
AnswerFinder in TREC 2003

Diego Mollá
Centre for Language Technology

Macquarie University
Sydney, NSW 2109

Australia
Tel. +61 2 9850 9531
Fax +61 2 9850 9551

diego@ics.mq.edu.au

Abstract

In this our first participation in TREC
we have focused on the passage task
of the question answering track. The
main aim of our participation was to
test the impact of various types of lin-
guistic information in a simple ques-
tion answering system. In particular,
we have tested various combinations
of word overlap, grammatical relations
overlap, and overlap of minimal logi-
cal forms in the final scoring module of
the system. The results indicate a small
increase of accuracy with respect to a
baseline system based on word overlap.
Overall, given the short time available
for developing the system, the results
are satisfactory and equal or surpass the
median.

1 Introduction

This is the first time that the Centre for Language
Technology at Macquarie University participates
in TREC. Due to strong time restrictions we de-
cided to implement a simple and functional sys-
tem for the passage task of the Question Answer-
ing track. The final estimated time of develop-
ment was about 55 person-hours (plus execution
time) distributed among three months of intermit-
tent work.

Section 2 describes the general architecture of
the system. Our main focus was the exploration of
sentence similarity measures for question answer-
ing. The measures used were based on word over-

lap, grammatical relations, and minimal logical
forms. The two latter measures are described in
Sections 3 and 4, respectively. Section 5 presents
the final results and discussion. Finally, Section 6
describes a post-submission extension that incor-
porates question classification and named-entity
recognition.

2 System Architecture

The system is fairly straightforward (Figure 1).
A document preselection stage returns the doc-
uments preselected by NIST. A subsequent sen-
tence preselection stage splits the documents into
sentences and ranks the sentences according to
word overlap. A final scoring stage analyses the
top-ranking sentences returned by the previous
stage and re-ranks the sentences according to a
similarity measure. The top-ranking sentence is
returned as the answer, possibly truncated if it is
longer than the limit of 250 characters. Note that
all questions are treated the same way. In other
words, there is no question classification stage.
Also, no attempt to detect NIL answers was made.

It is worth noting that the complete process was
done when the question was processed. All the
data structures (except, of course, the documents
provided by NIST) were built on the fly.

To determine the number of documents to pre-
select, during the development of the system we
analysed the questions used in TREC 2002 and
the answers available from the TREC web pages.
In particular, we used the regular expressions pro-
vided by Ken Litkowsky to determine if an ar-
bitrary document contained the answer of a spe-
cific question. The results of this analysis are

Figure 1: Architecture of AnswerFinder.

Figure 2: Relation between preselected docu-
ments and number of correct answers.

not necessarily accurate for two reasons. First
of all, good answers phrased in unfamiliar terms
may not be covered by the regular expressions.
Second, some text may happen to match a reg-
ular expression by coincidence but still the doc-
ument may fail to support the answer. Still, the
results are indicative for our purposes. The re-
sults of our analysis is summarised in Figure 2,
which shows the number of questions that have an
answer within the top X documents. We can see
that there is little gain by preselecting many docu-
ments. For practical reasons we set the threshold
of documents to preselect to X = 50. For that
threshold, 74% of the questions would find a doc-
ument that satisfies the regular expression of the
answer.

To split the documents into sentences we used a
simple regular expression that detects punctuation
characters as end-of-sentence markers:

Figure 3: Relation between preselected sentences
and number of correct answers (using the top 50
documents).

’(?:\.|\?|!|;|<.*?>)+’

The resulting sentences are ranked according
to word overlap. After several experiments we
found that the optimal measure of word overlap is
obtained by using a list of stop words1 and ignor-
ing repeated words in the answer candidate. We
arbitrarily set a threshold of 100 sentences to be
sent to the final scoring stage. Figure 3 shows
the relation between the sentences preselected and
the number of correct answers. For the thresh-
old of 100 sentences and using the 2002 question
set, 59.4% of the questions would have a string
that satisfies the regular expression of the answer.
This is therefore the expected upper limit of accu-
racy that the scoring module can achieve.

The final scoring module combines several
types of information. Apart from word overlap we
experimented with other types of overlap that use
various types of linguistic information. In partic-
ular, we used grammatical relations and minimal
logical forms, as described in the following sec-
tions.

3 Grammatical Relations

The grammatical relations by
Carroll et al. (1998) were devised to enable
comparative evaluations of parsers. Following
their evaluation methodology, the output of the
parsers to evaluate is converted into sets of gram-
matical relations, thus enabling the representation
of the parser output in a uniform way. In order

1We used the list of stop words available from
http://www-fog.bio.unipd.it/waishelp/
stoplist.html

Figure 4: Hierarchy of grammatical relations
(Briscoe and Carroll, 2000).

to be able to accommodate parsers with differ-
ent granularity in the output, the grammatical
relations are classified hierarchically (Figure 4).
Different types of parser output are represented
with different types of grammatical relations and
therefore a wide range of parsers can be easily
compared.

Table 1 lists the grammatical relations used in
the examples of this paper and the final imple-
mentation. For further detail about grammatical
relations see (Briscoe and Carroll, 2000).

For example, the grammatical relations for the
sentence The man that came ate bananas and ap-
ples with a fork without asking are:

DETMOD(,man,the),
CMOD(that,man,come),
SUBJ(come,man,),
SUBJ(eat,man,),
DOBJ(eat,banana,),
DOBJ(eat,apple,)
CONJ(and,banana,apple),
NCMOD(fork,eat,with),
DETMOD(,fork,a),
XCOMP(without,eat,ask)

Briscoe and Carroll’s grammatical relations are
different from the dependency arcs used in de-
pendency grammar formalisms (Mel’čuk, 1988).
Consider The man that came ate bananas and ap-
ples with a fork. Figure 5 (a) shows the graph-
ical representation of the structure returned by
Conexor FDG, a dependency-based parsing sys-
tem (Tapanainen and Järvinen, 1997). For com-
parison, Figure 5 (b) shows a simplified graphical
representation of the grammatical relations. In
dependency grammar a unique head is assigned

to each word, thus the head of man is ate. How-
ever man is the dependent of more than one gram-
matical relation, namely SUBJ(eat,man,)
and SUBJ(come,man,). Furthermore, in de-
pendency grammar a word can have at most
one dependent of each argument type, and
so ate can have at most one object. But
the same is not true for grammatical relations,
and we get both OBJ(eat,banana,) and
OBJ(eat,apple,). Thus, grammatical rela-
tions can theoretically provide a sentence repre-
sentation that is closer to the semantic contents
of a sentence than the representation provided by
dependency arcs. In practice, the representational
power of the grammatical relations depends on
the output of the parser used.

Grammatical relations can be used to intro-
duce parser-independent syntactic information in
a question-answering system. Since the grammat-
ical relations are expressed as lists of relations,
a score measure can be implemented by simply
computing the overlap of grammatical relations
between the question and the answer candidate.
In theory, to compute the overlap we must use the
hierarchical organisation of the grammatical rela-
tions to decide if two grammatical relations are re-
lated. For example, SUBJ(eat,man,) can be
subsumed by SUB OR DOBJ(eat,man). How-
ever, since the same parser was used for both the
question and the answer, the granularity of gram-
matical relations between questions and answer
candidates will be practically the same. Thus,
each grammatical relation can be seen as an un-
structured token and the scoring module can sim-
ply count the number of common tokens, very
much like counting the overlap of words. This
was the approach used in our QA prototype.

4 Minimal Logical Forms

Flat logical forms have been used in several NLP
systems, including question-answering systems
(Harabagiu et al., 2001; Lin, 2001; Mollá et al.,
2000, for example). The flat logical forms that we
use in our QA system are borrowed from (Mollá
et al., 2000), who uses reification to flatten out
nested expressions. For example, the logical form
of The cp command will quickly copy files is:2

2For illustration purposes, the logical forms used in this
paper are slight variants of the ones shown in the literature.

Relation Description
CONJ(type,head+) Conjunction
MOD(type,head,dependent) Modifier
CMOD(type,head,dependent) Clausal modifier
NCMOD(type,head,dependent) Non-clausal modifier
DETMOD(type,head,dependent) Determiner
SUBJ(head,dependent,initial gr) Subject
OBJ(head,dependent,initial gr) Object
DOBJ(head,dependent,initial gr) Direct object
XCOMP(head,dependent) Clausal complement without an overt subject

Table 1: Grammatical relations used in this paper.

(a)

///// the man that came ate bananas and apples with a fork

 main <

>det

> subj
 mod<

>subj

 ins <

obj< cc<
 cc < pcomp<

>det

(b)

///// the man that came ate bananas and apples with a fork

 <

>det > subj
cmod <

> subj

dobj<
dobj <

ncmod <

>det

Figure 5: (a) Dependency structure of a sample sentence; (b) grammatical relations.

holds(e6),
object(’cp’,o2,[x2]),
object(’command’,o3,[x3]),
compound noun(x2,x3),
prop(’quickly’,p5,[e6]),
evt(’copy’,e6,[x3,x7]),
object(’file’,o7,[x7])

The logical form above says that there are two
entities x2 and x3 that represent two objects for
the compound noun cp command. There is an en-
tity x7 (a file); there is an entity e6, which rep-
resents a copying event where the first argument
is x3 (the object introduced by the head of the
compound noun) and the second argument is x7;
there is an entity p5 which states that e6 is done
quickly, and the event e6 (the copying) holds.

The above expression does not aim to express
the complete logical form of the sentence. For
example, there is no information about quantifi-
cation, tense, aspect, and plurals. In essence,

only the main relations among open words and
determiners is expressed. This is why our logical
forms are called minimal logical forms: only in-
formation that is minimal for the task of question-
answering is encoded.

An advantage of the use of flat logical forms
over nested logical forms is that, again, sentence
similarity can be measured as a type of overlap.
The only additional complexity is that the ques-
tion now contains variables. For example, the
minimal logical form of Which command copies
files? is (the symbols in uppercase indicate vari-
ables):

object(’command’,O1,[X1]),
evt(’copy’,E2,[X1,X2]),
object(’file’,O2,[X2])

If this logical form is to match that of the sen-
tence The cp command will quickly copy files
above, the scoring module needs to instantiate the
variable O1 in the question with the constant o3

Answer candidate Minimal Logical Form
John saw Mary object(’john’,o1,[x1]), object(’mary’,o3,[x3]), evt(’see’,e2,[x1,x3])
Question Minimal Logical Form
Did John see Mary? object(’mary’,O,[X]), evt(’see’,E,[Y,X]), object(’john’,O2,[Y])
Did Mary see John? object(’john’,O,[X]), evt(’see’,E,[Y,X]), object(’mary’,O2,[Y])

Table 2: Question answering using flat logical forms. Overlap shown in bold.

in the answer candidate, X1 with x3, and so on.
In our implementation we have used Prolog uni-
fication. Basically, the logical form of the answer
candidates is stored as Prolog data, and a simple
Prolog program computes the overlap of the logi-
cal forms of the answer candidates with the logi-
cal form of the question. Also, the scoring module
ignores the holds term in the question logical
form. Otherwise, since almost all questions and
candidate answers contain a holds term in the
logical form, two completely unrelated sentences
would have an overlap of 1 and this is counterin-
tuitive.

Since there are several plausible combinations
of variable instantiations, the scoring module
finds the set of instantiations that provides the
highest overlap of logical forms.

Table 2 shows the minimal logical forms of
questions that differ solely in the argument posi-
tions, the minimal logical form of an answer can-
didate, and the resulting overlaps.

5 Results and Discussion

To test the impact of grammatical relations and
minimal logical forms, we experimented with dif-
ferent scoring modules corresponding to word
overlap, grammatical relations, and minimal log-
ical forms, using the TREC 2002 questions. The
results (Table 3) show that, remarkably, word
overlap is best.

Formula Accuracy
Word overlap 14.8%
Grammatical relations 09.0%
Minimal logical forms 10.8%

Table 3: Experiments with TREC 2002 data.

Due to the limited time available we decided
to postpone any cause analysis. Instead we ran

several experiments combining the linguistic in-
formation available. Table 4 shows the final runs
submitted to TREC, the results of our experiments
with data from TREC 2003, and the final results
returned by NIST.

The data in the 2002 column show that the runs
submitted produce slightly better results than sim-
ple word overlap. Interestingly, The evaluation
provided by NIST (2003 column) gives notice-
ably better results than our home evaluation with
the TREC 2002 data (2002 column). This may
be due to the fact that the regular expressions
provided by Litkowsky do not attempt to cover
all possible formulations of correct answers, or it
may be indeed the case that the questions asked in
TREC 2003 are easier to process. As we will see
in next section, the former is more likely.

6 Adding Named Entities

During the development of the system we tried
to integrate the named entity recogniser bundled
with GATE.3

First of all, we implemented a question anal-
yser module that classifies the question into the
type of expected answer. The classifier uses 29
regular expressions to allocate one of the follow-
ing types to the question: person, date, location,
money, number, city, date, organization, location,
percent,country, state, river, name, and unknown.
The regular expressions were based on the ques-
tions used in TREC 2002. The final module has
an accuracy of 78.6% (393 from a total of 500
questions were correctly classified).

Since GATE’s named entity recogniser can de-
tect a reduced number of named entity types
(person, location, date, money, and organization
only), a simple mapping was necessary between
the question classification and the final list of an-
swer types (Table 5).

3http://gate.ac.uk/

Run Formula 2002 2003
answfind1 3wo + gro 16.8% 19.1%
answfind2 9wo + 3gro + mo 16.8% 18.6%
answfind3 9wo + 3mo + gro 15.6% 18.2%

Table 4: Runs submitted to TREC 2003. The 2002 column indicates the results of an automatic self-
evaluation with data from TREC 2002. The 2003 column indicates the evaluation results returned by
NIST. The formula components are: wo – word overlap; gro – overlap of grammatical relations; mo –
overlap of minimal logical forms.

Question Type Answer Type
country, city, state, river location
percent number
name person OR organization OR location
Any other question type yields same answer type

Table 5: Mapping between question type and answer type.

The information regarding answer type is used
during the sentence preselection stage. Thus, the
score given to a sentence is the sum of word over-
lap with the question (as described above) plus a
reward of 10 points if the sentence contains an en-
tity of the expected answer type.

We developed a Java interface to GATE’s
named entity recogniser. However, the steep
learning curve required to learn Java, together
with unexpected execution errors prevented us
from integrating the NE module in the final ver-
sion. The final system therefore did not use the
named entity recogniser and as a consequence the
question classifier became useless and therefore
it was disabled. Subsequent work on the Java
interface enabled us to compute the named enti-
ties of the top 50 documents preselected for the
TREC 2002 and TREC 2003 questions. With
these named entities computed off-line we ran
AnswerFinder and obtained the results shown in
Table 6.

The results show a noticeable improvement of
accuracy in the runs with the TREC 2002 ques-
tion set. In contrast, accuracy decreases in the
runs with the TREC 2003 question set. A plau-
sible explanation to the results with the TREC
2003 question set is that we used the new reg-
ular expressions provided by Litkowsky for the
evaluation. The regular expressions are based on
the set of answers returned by the systems com-

2002 Without NEs With NEs
answfind1 16.8% 19.1%
answfind2 16.8% 19.3%
answfind3 15.6% 18.4%
2003 Without NEs With NEs
answfind1 18.2% 16.2%
answfind2 17.4% 15.7%
answfind3 17.2% 15.5%

Table 6: Results of integrating the named entity
recogniser.

peting in TREC 2003. Possibly, some of the an-
swers returned by the version with named entities
are paraphrases of the correct answer that do not
match the regular expressions and therefore they
are erroneously classified as wrong. In fact, note
that the results without named entities reported in
Table 6 are slightly worse than the ones returned
by NIST (Table 4) due to inaccuracies in the reg-
ular expressions.

7 Conclusions and Further Research

The short time available only allowed us to build a
baseline system for the passages task of the Ques-
tion Answering track. Still, we were pleased to
find that the results were better or equal than the
median of all 21 submissions to the task. Overall,
our experiments suggest that simple word over-
lap gives better performance than simple overlaps

based on grammatical relations or minimal logi-
cal forms alone. These findings confirm the work
by (Mollá, 2003), who used a similar question an-
swering system for the Reading Comprehension
corpus (Hirschman et al., 1999).

Further work will include:

Error analysis. This will be the first step to do.
We will determine if different types of ques-
tions are more or less likely to produce good
results with the different overlap measures
and identify methods of combining word
overlap, grammatical relations, and minimal
logical forms for each type of question.

NE integration. We will finalise the integration
of the named entity recogniser and iden-
tify entity types that are useful for the task
of question answering. Besides using the
named entities to determine the answer can-
didates, we will also explore ways to include
NE information in the parsing modules and
semantic interpreter. This way we hope to
obtain more accurate grammatical relations
and logical forms.

Logical forms. We will explore ways to lever-
age the use of logical forms by using more
sophisticated measures. For example, we
will look into adding weights to the logical
forms. We will also explore the possibility
of using weighted abduction methods.

Extract the exact answer. Logical forms may
be useful to determine the exact answer of
the question. For example, the original Ex-
trAns system (Mollá et al., 2000) generates
a predicate of the form object(_,_,_)
that represents the object asked about by the
question word. ExtrAns also keeps track of
what words produces what predicates in the
minimal logical form. All this information
can be used to determine the exact part of
the sentence that matches the concept being
asked about.

Complex questions. We will also work on
methodologies to answer questions that re-
quire the fusion of output from several doc-
uments, such as list and definition questions.

By introducing the above and other extensions,
in future participations in the question answer-
ing track we hope to increase the accuracy of the
system and to participate in the main task of the
track.

References
Ted Briscoe and John Carroll. 2000. Gram-

matical relation annotation. On-line document.
http://www.cogs.susx.ac.uk/lab/nlp/
carroll/grdescription/index.html.

John Carroll, Ted Briscoe, and Antonio Sanfilippo.
1998. Parser evaluation: a survey and a new pro-
posal. In Proc. LREC98.

Sanda Harabagiu, Dan Moldovan, Marius Paşca, Mi-
hai Surdeanu, Rada Mihalcea, Roxana Gı̂rju, Vasile
Rus, Finley Lăcătuşu, and Răzvan Bunescu. 2001.
Answering complex, list and context questions with
LCC’s question-answering server. In Ellen M.
Voorhees and Donna K. Harman, editors, Proc.
TREC-10, number 500-250 in NIST Special Pub-
lication. NIST.

Lynette Hirschman, Marc Light, Eric Breck, and
John D. Burger. 1999. Deep Read: A reading com-
prehension system. In Proc. ACL’99. University of
Maryland.

Jimmy J. Lin. 2001. Indexing and retrieving natural
language using ternary expressions. Master’s the-
sis, MIT.

Igor Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press.

Diego Mollá, Rolf Schwitter, Michael Hess, and
Rachel Fournier. 2000. Extrans, an answer extrac-
tion system. Traitment Automatique des Langues,
41(2):495–522.

Diego Mollá. 2003. Towards semantic-based overlap
measures for question answering. In Proc. ALTW
2003, Melbourne, Australia.

Pasi Tapanainen and Timo Järvinen. 1997. A non-
projective dependency parser. In Proc. ANLP-97.
ACL.

