Retrieve documents from all the tiers. Doc-
uments retrieved by each tier are ranked ahead of all
documents retrieved by the next tier. A document that
is retrieved in more than one tier is counted towards only
its highest tier.

� Best Tier: Retrieve the documents in the first tier that
contains a non-zero number of documents. Subsequent
tiers are ignored.

� Exact: Retrieve only documents in Tier 1. No documents
are retrieved if there are no documents in Tier 1.

Note that for some topics, the above techniques may return
zero documents. For that reason, the complete runs described
in Section IV supplement the document sets retrieved by the
tiering techniques with documents retrieved using the Okapi
methods.

While the query tiers have a significant effect on perfor-
mance, further improvement is possible by using fusion and
feedback.

C. Genomics Track Fusion

Since the Okapi and tiering experiments retrieved different
document sets, we explored merging the results of the two
techniques. We tried two different methods of combining
the two document sets returned from Okapi and the tiering
technique:

� Interweave: The two document sets are combined by
taking one document from each set successively.

� Rank Fusion: First, documents which were retrieved
by both methods are merged. The score assigned to a
document is a weighted sum of its (reverse) rank in each
document set. The combined documents are followed by
interweaving the remainder of the two document sets.

We also attempted other types of fusion, but these were the
only two which were completely implemented and tested due
to time constraints.

D. Genomics Track Feedback

As explained in Subsection III-B, the similarity of the
chemical list in the MEDLINE record to the query is a good
indicator of a document’s relevance. Because a gene name may
have many variants, however, it is not always possible to match
the gene name to an item in the chemical list even though one
of the chemicals may refer to that gene or its product.

One possible solution to this problem is to attempt to
recognize these name variants. That is not the approach we
took. Instead, we attempted to learn the variant name by using
feedback. If the gene name was matched in Tier 1 using the
tiering technique, then the chemical list in the top retrieved

Method Used Rel. & Ret. Avg. Precision R-Precision

Okapi 1 224 0.3273 0.3077
Okapi 2 245 0.3193 0.2917
Okapi 3 261 0.3157 0.2700

Okapi Fusion 261 0.3321 0.3173
AT 282 0.3819 0.3452
ATI 282 0.4394 0.3836

ATIF 289 0.4429 0.3844
ATR 284 0.4519 0.4324

ATRF 291 0.4598 0.4448
BT 279 0.4003 0.3818
BTI 279 0.4528 0.4236

BTIF 286 0.4812 0.4448
BTR 279 0.4452 0.4216

BTRF 286 0.4821 0.4579
Exact 277 0.3981 0.3820
ExactI 277 0.4246 0.3959

TABLE I

GENOMIC TRACK — SUMMARY OF RESULTS ON TRAINING DATA: 50

TOPICS, 1000 RETRIEVED PER QUERY, 335 TOTAL RELEVANT.

documents already contains the gene name, and so feedback
is unnecessary. Otherwise, we assume the top documents
retrieved to be relevant, and find the chemical that has the
highest correlation with these documents. The chemical names
in the top documents were assigned a score using the formula:

2 � � � � : 6 ���"� 6 � ! � 9 9 �
For a chemical � , �

�
is the number of times the chemical

name appears in the chemical list of the top documents,
! �

is
the number of times it appears in the corpus,

�
is the total

length of all documents in the corpus, and 2 � is the score
assigned to � . For our TREC 2003 experiments, we set � ��� .

The highest scoring chemical name is then used to retrieve
a set of documents containing that chemical name. The three
sets of documents retrieved by the Okapi Fusion, query tiers,
and feedback are then merged to produce the final document
set. The number of top documents assumed to be relevant and
the precise mechanism used to merge the final document sets
are discussed in the next subsection.

IV. GENOMICS TRACK - TRAINING RUNS

The parameters of the various runs were optimized for
the training data, using the supplied relevance judgments.
Thus, the performance of the IR system on the training data
is not necessarily reflective of its performance on the test
data, especially if the training and test data have different
characteristics. In particular, the relative performance of some
of the runs that relied on a single retrieval technique may
not be necessarily preserved. Nevertheless, the runs involving
fusion and feedback do seem to consistently outperform the
systems on which they are based. The parameters for these
runs were adjusted not only to maximize performance, but to
increase stability as well.

Following the TREC standard procedure, 1000 documents
were retrieved for each run. We attempted to test a large

Okapi 1

Okapi 2

Okapi 3

Okapi Fusion

Best Tier

FusionFeedback
Documents

Topic

Tier 1 empty?

Fig. 1. Flow diagram for the combined system of the BTRF run.

variety of techniques, but unfortunately many tests could not
be completed due to time constraints. The results for the runs
which we conducted on the training data are shown in Table
I. These were:

� Okapi 1, 2, 3, and Fusion: These are the document sets
retrieved by the procedure described in Section III-A.

� All Tiers (AT): This is the set of documents retrieved by
using the All Tiers method as described in Section III-B.
The documents retrieved by Okapi Fusion are appended
to the end.

� All Tiers Interweave-fusion (ATI): The set of documents
retrieved by All Tiers is interweaved with the document
set retrieved by Okapi Fusion.

� All Tiers Rank-fusion (ATR): The set of documents re-
trieved by All Tiers is merged with the Okapi Fusion
documents using the weighted rank fusion. It was exper-
imentally determined that good results can be obtained if
the Okapi rank was weighted 4 times as heavily as the
tiering rank.

� All Tiers Interweave/Rank-fusion with Feedback (ATIF,
ATRF): These are the same as ATI and ATR, respec-
tively, except that the feedback procedure described in
Section III-D and further elaborated below was used if
no documents were retrieved in Tier 1.

� Best Tier (BT, BTI, BTR, BTIF, BTRF): These are
analogous to the above, except that the query tiering
subsystem retrieved only documents from the first tier
with non-zero documents.

� Exact: Instead of all the tiers or the best tier, only Tier
1 was used to retrieve documents. The Okapi Fusion
document set was then appended to the end. (If no
documents were retrieved in Tier 1 for a topic, then the
final set of retrieved documents is just the set retrieved
by Okapi Fusion.)

� ExactI: The set of documents retrieved by Tier 1 is
interweaved with the Okapi Fusion set.

Figure 1 shows the combined system for the BTRF (Best
Tier, Rank-fusion, Feedback) run. The topic is sent to both
the Okapi and query tiers subsystems, each of which returns
a set of documents. If the first tier to retrieve a non-zero
number of documents is Tier 1, then the two document sets are
fused. Otherwise, a third set of documents is retrieved using
feedback, and the three sets of documents are fused. The other
runs follow a similar logic flow.

The performance of feedback is dependent on the number of

top documents used to determine the most relevant chemical
name, and on the type of fusion used to merge the three
document sets. These parameters are in turn dependent upon
the query tiering technique used. For the All Tiers technique,
it was determined that using the top 25–30 documents to
determine the most relevant chemical name produced the best
performance. (The value of 27 was used in the experiments.)
The three document sets are fused using rank fusion with equal
weights. For the Best Tier technique, the top 42 documents
were used, and the three document sets were merged using
weighted rank fusion with a weight of 5 for the query tiers
document set, 28 for the feedback document set, and 20 for the
Okapi Fusion document set. These numbers were determined
experimentally.

The reason for the difference between the feedback param-
eters of the AT and BT runs is that more of the top documents
retrieved by the Best Tier technique are relevant compared to
those retrieved by All Tiers. Since feedback is only used when
no documents are retrieved in Tier 1, the set of documents
retrieved using the top chemical name will be far more likely
to be relevant than the documents retrieved by the Best Tier,
and slightly more likely to be relevant than those retrieved by
Okapi.

As can be seen from Table I, the best average precision
belonged to the BTRF run, at 0.4821. This is a 47.3%
improvement over the baseline Okapi 1, which had an average
precision of 0.3273. The BTIF run had an average precision
of 0.4812, a 47.0% improvement, and the ATRF run had
an average precision of 0.4598, a 40.5% improvement. The
ATRF run retrieved 291 relevant documents, which was the
most relevant documents retrieved of all the runs. This is
slightly more than the 286 retrieved by BTRF and BTIF, and
significantly more than the 224 retrieved by the Okapi 1 run.

Some general trends are discernible from the numbers.
Feedback and fusion improved performance in every case,
and the systems with the best performance made use of
both. It isn’t clear which fusion method is better, since ATR
outperformed ATI, but BTI did better than BTR. However,
when fusion is used with feedback, the rank fusion method
outperformed the interweave fusion method in both cases.

There is a high level of correspondence between the meta-
data fields and the relevance of the documents. This is clear
from the fact that retrieval using query tiers based on the
information in the metadata fields outperformed the Okapi
runs, including the Okapi Fusion run. Before fusion and
feedback, the best technique that is based on query tiers is
BT, with an average precision of 0.4003, which is a 22%
improvement over Okapi 1. The Exact run had an average
precision of 0.3981, a 21% improvement, while the AT run
had an average precision of 0.3819, which close to 17% over
Okapi 1. Note that both Best Tier and Exact had a better
average precision than the All Tiers method. It appears that
once a match has been found in a tier, it was a better strategy to
append the Okapi Fusion list rather than documents from lower
tiers. The experimental results suggest that the performance of
the Okapi Fusion method was between that of Tier 1 and 2.

Topic Number of Documents Retrieved Matches in Best Tier
T1 T2 T3 T4 T5 T6

1 438 120 0 19 0 482 “cip1 protein”
2 6 13 38 4 0 28 “rna dependent atpase”, “protein p68”
3 19 31 0 5 0 43 “tel protein”
4 35 2 499 2 0 75 “keratinocyte growth factor”, “fibroblast growth factor 7 precursor”, “fibroblast growth factor 7”
5 16 0 23 0 0 6 “glycine receptor alpha1”
6 93 10 0 2 0 101 “hla dqb1”
7 56 3 44 0 0 39 “janus kinase 2”
8 – – – 8 0 50 ((“luteinizing”ˆ“hormone”ˆ“choriogonadotropin”ˆ“receptor”)+“lhcgr”+“lcgr”+“lhr”+

(“luteinizing”ˆ“hormone”ˆ“receptor”)+(“lutropin”ˆ“choriogonadotropin”ˆ“receptor”)+“lcgrs”+
“lhcgrs”+(“luteinizing”ˆ“choriogonadotropin”ˆ“receptor”)+“lgr2”+“lhrs”+(“lutropin”ˆ“receptor”)+
(“choriogonadotropin”ˆ“receptor”))

9 15 1 68 12 0 345 “growth inhibitory factor”
10 161 360 757 480 0 785 “protein c”
11 – 80 0 0 0 117 “rac1”
12 3 0 41 0 0 11 “tropomyosin 1”
13 3 0 3 7 0 163 “gpcr protein”, “frizzled 4 protein vertebrate”
14 – – – 10 0 408 ((“tyrosyl”ˆ“trna”ˆ“synthetase”)+“tyrrses”+“ytses”+“yts”+

(“tyrosyl”ˆ“trna”ˆ“ligase”)+“yars”+“tyrrs”+“yarses”+“yrses”+“yrs”)
15 11 1 0 13 0 109 “major vault protein”
16 4 0 80 0 0 0 “adrenergic receptor alpha 1d”, “adrenergic receptor alpha 1a”
17 – 10 0 0 0 0 “rhob”
18 213 0 205 2 0 73 “cpp32 protein”
19 6 0 0 0 0 6 “ctcf protein”
20 162 0 979 2 0 68 “fasl protein”
21 – – 1 2 0 44 (((“ig”)))
22 – – – 4 0 14 (“ihhs”+(“indian”ˆ“hedgehog”)+“ihh”)
23 – – 47 1 0 16 (((“phospholipase”+“phospholipases”))ˆ“c gamma”)
24 – – 3 0 0 0 (((“seven”+“sevens”)ˆ(“absentia”+“absentias”)))
25 – – – 3 0 112 (“dntts”+“tdt”+“dntt”+(“terminal”ˆ“deoxynucleotidyl”ˆ“transferase”)+

(“deoxynucleotidyltransferase”ˆ“terminal”)+“tdts”)
26 – – – 1 0 1 ((“rho”ˆ“related”ˆ“btb”ˆ“domain”ˆ“containing”ˆ“2”)+“rhobtb2”+“kiaa0717”+“dbc2”)
27 – – – – – 19 ((“cholinergic”ˆ“receptor”ˆ“muscarinic”ˆ“3”)+“chrm3”)
28 – 11 0 9 0 57 “egr1”, “ngfi”
29 19 1 0 0 0 8 “glucokinase”
30 2 0 40 0 0 1 “retinoic acid receptor gamma”
31 149 4 460 9 0 93 “neurokinin a”, “substance p”, “neuropeptide k”
32 – – 186 4 0 75 (((“estrogen”+“estrogens”)ˆ(“receptor”+“receptors”)))
33 – – 70 0 0 21 (((“guanylate”+“guanylates”)ˆ(“cyclase”+“cyclases”)))
34 20 1 0 0 0 2 “cocaine and amphetamine regulated transcript protein”
35 – – – – – – –
36 5 0 9 2 0 6 “hop protein”
37 1 0 0 0 0 1 “slob protein”
38 3 0 0 0 0 0 “eiger protein drosophila”
39 32 1 7 1 0 15 “cadherins”
40 6 0 0 3 0 2 “stat92e protein”
41 3 0 0 0 0 3 “ebony protein”
42 10 0 0 0 0 5 “crb protein drosophila”
43 – – 3 11 0 422 (((“calcineurin”+“calcineurins”)))
44 3 0 4 0 0 0 “gp73 protein”
45 5 1 3 2 0 5 “sh3px1 protein”, “wisp protein”
46 – 7 0 5 0 16 “hanks”, “ank”
47 2 0 0 0 0 0 “dda3 protein”
48 10 0 0 10 0 323 “artemis protein human”
49 – – 1000 67 0 947 (((“transcription”+“transcriptions”)ˆ(“factor”+“factors”)))
50 1 0 2 0 0 1 “pax 8 protein”

Total 32 4 8 4 0 1

TABLE II

GENOMIC TRACK — MATCHES IN THE QUERY TIERS FOR THE TRAINING TOPICS.

Topic Query Term/Phrase Feedback Chem. Name Ret. R.&R. MAP R-P MAP Fb. R-P Fb. Imp.

8 luteinizing hormone/ Receptors, LH 49 7 0.2917 0.4286 0.4305 0.4286 +47%
choriogonadotropin receptor

11 ras-related C3 botulinum rac1 GTP-Binding Protein 80 13 0.2302 0.4118 0.1977 0.1765 -14%
toxin substrate 1 (rho family,

small GTP binding protein Rac1)
14 tyrosyl-rRNA synthetase Tyrosine-rRNA Ligase 10 6 0.5872 0.5000 0.8238 0.6667 +40%
17 ras homolog B (RhoB) rhoB GTP-Binding Protein 6 2 0.3333 0.3333 0.3889 0.6667 +17%
21 immunoglobulin heavy chain 6 Immunoglobulins, mu-Chain 21 0 – – – – –

(heavy chain of IgM)
22 Indian hedgehog hedgehog protein, vertebrate 69 6 0.4703 0.5000 0.6723 0.5000 +43%
23 phospholipase C, gamma 1 phospholipase C gamma 47 9 0.6503 0.5556 0.5262 0.4444 -19%
24 seven in absentia 2 seven in absentia protein 3 2 1.0000 1.0000 1.0000 1.0000 0%
25 terminal deoxynucleotidyl transferase DNA Nucleotidylexotransferase 8 2 1.0000 1.0000 1.0000 1.0000 0%
26 Rho-related BTB domain QM protein, 0 0 1.0000 1.0000 1.0000 1.0000 0%

containing 2 Trypanosoma brucei
27 cholinergic receptor, muscarinic 3 Receptors, Muscarinic 153 2 0.0312 0.0000 0.0747 0.0000 +139%
28 Early growth response 1 Krox-24 protein 40 8 0.0258 0.1250 0.2523 0.1250 +878%
32 estrogen receptor 1 Receptors, Estrogen 163 11 0.1039 0.0909 0.1354 0.0000 +30%
33 guanylate cyclase 1, soluble, beta 3 Guanylate Cyclase 70 1 0.0774 0.0000 0.0569 0.0000 -26%
35 CG3599 Drosophila Proteins 638 0 – – – – –
43 Calcineurin B Calcineurin 3 1 0.5000 0.0000 1.0000 1.0000 +100%
46 ankylosis, progressive homolog ankylosis protein 5 3 0.1595 0.0000 0.7500 0.7500 +370%
49 transcription factor 23 Transcription Factors 1000 0 – – – – –

TABLE III

GENOMIC TRACK — ANALYSIS OF THE EFFECTS OF FEEDBACK ON PERFORMANCE.

Table II shows the documents retrieved in each tier for
the 50 training topics. The topic number is shown in the
first column, followed by six columns showing the number of
documents retrieved in each of the six tiers. The last column
contains the expression or expressions used in the first tier in
which a match was made.

In 32 out of 50 topics, the best tier was Tier 1. Of the
remaining topics, Tier 2 was the best tier in 4 topics, Tier 3
was best in 8, and Tier 4 was best in 4. No documents were
retrieved at all in Tier 5, and Tier 6 was the best tier for 1 topic.
In the final arrangement of the query tiers, it happened that
every document retrieved by Tier 5 had already been retrieved
in a higher tier.

Because Tier 1 had a better performance on its own than
Okapi or even feedback, performance can be improved by
recognizing relevant chemical names in the chemical list
metadata, even in cases where the name of the gene and the
relevant chemical name are different.

Table III shows the chemical names produced by the
pseudo-relevance feedback for those topics in which no doc-
uments were retrieved in Tier 1, for the BTRF run. The
first column gives the topic number, and the second col-
umn gives a gene name from the query. The third column
shows the chemical name that was found using automatic
query expansion. The next four columns show the number
of documents retrieved, the number retrieved and relevant, the
mean average precision, and the interpolated recall-precision,
respectively, for that topic without using feedback. The next
two columns give the mean average precision and interpolated
recall-precision with feedback, and the last column gives
the percentage improvement (or degradation) due to using
feedback. It is apparent that most of the chemical names are

related in some way to the gene name, and a better way of
recognizing the relationship between a gene and a chemical
name will clearly improve performance.

For topic 28, the top chemical name “Krox-24 protein” was
produced for the “Early growth response 1”. In fact, “Krox-
24 protein” is another name for “Early growth response 1”.
By searching on “Krox-24 protein”, which does not appear in
the original query, the average precision was improved by an
incredible 878%. Of course, the original performance for this
topic was very poor, but there is clearly a lot of potential for
improving performance by recognizing the alternate names of
a gene or a substance related to a gene.

In some cases, this is relatively simple. For topic 14, for
example, the chemical name “Tyrosine-rRNA Ligase” was
generated for the gene name “tyrosyl-rRNA synthetase”. A
system that understood the relationship between “tyrosine”
and “tyrosyl” and “ligase” and “synthetase” can determine that
the two expressions refer to the same thing (or closely related
things), and even assign a score for the degree of similarity.
In other cases, this is complicated by the fact that more than
one chemical name generated by the automatic expansion
might be relevant to the query. For topic 27, searching on
the gene name “cholinergic receptor, muscarinic 3” resulted
in the top chemical name “Receptors, Muscarinic”. However,
the chemical name “muscarinic receptor M3”, which is clearly
more relevant, was overlooked. Choosing this chemical name
instead of the more general “Receptors, Muscarinic” would
have resulted in an improvement of 534%.

As the table shows, in most cases the performance was
improved by using feedback to find the most relevant chemical,
though in some cases there was a degradation in performance.
Determining the conditions under which feedback improved or

Method Used Rel. & Ret. Avg. Precision R-Precision

Okapi 1 447 0.2060 0.1965
Okapi 2 473 0.2155 0.1948
Okapi 3 524 0.2169 0.2095

Okapi Fusion 524 0.2323 0.2138
AT 550 0.2542 0.1967
ATI 550 0.3334 0.2723

ATIF 559 0.3379 0.2680
ATR 552 0.3425 0.3050

ATRF 562 0.3479 0.3013
BT 535 0.2443 0.2010
BTI 535 0.3066 0.2581

BTIF 556 0.3322 0.2745
BTR 535 0.3161 0.2852

BTRF 556 0.3534 0.3113
Exact 528 0.2500 0.2194
ExactI 528 0.2803 0.2449

TABLE IV

GENOMIC TRACK — SUMMARY OF RESULTS ON TEST DATA: 50 TOPICS,

1000 RETRIEVED PER QUERY, 566 TOTAL RELEVANT.

degraded performance would allow feedback to be used more
effectively.

The two runs chosen for official submission to TREC were
the ATRF and BTRF runs. Even though BTIF had a better
mean average precision than ATRF, it was too similar to
the BTRF run in that it differed only in the fusion method
used. It was found that by adjusting the fusion weights, it
was always possible for the rank-fusion to outperform the
interweave fusion. It was also suspected that the ATRF run
might be more stable, in the sense that the performance would
not be too adversely affected by an incorrect match in Tier
1. ATRF also had the most number of relevant documents
retrieved, and it would be interesting to examine the trade-
off between retrieving more relevant documents and having a
better precision. In addition to the two official runs, we also
performed all the various runs using the test data.

V. GENOMICS TRACK - RESULTS

The results for various test runs of our system are shown in
Table IV. ATRF and BTRF are official runs, submitted to NIST
under the run tags “uwmtg03atrf” and “uwmtg03btrf”.

Some similarities and differences between the training and
test results may be noted. As with the training data, the BTRF
run had the best performance on the test data, with an average
precision of 0.3534. This is a 71.5% improvement over the
Okapi 1 run, which had an average precision of 0.2060. The
ATRF run retrieved the most relevant documents, and had the
second best average precision at 0.3479, a 68.9% improvement
over the Okapi 1 run. Furthermore, ATRF performed better
than BTIF, which had an average precision of 0.3322. The
distance between ATRF and BTRF was also smaller. On the
training data, BTRF had a 4.8% improvement in average
precision over ATRF, but on the test data that difference is
only 1.6%. This suggests that with the test data, the gene
names in the corpus are less like the queries than with the
training data.

This conjecture is also supported by the performance of
the Okapi runs. While the Okapi Fusion run performed better
than any individual Okapi run, the Okapi 3 run had the highest
average precision, followed by Okapi 2, and then Okapi 1. This
is the reverse of the order with the training data. Using bigrams
rather than the original query resulted in better performance on
the test data. A more thorough analysis is needed to determine
if this conjecture is correct.

VI. ROBUST RETRIEVAL TRACK

For the Robust Track, MultiText examined the impact of
pseudo-relevance feedback on retrieval effectiveness under the
new robustness measures. There are two unusual aspects to our
work on this track: 1) the adaptation of techniques from our
question answering system to pseudo-relevance feedback, and
2) the expansion of the corpus with a terabyte of Web data
for pseudo-relevance feedback. Previous applications of this
“collection enrichment” technique have generally used much
smaller corpora [6], [9].

A. Robust Track Feedback

For feedback, we adapted the passage-retrieval and term-
extraction methods from our QA system, which we have been
developing over the past four years. Query processing proceeds
as follows:

1) After stopword elimination and stemming, the terms
from the topic field(s) are used by the Qap passage-
retrieval algorithm (Section II-B) to locate the top (
hotspots.

2) Feedback terms are extracted from the hotspots and the
text surrounding them. A score is computed for each
extracted term. If two terms stem to the same root, the
term with the lowest score is eliminated, since stemming
will be applied to the expanded query.

3) The top) feedback terms are added to the original term
set.

4) Terms in the expanded query are stemmed. The result is
executed using our implementation of Okapi BM25 to
return the top 1000 documents.

We treat any non-query term appearing within or near a
hotspot as a candidate for feedback. For most of our TREC
2003 runs we extracted only single-word terms for feedback;
for one run we we also extracted word bigrams. Our term
extraction method assigns a score to each candidate term
based on its distance from the hotspot, the number of retrieved
passages it which it appears, and its relative frequency within
the corpus.

Let � � � �
 ������ ��� be the hotspots located by Qap. Let
! � � � be the length of hotspot � as measured by the number of
alphanumeric tokens it contains. We define a function

� � � � ' �
over hotspots � and terms ' that measures the “length” of
a passage that contains both the hotspot and the term. If '
appears in the hotspot, then

� � � � ' � � ! � � � . If ' appears
outside the hotspot, then

� � � � ' � is the length in tokens of the
shortest passage that contains both ' and the entire hotspot� . If ' does not appear in proximity to the hotspot — if it

Old Topics New Topics Old � New Topics
Run Tag Run Type avgp norel bad avgp norel bad avgp norel bad

uwmtCR0 description only, feedback 0.150 14.0% 0.011 0.403 8.0% 0.052 0.276 11.0% 0.018
uwmtCR1 description only, no feedback 0.114 18.0% 0.009 0.355 6.0% 0.035 0.234 12.0% 0.013
uwmtCR2 title only, feedback 0.168 22.0% 0.006 0.370 10.0% 0.053 0.269 16.0% 0.015
uwmtCR3 title only, no feedback 0.102 16.0% 0.007 0.285 8.0% 0.042 0.194 12.0% 0.013
uwmtCR4 description only, feedback, bigrams 0.148 20.0% 0.014 0.404 8.0% 0.054 0.274 14.0% 0.019

- title � description, feedback 0.175 16.0% 0.017 0.408 8.0% 0.087 0.292 12.0% 0.029
- title � description, no feedback 0.133 10.0% 0.018 0.369 2.0% 0.066 0.251 6.0% 0.026
- combMNZ (uwmtCR0, uwmtCR2) 0.174 10.0% 0.020 0.411 4.0% 0.085 0.292 7.0% 0.033
- combMNZ (uwmtCR1, uwmtCR3) 0.130 10.0% 0.016 0.360 2.0% 0.066 0.245 6.0% 0.024

TABLE V

ROBUST TRACK — SUMMARY OF RESULTS

appears outside a large window surrounding the hotspot or if it
does not appear inside the document containing the hotspot —
then for simplicity we define

� � � � ' ��� � �"! � , where
�

is the
total length of all documents in the corpus and

! � is the total
number of times ' appears in the corpus. We then compute the
feedback score for term ' as:2 � � �

���
�
� � ���"� 6 �! � : � � � � � ' � 9 (5)

We generate an expanded query by combining the top)
feedback terms with the original topic terms. We adjust the
retrieval weights of the added terms with a scaling factor that
takes the feedback score 2 � into account, and reflects the fact
that terms added through feedback should not be assigned the
same importance as the original topic terms.

Let � be the score of the top-ranking feedback term (i.e.
the term with the largest feedback score). We define the scaling
factor for feedback term ' as:

� � �
� : 2 �� (6)

where
� � &�� � in all our experiments.

� � is used to adjust
the retrieval weights in the Okapi BM25 formula, modifying
Equation 4 to: ����"1 � � 2 � � ��4 � �) � � & � � �5 � � � (7)

For original topic terms
� � � &

; for feedback terms
� � ' &�� � .

As an example, we examine the end-to-end processing for
topic 613, using the description field:

How were pieces of the Berlin wall disposed of after
their removal?

After stopword removal, the Qap algorithm is used to generate
a set of passages. A typical passage returned by Qap is:

Edwina Sandys, whose sculptures are installed at
five United Nations centers around the world. One
of Winston Churchills 10 grandchildren, her sculp-
ture Breakthrough made of Berlin Wall pieces has
been called one of the most important monuments
constructed on American soil since the Vietnam War
Memorial.

The hotspot is in italics. Feedback over these passages gener-
ates the expanded term set:

#1.00 pieces #1.00 berlin #1.00 wall #1.00 dis-
posed #1.00 removal #0.333 war #0.297 freedom
#0.293 cold #0.286 dismantling #0.236 souvenirs
#0.195 display #0.137 selling #0.110 gift ...

Scaling factors (
� �) precede each term. The average precision

for the topic increases from 0.212 to 0.487.

B. Robust Track Experiments

In preparation for the track, we generated a large number of
training runs and examined the impact of feedback parameters
(e.g. the number of added terms) on average precision and
robustness. In general, as feedback parameters are changed,
average precision changes slowly in the direction of a single
local maxima over a wide range of parameters. In contrast,
changes to feedback parameters have small but unpredictable
effects on the robustness measures, with many local maxima,
making it difficult to tune these parameters specifically for
robustness. As a result of our preliminary experiments we used
a single set of parameters for all experiments: (= 20 passages
and) � ��� terms.

Using our passage-retrieval algorithm, we executed the
original queries against three collections: 1) the AQUAINT
corpus, used for the QA Track; 2) a terabyte collection of Web
data; and 3) TREC disks 4 and 5 minus the CR documents,
which is the target collection for the Robust Track. We then
retrieved the top 20 passages from each collection, extracted
the top 300 terms from each set of passages, and merged these
terms into a single ranked list. A term was only included in
this list if it appeared in list of terms extracted from the target
collection. Finally, we added the top 35 terms from the merged
list to the original query and executed this expanded query
against the target collection using our version of Okapi BM25.

Table V provides a summary of our Robust track results.
Each line provides results for a single run over various topic
sets. The “Old Topics” were taken from the adhoc tasks of
previous TREC evaluations; the “New Topics” were created
for TREC 2003. For each set of topics the table reports values
for the three measures used in the Robust track: 1) average
precision (“avgp”), 2) the percentage of topics with no relevant
documents in the top ten (“norel”), 3) and the mean average

precision over the 25% of the topic set on which the run
exhibited its worst performance (“bad”).

The first five lines give the results for our five official runs:
The pair uwmtCR0 and uwmtCR1 are description-only runs;
the pair uwmtCR2 and uwmtCR3 are title-only runs. For the
fifth run (uwmtCR4), we extended the feedback process to
extract both single words and word bigrams. The last four
lines give results for unofficial runs that use the topic title
and description. For the sixth and seventh runs, the title and
description were merged into a combined query and evaluated
using the procedure above. For the last pair of runs, we
fused our official title-only and description-only runs with the
CombMNZ algorithm [5], [7].

As expected, feedback has a substantial positive impact on
average precision. The impact is greatest on the old topics,
were average precision increases by 31-65%. Over the new
topics, performance improves by 11-30%. Overall, feedback
has a positive impact on the “bad” robustness measure, but
unfortunately it often has a negative impact on the “norel”
measure.

VII. QUESTION ANSWERING TRACK

While we continue to develop our QA system, we did not
submit runs for the main task of the QA track. The number of
new requirements for the task, and our interest in other tasks,
precluded our full participation.

We did submit runs for the passage retrieval task. These runs
combine aspects of our TREC 2001 and 2002 QA systems.
Using our TREC 2002 system [2], we extracted exact answers
from passages returned by the Qap algorithm. We then used
techniques from our TREC 2001 system to locate 250-byte
fragments that contain both the exact answers and related
terms.

VIII. CONCLUSION

The MultiText system supports a variety of standard and
non-standard IR techniques. Depending on the track, we have
combined these techniques in different ways to produce com-
petitive runs. For the Genomics Track we merged the results
of structured (boolean) and unstructured (term set) queries.
Queries were expanded by re-writing terms and through feed-
back over the chemical names contained in metadata. For the
Robust Track, we utilized a new pseudo-relevance feedback
method developed from our existing QA system. Queries were
expanded through feedback over an expanded collection that
included a terabyte of Web data.

REFERENCES

[1] Charles L. A. Clarke and Gordon V. Cormack. Shortest substring retrieval
and ranking. ACM Transactions on Information Systems, 18(1):44–78,
January 2000.

[2] Charles L. A Clarke, Gordon V. Cormack, Graeme Kemkes, Michae l Las-
zlo, Thomas R. Lynam, Egidio L. Terra, and Philip L. Tilker. Statistical
selection of exact answers. In Eleventh Text REtrieval Conference (TREC-
2002), Gaithersburg, Maryland, November 2002.

[3] Charles L. A. Clarke, Gordon V. Cormack, and Thomas R. Lynam. Ex-
ploiting redundancy in question answering. In 24th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 358–365, New Orleans, September 2001.

[4] Charles L. A. Clarke, Gordon V. Cormack, Thomas R. Lynam, and
Egidio L. Terra. Question answering by passage selection. In Advances in
Open Domain Question Answering. Kluwer Academic Publishers, 2003.
To appear.

[5] E. A. Fox and J. A. Shaw. Combination of multiple searches. In Second
Text REtrieval Conference (TREC-2), Gaithersburg, Maryland, November
1994.

[6] K. L. Kwok and M. Chan. Improving two-stage ad-hoc retrieval for
short queries. In 21st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 250–256,
Melbourne, Australia, August 1998.

[7] Joon Ho Lee. Analyses of multiple evidence combination. In 20st Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 267–276, Philadelphia, July 1997.

[8] S. E. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC-7. In
Seventh Text REtrieval Conference (TREC-7), Gaithersburg, Maryland,
November 1998.

[9] Amit Singhal, John Choi, Donald Hindle, David D. Lewis, and Fernando
Pereira. At&t at TREC-7. In Seventh Text REtrieval Conference (TREC-
7), Gaithersburg, Maryland, November 1998.

