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1 Introduction

MIT CSAIL’s entry in this year’s TREC Question
Answering track focused on integrating Web-based
techniques with more traditional strategies based on
document retrieval and named-entity detection. We
believe that achieving high performance in the ques-
tion answering task requires a combination of multi-
ple strategies designed to capitalize on different char-
acteristics of various resources.

The system we deployed for the TREC evalua-
tion last year relied exclusively on the World Wide
Web to answer factoid questions (Lin et al., 2002).
The advantages that the Web offers are well known
and have been exploited by previous systems (Brill
et al., 2001; Clarke et al., 2001; Dumais et al.,
2002). The immense amount of freely available un-
structured text provides data redundancy, which can
be leveraged with simple pattern matching tech-
niques involving the expected answer formulations.
In many ways, we can utilize huge quantities of data
to overcome many thorny problems in natural lan-
guage processing such as lexical ambiguity and para-
phrases. Furthermore, Web search engines such as
Google provide a convenient front-end for accessing
and filtering enormous amounts of Web data. We
have identified this class of techniques as the knowl-
edge mining approach to question answering (Lin
and Katz, 2003).

In addition to viewing the Web as a repository
of unstructured documents, we can also take advan-
tage of structured and semistructured sources avail-
able on the Web using knowledge annotation tech-
niques (Katz, 1997; Lin and Katz, 2003). Through
empirical analysis of real world natural language
questions, we have noticed that large classes of com-
monly occurring queries can be parameterized and
captured using a simple object–property–value data
model (Katz et al., 2002). Furthermore, such a data
model is easy to impose on Web resources through
a framework of wrapper scripts. These techniques
allow our system to view the Web as if it were a “vir-
tual database” and use knowledge contained therein
to answer user questions.

While the Web is undeniably a useful resource

for question answering, it is not without drawbacks.
Useful knowledge on the Web is often drowned out
by the sheer amount of irrelevant material, and sta-
tistical techniques are often insufficient to separate
right answers from wrong ones. Overcoming these
obstacles will require addressing many outstanding
issues in computational linguistics: anaphora res-
olution, paraphrase normalization, temporal refer-
ence calculation, and lexical disambiguation, just to
name a few. Furthermore, the setup of the TREC
evaluations necessitates an extra step in the ques-
tion answering process for systems that extract an-
swers from external sources, typically known as an-
swer projection. For every Web-derived answer, a
system must find a supporting document from the
AQUAINT corpus, even if the corpus was not used
in the answer extraction process.

This year’s main task included definition and list
questions in addition to factoid questions. Although
Web-based techniques have proven effective in han-
dling factoid questions, they are less applicable to
tackling definition and list questions. The data-
driven approach implicitly assumes that each nat-
ural language question has a unique answer. Since a
single answer instance is sufficient, algorithms were
designed to trade recall for precision. For list and
definition questions, however, a more balanced ap-
proach is required, since multiple answers are not
only desired, but necessary. We believe that the
best strategy is to integrate Web-based approaches
with more traditional question answering techniques
driven by document retrieval and named-entity de-
tection. Corpus- and Web-based strategies should
play complementary roles in an overall question an-
swering framework.

2 List Questions

For answering list questions, our system employs a
traditional pipeline architecture with distinct stages
for document retrieval, passage retrieval, answer
extraction, and duplicate removal (see Figure 1).
The general idea is to successively narrow down the
AQUAINT corpus, first to a candidate list of doc-
uments, then to manageable-sized passages, and fi-
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Figure 1: Architecture for answering list questions.

nally employ knowledge of fixed lists to extract rel-
evant answers. The following subsections describe
this process in greater detail.

2.1 Document Retrieval

In response to a natural language question, our doc-
ument retriever provides a set of candidate docu-
ments that are likely to contain the answer; these
documents serve as the input to additional process-
ing modules. As such, the importance of document
retrieval cannot be overstated: if no relevant docu-
ments are retrieved, any amount of additional pro-
cessing would be useless.

For our document retriever, we relied on Lucene, a
freely available open-source IR engine.1 Lucene sup-
ports a weighted boolean query language, although
the system performs ranked retrieval using a stan-
dard tf.idf model. We have previously discovered
that for the purposes of passage retrieval, Lucene
performs on par with state-of-the-art probabilistic
systems based on the Okapi weighting (Tellex et al.,
2003).

An often effective way to boost document retrieval
recall is to employ query expansion techniques. In
our TREC entry this year, we implemented two sep-
arate query generators that take advantage of lin-
guistic resources to expand query terms. Lucene
provides a structured query interface that gives us
the ability to fine-tune our query expansion algo-
rithms. In the following subsections, we describe
these two techniques in greater detail.

2.1.1 Method 1
Our first query generator improves on a simple bag-
of-words query by taking inflectional and deriva-
tional morphology into account: queries are a con-
junction of disjuncts, where each disjunct contains
morphological variants of a single term. Base query
terms are extracted from the natural language ques-
tion by removing all stopwords. Assuming we have
three query terms, A, B, and C, arranged in increas-

1jakarta.apache.org/lucene/docs/index.html

ing idf, our first query method would generate the
following queries:

A ∧B ∧ C
e(A) ∧ e(B) ∧ e(C)
e(B) ∧ e(C)
e(C)
e(A) ∧ e(B)
e(B)
e(A)

where

e(x) = x ∨ inflect(x)0.75 ∨ derive(x)0.50

where inflect(x) and derive(x) represent a disjunct
of inflectional and derivational morphological forms
of x, respectively. The first query is simply a con-
junction of all non-stopwords from the question. The
second query is a conjunction where each of the con-
joined elements is a disjunct of the morphological
expansions of a query term. Inflectional variants
are generated with the assistance of WordNet (to
handle irregular forms). Derivational variants are
generated by a version of CELEX that we man-
ually annotated. Using Lucene’s query weighting
mechanism, inflected forms are given a weight of
0.75, and derivational forms a weight of 0.5. To
generate subsequent queries, the system successively
drops disjuncts starting with the disjunct associ-
ated with the lowest idf term until all disjuncts have
been dropped—this has the effective of query relax-
ation. After that, the highest idf disjunct is dropped,
and the generator starts a fresh cycle of successively
dropping the lowest idf disjuncts.

Our document retriever is given a target hit list
size, and successively executes queries from the
query generator until the target number of docu-
ments has been found. This ensures that down-
stream modules will always be given a consistently-
sized set of documents to process.
2.1.2 Method 2
Our second query generation algorithm takes ad-
vantage of named-entity recognition technology and
other lexical resources to chunk natural language
questions so that query terms are not broken across
constituent boundaries. To identify relevant named
entities, we use Sepia (Marton, 2003), an infor-
mation extraction system based on Combinatory
Categorial Grammar (CCG). In particular, per-
sonal names are recognized so that inappropriate
queries are never generated; for example, a name
such as “John Fitzgerald Kennedy” can produce
legitimate queries involving “John F. Kennedy”,
“John Kennedy”, and “Kennedy”, but never “John
Fitzgerald” or simply “John”. For certain classes of
named-entity types, we have encoded a set of heuris-
tic rules that generates the acceptable variants. Our



query generator takes advantage of Lucene’s ability
to execute phrase queries to ensure that the best
matching documents are returned.

Our second query generator also leverages Word-
Net to identify multi-word expressions that should
not be separated in the query process. Multi-token
collocations such as “hot dog” should never be bro-
ken down into hot and dog, since the meaning of
hot dog cannot be compositionally derived from the
individual words. Because these multi-word expres-
sions cannot be predicted syntactically (e.g., com-
pare “hot dog” with “fast car”), one practical solu-
tion is to employ a fixed list of such lexical items.
If a query term is neither a recognized entity nor
a multi-word expression, our second query genera-
tor expands the term with inflectional and deriva-
tional variants using the same technique as the first
method.

We found that our first query generation method
traded off precision for recall with its elaborate term
dropping strategy—often, the first few queries are
too restrictive, and because of this, most of the doc-
uments are retrieved by overly general queries. The
result is often a hit list that has been “padded” with
irrelevant documents; it appears that loose queries
with few terms aren’t precise enough to retrieve good
candidate documents. As an alternative, we imple-
mented a slightly different strategy for our second
query generator. It drops query disjuncts in order of
increasing idf until no terms remain, and then stops.
As a simple example, if the query has three (non-
stopword) terms, A, B, and C, arranged in increas-
ing idf, our second query generator would produce
the following queries:

e(A) ∧ e(B) ∧ e(C)
e(B) ∧ e(C)
e(C)

where e(x) represents the expansions of an individ-
ual query term, as described in this section.

2.2 Passage Retrieval
The next stage in the processing pipeline for answer-
ing list questions is passage retrieval, which attempts
to narrow down the set of candidate documents to
a set of candidate passages, which are sentences in
our architecture.

In a separate study of passage retrieval algo-
rithms (Tellex et al., 2003), we determined that
IBM’s passage scoring method (Ittycheriah et al.,
2000; Ittycheriah et al., 2001) produced the most ac-
curate results. To determine the best passage (sen-
tence in our case), our system breaks each candidate
document into sentences and scores each one based
on the IBM algorithm.

The IBM passage retrieval algorithm computes a
series of distance measures for each passage. The

“matching words measure” sums the idf values of
words that appear in both the query and the pas-
sage. The “thesaurus match measure” sums the idf
values of words in the query whose WordNet syn-
onyms appear in the passage. The “mis-match words
measure” sums the idf values of words that appear in
the query and not in the passage. The “dispersion
measure” counts the number of words in the pas-
sage between matching query terms, and the “clus-
ter words measure” counts the number of words that
occur adjacently in both the question and the pas-
sage. These various measures are linearly combined
to give the final score for a passage.

We modified the IBM passage scoring algorithm
to take into account linguistic knowledge provided
by our query generator. The modified algorithm
includes scores for matching hyponyms, inflectional
variants, derivational variants, and antonyms (neg-
ative weight). In addition, our modified algorithm
takes advantage of multi-word expressions tokenized
from the question, that is, occurrences of “hot” and
“dog” within a passage will not match “hot dog”.

One of our goals is to determine the effects of addi-
tional linguistic knowledge on performance, and for
our TREC submissions, we set up a matrix exper-
iment with two query generators and two passage
retrievers (the original IBM method and our modi-
fied algorithm). The results will be discussed later
in Section 5.

2.3 Answer Extraction
The first step of the answer extraction process is to
determine the question focus—the word or phrase in
the question that is used to identify the ontological
type of the entity we are looking for (i.e., the target
type). For this, we enlisted the parser of the Start
question answering system (Katz, 1997). In addi-
tion, we have also constructed a mapping from ques-
tion focus to target type. Consider a question such
as “List journalists that have won the Pulitzer Prize
more than once?”: Start would recognize journal-
ist as the question focus, and Person as the target
type (since we don’t have a specific category for jour-
nalists in our ontology).

Separately, we have compiled offline a large knowl-
edge base of entities, mostly in the form of fixed lists,
that correspond to the various target types. For ex-
ample, we have gathered lists of U.S. states, ma-
jor U.S. cities, major world cities, countries, person
names, etc. If the target type is among one of these
categories for which we have a fixed list, our answer
extractor simply extracts instances of the target type
from the top ranking passages collected by the pre-
vious stage.

As an example, consider the following question:

In which U.S. states have there been fatal-
ities caused by snow avalanches? (q2183)
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Figure 2: Architecture for answering definition questions.

Our system correctly identifies the question focus
as “U.S. state” (corresponding to the target type
US State) and extracts all instances of U.S. states
from top ranking passages. Since the passage re-
trieval algorithm returns passages that already have
occurrences of terms from the question, instances of
the target type are likely to be the correct answer.

If the target type is not in our knowledge base, we
employ two backoff procedures. Occasionally, an-
swers to list questions have the question focus di-
rectly embedded in them (e.g., “littleneck clam” is a
type of clam), and in the absence of any additional
knowledge, noun phrases containing the question fo-
cus are extracted as answer instances. Finally, if
no noun phrases containing the question focus can
be found, our answer extraction module simply picks
the noun phrase closest to the question focus in each
of the passages and returns that as the answer.

After collecting all the answer candidates, we dis-
card ones with query terms in them. Noun phrases
containing keywords from the query typically repeat
some aspect of the original user question and make
little sense as answers. This heuristic has worked
well in our previous question answering system (Lin
and Katz, 2003).

2.4 Duplicate Removal
Answer instances extracted from the previous stage
typically contain duplicates, which our system re-
moves using a thresholded edit-distance measure.
Finally, the system computes the number of answer
instances to return based on a relative threshold-
ing scheme. Each answer candidate is given a score
equal to the score of the passage from which it was
extracted, and all candidate answers below 10% of
the maximum score are discarded. The remaining
instances are returned as the final answers.

3 Definition Questions
Our architecture for answering definition questions
is shown in Figure 2. The target extraction module

first analyzes the natural language question to de-
termine the unknown term. Once the target term
has been found, three parallel techniques are em-
ployed to retrieve relevant nuggets that “define” the
term: lookup in a database of relational informa-
tion created from the AQUAINT corpus, lookup in a
Web dictionary followed by answer projection, and
lookup directly in the AQUAINT corpus with in-
formation retrieval techniques. Answers from the
three different sources are merged to produce the fi-
nal system output. The following subsections briefly
describe each of these techniques; please refer to
our forthcoming paper (Hildebrandt et al., 2004) for
more details.

3.1 Target Extraction
We have developed a pattern-based parser to ana-
lyze definition questions and extract the target term
using simple regular expressions. If the natural lan-
guage question does not fit any of our patterns,
the parser heuristically extracts the last sequence
of capitalized words in the question as the target.
Our simple definition target extractor was tested on
definition-style questions from the previous TREC
evaluations and performed quite well on those train-
ing questions.

3.2 Database Lookup
The use of surface patterns for answer extraction has
proven to be an effective strategy for question an-
swering. Typically, surface patterns are applied to a
candidate set of documents that have been returned
by traditional document retrieval systems. While
this strategy may be effective for factoid questions,
it generally suffers from low recall. In the case of fac-
toid questions, where only one instance of an answer
is necessary, recall is not a primary concern. How-
ever, definition questions require a system to find
as many relevant nuggets as possible, making recall
very important.

Instead of using surface patterns post-retrieval, we



copular pattern: A fractal is a pattern that is irregular, but self-similar at all size scales
appositive pattern: The Aga Khan, Spiritual Leader of the Ismaili Muslims
occupation pattern: steel magnate Andrew Carnegie
verb pattern: Althea Gibson became the first black tennis player to win a Wimbledon singles title
parenthesis pattern: Alice Rivlin (director of the Office of Management and Budget)

Figure 3: Sample nuggets extracted from the AQUAINT corpus using surface patterns. The target terms
are in bold, the nuggets underlined, and the pattern landmarks in italics.

employ an alternative strategy: by applying a set
of surface patterns offline, we are able to “precom-
pile” from the AQUAINT corpus knowledge nuggets
about every entity mentioned within it. In essence,
we have automatically constructed an immense re-
lational knowledge base, which, for each entity, con-
tains all the nuggets distilled from every article
within the corpus. Once this database has been con-
structed, the task of answering definition questions
becomes a simple database lookup.

Our surface patterns operate both at the word
level and the part-of-speech level. We utilize pat-
terns over part-of-speech tags to perform rudimen-
tary chunking, such as marking the boundaries of
noun phrases. Our system uses a total of thirteen
patterns, some of which are described below (Fig-
ure 3 shows several examples):

• Copular pattern. Copular constructions of-
ten provide a definition of the target term.
However, the pattern is a bit more complex than
finding the verb be and its inflectional variants;
in order to filter out spurious nuggets (e.g., the
progressive tense), our system throws out all
definitional nuggets that do not begin with a
determiner; this ensures that we only get “NP1

be NP2” patterns, where either NP1 or NP2 can
be the nugget.

• Appositive pattern. Commas typically pro-
vide strong evidence for the presence of an ap-
positive. With the assistance of part-of-speech
tags, identifying “NP1, NP2” patterns is rela-
tively straightforward. Most often, NP1 is the
target term and NP2 is the nugget, but occa-
sionally the positions are swapped. Thus, we
index both NPs as the target term.

• Occupation pattern. Common nouns pre-
ceding proper nouns typically provide some rel-
evant information such as occupation, affilia-
tion, etc. In order to boost the precision of this
pattern, our system discards all common noun
phrases that do not contain an “occupation”
such as actor, spokesman, leader, etc. We mined
this list of occupations from WordNet and Web
resources.

• Verb pattern. By statistically analyzing a
corpus of biographies of famous people, we were
able to compile a list of verbs that are commonly
used to describe people and their accomplish-
ments, including became, founded, invented, etc.
This list of verbs is employed to extract “NP1

verb NP2” patterns, where NP1 is the target
term, and NP2 is the nugget.

• Parenthesis pattern. Parenthetical expres-
sions following noun phrases typically provide
some interesting nuggets about the preceding
noun phrase; for persons, it often contains
birth/death years or occupation/affiliation.

Typically, our patterns identify short nuggets on
the order of a few dozen characters. In answering
definition questions, we decided to return responses
that include additional context. To accomplish this,
we simply expand all nuggets around their center
point to encompass one hundred characters. We
found that this technique enhances the readability
of our responses: many nuggets seem odd and out
of place without context and surrounding text is of-
ten necessary for disambiguation. Furthermore, re-
turning a longer answer means that our responses
sometimes contain additional relevant nuggets that
are not part of the nugget matched by the original
pattern. In definition questions, these “fortuitous”
nuggets serve as an additional source of answers.

One drawback to our knowledge base of nuggets
is the tremendous amount of redundancy contained
within it. Because we compiled all patterns from all
entities within the entire AQUAINT corpus, com-
mon nuggets are often repeated. In order to deal
with this, we employed a simple heuristic to remove
duplicate information: if any two responses share
more than sixty percent of their keywords, one of
them is randomly thrown out.

3.3 Dictionary Lookup

Another component of our system for answering def-
inition questions utilizes an existing Web-based dic-
tionary for nuggets. Obviously, such an approach
cannot be applied directly, because all nuggets must
originate from the AQUAINT corpus. To address



this issue, we developed answer projection tech-
niques to “map” dictionary definitions back onto
AQUAINT documents. The mapping component is
based on the idea that if you already know the an-
swer, it is much easier to find relevant nuggets in the
corpus.

Given the target term, our dictionary wrapper
goes online to the Merriam-Webster website and
fetches the term’s definition. Keywords from the
definition are used as the query to the Lucene doc-
ument retriever. Once a set of candidate documents
has been returned, we break each document into sen-
tences and score each sentence based on its keyword
overlap with the dictionary definition. The sentences
with the highest scores are retained and, if neces-
sary, shortened to one hundred characters centered
around the target term.

3.4 Document Lookup

As a last resort (i.e., if no answers are found with
the first two techniques), our system employs stan-
dard document retrieval to extract relevant nuggets.
The target term is used as a Lucene query to gather
a set of candidate documents. These documents are
chunked into separate sentences and those sentences
containing the target term are retained as responses.
As before, these sentences are shortened appropri-
ately if needed.

3.5 Answer Merging

The input to the answer merging stage is a series
of one hundred character responses from each of the
sources: database, dictionary, and corpus. The re-
sponses are arranged according to an ad-hoc prior-
ity scale we developed based on the accuracy of each
approach. For example, we found that verb patterns
generally return very good nuggets, and copular con-
structions are often less accurate. The priority of
dictionary answers lies somewhere between the best
and worst patterns, ordered such that some dictio-
nary responses (if any) would always be returned
in the final answer. Responses extracted directly
from document lookup are used only if the two other
methods return no answers: document lookup is con-
sidered a strict back-off method used only as a last
resort. See (Hildebrandt et al., 2004) for a more
detailed description of our ordering algorithm.

Finally, the answer merging stage of our system
also decides the number of one hundred character
responses to return. Since the length penalty for
returning long answers is not very steep, we decided
to return longer answers in hopes of including more
relevant nuggets. Given n responses, we calculated
the final number of responses to return as:

n if n ≤ 10
n +

√
n− 10 if n > 10

This strategy ensures that our system will always
return a generous number of nuggets, and has proven
to work well empirically.

4 Factoid Questions

Our system for answering factoid questions was
largely unchanged from last year. We employed the
Aranea question answering system (Lin et al., 2002;
Lin and Katz, 2003), which embraces two different
views of the World Wide Web: as a heterogeneous
collection of unstructured documents and as a source
of carefully crafted and organized knowledge about
specific topics.

Aranea’s approach is primarily motivated by an
observation that the distribution of user queries
qualitatively obeys Zipf’s Law—a small fraction
of question types accounts for a significant frac-
tion of all question instances. Large classes of
commonly-occurring questions translate naturally
into database queries and are handled by Aranea us-
ing a technique we call knowledge annotation, which
allows our system to access semistructured and het-
erogeneous data as if it were a uniform database. In
addition, we have discovered that a simple object–
property-value data model captures the content of
both Web resources and natural language ques-
tions (Katz et al., 2002). To take advantage of
these observations, we have built a framework of
site-specific wrappers that provide uniform access to
knowledge contained in a variety of Web resources.
These wrappers are connected to natural language
questions through parameterized schemata.

As with all Zipf curves, there is a broad tail
where individual instances are either unique or ac-
count for an insignificant fraction of total questions.
To answer questions that cannot be easily classi-
fied into common categories or grouped by simple
patterns, Aranea employs what we call redundancy-
based knowledge mining techniques. Knowledge
mining leverages the massive amounts of informa-
tion available on the Web to overcome many thorny
problems associated with natural language process-
ing. The insight is simple: the more data available,
the greater the chance that the answer to a natu-
ral language question is stated as a reformulation of
that question. In such cases, simple pattern match-
ing techniques suffice to accurately extract answers.

The setup of the TREC evaluation requires each
answer to be supported with a document from the
AQUAINT corpus. Since Aranea does not use the
AQUAINT corpus in the question answering pro-
cess, Web-based answers must then be “projected”
back onto AQUAINT documents. Answer projec-
tion is accomplished in a two-step process: first,
a set of candidate documents is gathered; then, a
modified passage retrieval algorithm scans the doc-
uments to pick the best document. For obtaining the



set of candidate documents, we tried three different
approaches: using the NIST-supplied PRISE docu-
ments, using documents generated by our first query
generation algorithm (Section 2.1.1), and using doc-
uments generated by our second query generation
algorithm (Section 2.1.2).

After a set of candidate documents has been gath-
ered, the answer projection module applies a mod-
ified window-based passage retrieval algorithm to
score the documents. Each 140-byte window is given
a score equal to the number of times keywords from
both the question and candidate answer appear,
with the restriction that at least one keyword from
the question must appear in the passage. The score
of a document is simply the score of the highest scor-
ing passage. The highest scoring document is paired
with the Web-derived candidate answer as the final
response unit.

5 Results

A summary of our results at this year’s TREC evalu-
ation is shown in Table 1. Out of twenty-five groups,
we ranked sixth in factoid questions, third in list
questions, and eighth in definition questions. Our fi-
nal weighted score ranked us sixth out of all the par-
ticipating groups. For factoid questions, the query
generation algorithms used for answer projection in
each of the runs are shown in Table 2. For list ques-
tions, the query generator and passage scoring algo-
rithms used for each of the runs are also shown in
Table 2. For definition questions, all three submis-
sions were exactly the same.

5.1 List Results
In this section, we discuss our results for answering
list questions with respect to query generation, pas-
sage retrieval, and the question focus/target type.
5.1.1 Query Generation
Our second query generation method performed
slightly better than our first query generation
method. In particular, tokenization of multi-token
expressions had the biggest positive impact on per-
formance. Consider the following question:

What countries have had school bus acci-
dents that resulted in fatalities? (q2180)

The second query generation algorithm correctly
identified “school bus” as a collocation and thus
never broke up the expression into “school” and
“bus”.
5.1.2 Passage Retrieval
In general, the modified IBM passage scoring al-
gorithm performed slightly worse than the original
IBM algorithm. However, since they returned ex-
actly the same responses most of the time, it is
difficult to determine if the score differences are

above the margin of error inherent in human judg-
ments. In retrospect, we believe that our modi-
fied IBM algorithm was too lax in matching vari-
ous forms of expansions (too high a score was given
to variants). It is a well-known result that uncon-
trolled expansion of lexical-semantic relations (e.g.,
synonyms and hyponyms) results in lower perfor-
mance (Voorhees, 1994). It has likewise been shown
that inflectional and derivational expansion does
not significantly increase performance. However,
these previous experiments were focused solely on
document retrieval, using queries that were typi-
cally much longer than TREC-style natural language
questions. For the question answering task, we be-
lieve that linguistically-motivated query expansions
will have a positive impact on performance. While
our experiments have not yet shown a significant
overall positive effect, we attribute this to imple-
mentational deficiencies in our overall system, rather
than conceptual shortcomings.

As an illustrative example, we present a case
where matching of expanded terms did increase per-
formance:

What countries still have royalty? (q2250)

The original IBM passage retrieval algorithm did
not return any correct answers, whereas the modified
version returned four correct answers. The perfor-
mance increase can be directly attributed to looser
query matching of expanded terms. The original
algorithm found passages related to the economic
sense of royalty, whereas the modified algorithm re-
trieved passages with the correct sense related to
monarchy.
5.1.3 Question Focus and Target Type
Our strategy for answering list questions crucially
depends on correctly identifying the question focus
and the associated target type (the ontological type
of entity sought after). For a few questions, our sys-
tem was unable to correctly determine the question
focus, resulting in a score of zero for those ques-
tions. To address this shortcoming, we will improve
Start’s ability to recognize question focus.

Although identifying the question focus helps in
answering a question, care is needed to map the fo-
cus word into a corresponding target type (the spe-
cific ontological category). Consider the following
questions:

List the names of cell phone manufactur-
ers. (q2096)
Name recipients of funds given by the vari-
ous foundations of Bill and Melinda Gates.
(q2291)

Our system correctly identified “manufacturer” as
the question focus in the first question, but chose the



Task MITCSAIL03a MITCSAIL03b MITCSAIL03c best median best rank
Factoid 0.293 0.295 0.291 0.7 0.149 6th
List 0.13 0.118 0.134 0.396 0.053 3rd
Definition 0.309 0.282 0.282 0.555 0.189 8th
weighted total 0.256 0.248 0.250 0.559 0.135 6th

Table 1: Summary of MIT CSAIL submissions.

MITCSAIL03a MITCSAIL03b MITCSAIL03c
List questions:
Query generator method 1 method 2 method 2
Passage retriever IBM IBM modified IBM

Factoid questions:
Answer projection PRISE method 1 method 2

Table 2: Variations in each of the TREC runs.

wrong sense for the target type. The term was on our
list of professions, so the system incorrectly looked
for personal names. The second question demon-
strates that not all focus terms, even when correctly
identified, are useful. “Recipients” are so general
that they can be anything: people, companies, orga-
nizations, and even countries.

Not surprisingly, our system performed well for
questions whose target type had corresponding fixed
lists in our knowledge base. Since we had exhaustive
lists for entities like cities, countries, and U.S. pres-
idents, all our answers were at least of the correct
type. However, since our system ignored syntactic
relations within the passage, it often overgenerated
wrong answers. Consider the following question:

What countries have won the men’s World
Cup for soccer? (q2346)

Since our system returned all countries found near
the relevant keywords, most of the answers were
countries that played in the World Cup, not winners
of it. As a result, we obtained high recall, but poor
precision, on this question. This is certainly a case
where the use of syntactic relations can dramatically
improve question answering performance (Katz and
Lin, 2003).

Our backoff method of looking for the question
focus in candidate answers worked for the following
question:

What grapes are used in making wine?
(q1940)

The system extracted correct answers like
“Chardonnay Grapes”. However, the same tech-
nique didn’t work when the question focus was
“team” or “food” because journalists typically do
not write “X team” or “Y food”.

5.2 Definition Results
Although the responses were identical in each of our
three submitted runs for definition questions, the
scores were not; that is, given the same exact an-
swer string, assessors came up with different judg-
ments some of the time. Out of the 317 responses
we submitted for the 50 definition questions, there
were 19 responses which were not judged the same
over all three runs. However, 7 of these were cases
where assessors found the same nugget in different
responses for a question. In addition, there are clear
instances where an answer nugget is in one of our re-
sponses and the assessors missed it, even when the
nugget was present word for word. Voorhees’ analy-
sis (2003) of the definition results indicates that the
margin of judging error was 0.043, i.e., scores for
pairs of identical runs differed by as much as 0.043
(F-measure). Furthermore, due to the small testset
size, a score difference of at least 0.1 in F-measure is
required in order for two evaluation results to be con-
sidered statistically different (at 95% confidence).

Target term extraction was the single biggest
source of error in answering definition questions. If
the target term is not correctly identified, then all
subsequent modules have little chance of providing
relevant nuggets.

We did not anticipate the presence of stopwords
in names. Consider the following questions:

What is Bausch & Lomb? (q1917)
Who is Vlad the Impaler? (q1933)
Who is Akbar the Great? (q1955)

Our naive pattern-based target extractor identi-
fied “Lomb”, “Impaler”, and “Great” as the target
terms for the above questions, respectively. Fortu-
nately, “Impaler” is such a rare word that we ac-
tually returned nuggets concerning “Vlad the Im-



MITCSAIL03a MITCSAIL03b MITCSAIL03c
PRISE Method 1 Method 2

Right 121 29.30% 122 29.54% 120 29.06%
Inexact 18 4.36% 15 3.63% 15 3.63%
Unsupported 26 6.30% 21 5.08% 21 5.08%
Wrong 248 60.05% 255 61.74% 257 62.23%
Total 413 413 413

Table 3: Detailed analysis of factoid questions.

paler”. Similarly, “Lomb” so frequently co-occurs
with “Bausch & Lomb” that our system was able to
provide relevant nuggets. However, since “Great” is
a very common word, our definitions for “Akbar the
Great” were meaningless.

The system’s inability to parse certain forms of
names is related to our simple assumption that the
final consecutive sequence of capitalized words in a
question is the target. However, this turned out to
be an incorrect assumption:

Who was Abraham in the Old Testament?
(q1972)
What is ETA in Spain? (q1987)
What is Friends of the Earth? (q2222)

Our pattern-based target extractor marked “Old
Testament”, “Spain”, and “Earth” as the targets for
those questions, respectively. The inability to cor-
rectly identify the target term resulted in the sys-
tem’s failure to return relevant nuggets.

Another problem our target extractor encountered
is apposition. Take the following example:

What is the medical condition shingles?
(q2348)

The target extractor incorrectly identified “med-
ical condition shingles” as the target term. As a
result, our system did not identify a single relevant
nugget. To better extract target terms for definition
questions, we will employ Start and Sepia in the
future, which we were unable to utilize for definition
questions this year for technical reasons.

5.3 Factoid Results

Table 3 shows a detailed analysis of factoid ques-
tions. As in previous years, answer projection ap-
pears to be the Achilles’ heel in our Web-based ques-
tion answering strategy, as shown by the relatively
large fraction of unsupported and inexact answers
(in comparison to typical results of other teams).
Furthermore, it does not appear that any of our
more advanced query generation algorithms had any
significant impact of the final score of factoid ques-
tions.

6 Conclusion

The focus of our research this year was to integrate
Web- and corpus-based question answering tech-
niques under a unified framework. This falls under
our general research agenda of employing linguistic
techniques, at the lexical, morphological, syntactic,
and semantic levels, in conjunction with statistical
techniques when appropriate. Although our TREC
experiments have yet to show significant benefits
from linguistically-informed processing techniques,
we believe that high performance in the question
answering task can only be achieved through fusion
of multiple strategies and multiple resources.

References

Eric Brill, Jimmy Lin, Michele Banko, Susan Du-
mais, and Andrew Ng. 2001. Data-intensive ques-
tion answering. In Proceedings of the Tenth Text
REtrieval Conference (TREC 2001).

Charles Clarke, Gordon Cormack, Thomas Lynam,
C.M. Li, and Greg McLearn. 2001. Web rein-
forced question answering (MultiText experiments
for TREC 2001). In Proceedings of the Tenth Text
REtrieval Conference (TREC 2001).

Susan Dumais, Michele Banko, Eric Brill, Jimmy
Lin, and Andrew Ng. 2002. Web question answer-
ing: Is more always better? In Proceedings of the
25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR 2002).

Wesley Hildebrandt, Boris Katz, and Jimmy Lin.
2004. Answering definition questions with multi-
ple knowledge sources. In Proceedings of the 2004
Human Language Technology Conference and the
North American Chapter of the Association for
Computational Linguistics Annual Meeting (HLT-
NAACL 2004).

Abraham Ittycheriah, Martin Franz, Wei-Jing Zhu,
and Adwait Ratnaparkhi. 2000. IBM’s statistical
question answering system. In Proceedings of the
Eighth Text REtrieval Conference (TREC-9).

Abraham Ittycheriah, Martin Franz, and Salim
Roukos. 2001. IBM’s statistical question an-
swering system—TREC-10. In Proceedings of the
Tenth Text REtrieval Conference (TREC 2001).



Boris Katz and Jimmy Lin. 2003. Selectively using
relations to improve precision in question answer-
ing. In Proceedings of the EACL 2003 Workshop
on Natural Language Processing for Question An-
swering.

Boris Katz, Sue Felshin, Deniz Yuret, Ali Ibrahim,
Jimmy Lin, Gregory Marton, Alton Jerome Mc-
Farland, and Baris Temelkuran. 2002. Omnibase:
Uniform access to heterogeneous data for question
answering. In Proceedings of the 7th International
Workshop on Applications of Natural Language to
Information Systems (NLDB 2002).

Boris Katz. 1997. Annotating the World Wide Web
using natural language. In Proceedings of the 5th
RIAO Conference on Computer Assisted Informa-
tion Searching on the Internet (RIAO ’97).

Jimmy Lin and Boris Katz. 2003. Question answer-
ing from the Web using knowledge annotation and
knowledge mining techniques. In Proceedings of
Twelfth International Conference on Information
and Knowledge Management (CIKM 2003).

Jimmy Lin, Aaron Fernandes, Boris Katz, Gregory
Marton, and Stefanie Tellex. 2002. Extracting an-
swers from the Web using knowledge annotation
and knowledge mining techniques. In Proceedings
of the Eleventh Text REtrieval Conference (TREC
2002).

Gregory A. Marton. 2003. Sepia: Semantic parsing
for named entities. Master’s thesis, Massachusetts
Institute of Technology.

Stefanie Tellex, Boris Katz, Jimmy Lin, Gregory
Marton, and Aaron Fernandes. 2003. Quantita-
tive evaluation of passage retrieval algorithms for
question answering. In Proceedings of the 26th
Annual International ACM SIGIR Conference on
Research and Development in Information Re-
trieval (SIGIR 2003).

Ellen M. Voorhees. 1994. Query expansion using
lexical-semantic relations. In Proceedings of the
17th Annual International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval (SIGIR-1994).

Ellen M. Voorhees. 2003. Overview of the TREC
2003 question answering track. In Proceedings of
the Twelfth Text REtrieval Conference (TREC
2003).


