
A Multi-Strategy and Multi-Source Approach to
Question Answering

Jennifer Chu-Carroll John Prager Christopher Welty
Krzysztof Czuba David Ferrucci

IBM T.J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598, USA
jencc,jprager,welty,kczuba,ferrucci@us.ibm.com

1 Introduction

Traditional question answering systems typically employ
a single pipeline architecture, consisting roughly of three
components: question analysis, search, and answer se-
lection (see e.g., (Clarke et al., 2001a; Hovy et al., 2000;
Moldovan et al., 2000; Prager et al., 2000)). The knowl-
edge sources utilized by these systems to date primarily
focus on the corpus from which answers are to be re-
trieved, WordNet, and the Web (see e.g., (Clarke et al.,
2001b; Pasca and Harabagiu, 2001; Prager et al., 2001)).
More recent research has shown that introducing feed-
back loops into the traditional pipeline architecture re-
sults in a performance gain (Harabagiu et al., 2001).

We are interested in improving the performance of QA
systems by breaking away from the strict pipeline archi-
tecture. In addition, we require an architecture that al-
lows for hybridizationat low development cost and fa-
cilitates experimentation with different instantiations of
system components. Our resulting architecture is one that
is modular and easily extensible, and allows for multiple
answering agentsto address the same question in parallel
and for their results to be combined.

Our new question answering system, PIQUANT,
adopts this flexible architecture. The answering agents
currently implemented in PIQUANT vary both in terms
of the strategies used and the knowledge sources con-
sulted. For example, an answering agent may employ sta-
tistical methods for extracting answers to questions from
a large corpus, while another answering agent may trans-
form select natural language questions into logical forms
and query structured knowledge sources for answers.

In this paper, we first describe the architecture on
which PIQUANT is based. We then describe the answer-
ing agents currently implemented within the PIQUANT
system, and how they were configured for our TREC2002
runs. Finally, we show that significant performance im-
provement was achieved by our multi-agent architecture
by comparing our TREC2002 results against individual
answering agent performance.

2 A Modular and Extensible QA
Architecture

The architecture adopted by our PIQUANT system,
shown in Figure 1, defines several basic roles that com-
ponents of a QA system can play. The definition of each
role includes a consistent interface that allows compo-
nents implementing that role to be easily plugged into the
system. This architectural approach is not simply to facil-
itate good software engineering in a group, but it allows
hybridization at a fairly low development cost, and it also
facilitates experimentation based on the choices available
within the different component roles.

The main components of our architecture are briefly
described as follows:

1. Question Analysiscomponents analyze questions
to produce information consumed by other compo-
nents in the form of a QFrame. Information con-
tained in the QFrame should minimally include a
question type that would help guide the selection of
one or more answering agents (see below) appropri-
ate for addressing the question. A QA system typi-
cally has one question analysis component, but may
possibly have as many as one per answering agent.

2. Answering Agent components implement answer
finding strategies given the results of question anal-
ysis and a knowledge source. These may be as sim-
ple as composing a bag-of-words query for docu-
ment/passage retrieval, or as complex as breaking
the question into sub-questions and consulting mul-
tiple knowledge sources. We expect QA systems
to have multiple answering agents that pursue dif-
ferent strategies in parallel, which we believe to be
an important feature of our architecture: not only
can we experiment with different question answer-
ing strategies and knowledge sources, but with com-
bining them as well.

3. Answer Resolution components combine the re-
sults of multiple answering agents into a single rank-

Answering Agents

KSP

Semantic
Search

Keyword
Search

Question

WordNet

Answer

Cyc

QFrame

Question
Analysis

QGoals

Knowledge-Based
Answering Agent

Statistical
Answering Agent

Aquaint
corpus

TREC
corpus

EB

Answer
Resolution

Definition Q
Answering Agent

Cyc-Based
Answering Agent

Knowledge Sources

Figure 1: PIQUANT’s Architecture

ing. These components may simply perform ranking
over the combined set of answers of all answering
agents, or may do something more complex such
as feeding answers from one agent back into oth-
ers. Ultimately, the final answers of a QA system
are provided by this component, so there is only one
such component in any QA system.

4. Knowledge Source Adaptercomponents insulate
the other components of the QA system that consult
knowledge sources from the multitude of data for-
mats, access mechanisms, representation languages,
reasoning services, and ontologies that consumers
of existing structured knowledge sources must be
acutely aware of.

An obvious benefit of our component-based approach
is that we can easily experiment with and compare differ-
ent techniques for filling these roles by keeping the rest
of the components of the QA system fixed and changing
only the components that implement the techniques we
wish to compare. Thus we could, for example, measure
the overall impact on QA performance of using statisti-
cal vs. rule-based annotators, or using machine learning
vs. rule-based answering agents. In addition, as noted
above, we can oftencombinethe strengths of different
techniques to improve overall performance, which will
be the focus of this paper.

3 A Multi-Agent Approach to Question
Answering

Answering agents that can be adopted for QA may dif-
fer along various dimensions. One such dimension is the

type of knowledge source from which answers are ex-
tracted, which may include unstructured text resources
or structured knowledge sources such as Cyc (Lenat,
1995) or WordNet (Miller, 1995). Even when two an-
swering agents consult the same knowledge source, they
may adopt different processing strategies. For example,
existing question answering systems vary greatly, from
utilizing primarily knowledge-driven components, e.g.,
(Harabagiu et al., 2001; Prager et al., 2000) to adopting
mainly statistical methods, e.g., (Ittycheriah et al., 2001;
Ravichandran and Hovy, 2002).

We have so far integrated into our PIQUANT system
answering agents that utilize both structured and unstruc-
tured knowledge sources. For the latter class, we have in-
corporated two answering agents adopting fundamentally
different processing strategies. This section describes
each of these answering agents, as well as how their an-
swers are combined to formulate the system’s final an-
swers.

3.1 Agents Based on Unstructured Information

Perhaps motivated by the TREC QA track, the vast major-
ity of existing question answering systems adopt a large
text corpus as their information source. Additionally,
while many such systems adopt a classic pipeline archi-
tecture, each typically employs a different approach in
instantiating its components. Currently, we have incor-
porated two text-based answering agents into PIQUANT,
one utilizing a primarily knowledge-driven approach and
the other adopting statistical methods. These two an-
swering agents have performed quite comparably in past
TREC QA tracks.

3.1.1 Knowledge-Based Answering Agent

Our first answering agent utilizes a primarily
knowledge-driven approach to question answering, based
on Predictive Annotation (Prager et al., 2000; Prager et
al., 2003). A key characteristic of this system is that
potential answers, such as person names, locations, and
dates, in the text corpus arepredictively annotated. In
other words, the text corpus is indexed not only with key-
words, as is typical for most search engines, but also with
the semantic classes of these pre-identified potential an-
swers.

During the question analysis phase, a rule-based mech-
anism is used to determine one or more of about 80 se-
mantic types of the candidate answer, along with a set of
keywords. A weighted search engine query is then con-
structed from the keywords and the candidate semantic
classes. The search engine then returns a small (typically
10-passage) set of 1-to-3-sentence passages based on the
query. The candidate answers in these passages are iden-
tified and ranked based on three criteria: 1) match in se-
mantic type between candidate answer and expected an-
swer, 2) match in weighted grammatical relationships be-
tween question and answer passages, and 3) answer fre-
quency.

3.1.2 Statistical Answering Agent

The second answering agent used in PIQUANT is the
statistical question answering system of Ittycheriah et al.
(Ittycheriah et al., 2001). This statistical answering agent
is also based on the pipeline architecture; however, in-
stead of adopting rule-based mechanisms, it utilizes a
maximum entropy approach for training system compo-
nents.

In question analysis, one of a set of 32 potential answer
types is selected based on features such as words, POS
tags, bigrams, and question word markers. The search
module adopts a two-pass approach in which high scor-
ing passages from an encyclopedia are used to augment
the query terms, which are then used for search against
the TREC corpus. The search engine returns a large set
of passages (100) for further consideration. Named en-
tities and their semantic types are identified from these
passages, again using a maximum entropy based mecha-
nism, and a confidence value computed for each named
entity based on its likelihood of being a correct answer to
the given question.

3.2 Agents Based on Structured Knowledge Sources

It has been previously established that finding the an-
swers to questions in structured knowledge sources such
as WordNet and including the answer in a bag of words
can improve accuracy (Prager et al., 2001). We have ex-
panded on this notion in two ways, first by adapting a
wide variety of knowledge sources into our QA system,

and second by handling the case of numerical answers in
post-hoc answer filtering.

3.2.1 Knowledge Server Portal
For certain classes of routine fact-seeking questions,

such as populations and capitals of geo-political entities,
the answering agent recognizes a number of ways of ask-
ing these questions and formulates a query to astruc-
tured knowledge source.These knowledge sources in-
clude public databases such as the US Geological Survey,
websites with data in formatted tables from websites such
ashttp://www.UselessKnowledge.com , public
domain lexicons such as WordNet, and the Cyc knowl-
edge base.

Each of these knowledge sources is maintained by ex-
ternal groups and is out of our direct control. Each source
has data in a different format, requires a different ac-
cess mechanism, is expressed in a different representation
language, provides different reasoning services, and as-
sumes a different ontology. In addition, this external con-
trol means that any of these formats, access mechanisms,
etc., may change, and of course adding new knowledge
sources introduces a new set of choices to be aware of.

Rather than require that each answering agent under-
stand all these dependencies in order to use the knowl-
edge sources, we have isolated the role of adapting exter-
nal structured knowledge sources and presenting a con-
sistent set of choices to all the QA components through
a set of knowledge-source adapters. We refer to the sys-
tem component that provides access to these knowledge-
source adapters as theknowledge server portal (KSP).
The adapters provided by KSP support the set of queries
the question analysis component is capable of recogniz-
ing, such as “What is the capital of Syria?” or “What is
the state bird of Alaska?”, and are responsible for com-
posing the proper query to the knowledge sources that
may have the answer. The answering agent then may for-
mulate a query that includes the answer as a search term
similar to (Prager et al., 2001).

3.2.2 Cyc Sanity Checker
For certain questions, in particular questions that have

numerical answers, adding the answer as a search term
is not effective, because there are innumerable variations
on the way the number may be expressed in the corpus.
Populations, for example, vary over time by a significant
amount, and are usually in the millions. For a question
like, “What is the population of Maryland?”, knowing
that the latest figure for the population of Maryland is
5,296,486 does not quite help us search the corpus, be-
cause we are almost guaranteed that precise number will
not appear. It could be expressed as “5 million”, “5.1
million”, “5.3 million”, or “5,200,390”, etc. This pro-
cess is complicated further when unit conversions are re-
quired, as in the question, “How big is Australia?” In

addition to having to find a number in the vicinity of “1
million square miles”, we also need to account for the
fact that the passage may talk about square kilometers,
or acres. Instead of folding the known answer into the
query in cases like this, we allow the question answering
system’s regular procedure to generate a set of candidate
answers first, and check them to be within some experi-
mentally determined range of the answer the knowledge
source provides.

We have implemented the validation of answers with
numerical values using an interface to Cyc called the Cyc
sanity checker. The sanity checker is invoked with the
expected semantic type of the answer (such as POPULA-
TION in the first example above), the focus of the ques-
tion (“Maryland”), and the system’s proposed answer (“X
people”). It returns one of the following verdicts: “in
range”, if the proposed answer is within a certain “fudge
factor” (currently 10%) of the value in Cyc’s knowledge
base, “out of range”, if the value falls outside of the ac-
ceptable range of values, or “don’t know”, indicating that
Cyc either has no information about the focus itself, or
about the particular attribute in question about the focus.

3.3 Answer Resolution — Putting it All Together

We have described four independent answering agents
currently incorporated into our multi-agent architecture.
With the exception of the Cyc sanity checker, which is
invoked as a post-hoc filtering process for rejecting un-
reasonable answers, the other three answering agents ac-
tively contribute potential answers to a given question. It
is then the task of the answer resolution component to
determine how the various answers proposed by each an-
swering agent should be combined and reconciled.

Because of the TREC requirement that all answers be
justified by passages from the given corpus (henceforth
referred to as the AQUAINT corpus), we feed potential
answers given by KSP back into the search process to
identify relevant passages in a process similar to that de-
scribed in (Prager et al., 2001). These passages typically
contain answers identified by KSP, as well as relevant
question terms; thus, they are good candidate passages
for locating justification for the answer provided by KSP
in the reference corpus. Because of this answer feedback
mechanism, all answering agents produce relevant pas-
sages and ranked candidate answers in a uniform fashion,
simplifying the answer resolution process.

Currently, PIQUANT’s answer resolution component
allows for merging at two different points in the pipeline
as follows:

• Passages proposed by multiple answering agents
can be combined to feed through the answer selec-
tion component of our knowledge-based answering
agent.

• Candidate answers proposed by different answering
agents can contribute to determining PIQUANT’s fi-
nal output.

In addition to determining the answer to a given ques-
tion, the answer resolution also computes aconfidence
value indicating the system’s certainty in the given an-
swer being a correct answer to the question. This con-
fidence value can then be used for ranking system re-
sponses for TREC submissions.

4 Recognizing When the System Does Not
Know

To make the task more realistic, the test set for the QA
track contains a number of questions for which no an-
swer can be found in the document collection, as verified
by NIST (we call such questions “NIL questions” or “no-
answer questions”). To simplify the task of detecting no-
answer questions, we reduce it to the problem of finding
the questions for which we can reasonably assume that
the system was not able to find a correct answer. This
is a much weaker condition since it is dependent on the
answer search strategy the system implements, i.e., there
might be other strategies that would be successful at find-
ing an answer. It can, however, be implemented easily
by setting a threshold on the confidence value that is as-
signed to a question by the answer resolution module.

We implemented two strategies for determining which
questions had no answers: a knowledge-based strat-
egy and strategy based on confidence processing. The
knowledge-based strategy makes use of KSP and is
evoked for questions that were classified as appropriate
for KSP look-up. If KSP was able to provide an answer to
such a question and the answer string could not be found
in the collection, we assumed with high confidence that
the question is a NIL-question. Since KSP has only re-
cently been integrated into the system and the number of
questions that are referred to it is still limited, this NIL-
assignment strategy applied to only two questions in the
final submission.

In our confidence-based approach, we adopted a two-
stage processing strategy for detecting and ranking no-
answer questions. The first stage detects which questions
are likely to have no answer in the collection by compar-
ing their scores with a trained confidence threshold. The
second stage takes care of the proper ranking of questions
likely to have no answers by increasing their rank.

In order to train the NIL assignment algorithm, we ran
our system on the TREC-10 question set and plotted the
distribution of different question types in the final rank-
ing. We marked the questions that did not have an answer
according to NIST, the questions for which the system
produced a correct answer, and the questions for which
the system’s output was wrong. The resulting plot is in

NIL CORRECT
xxxxxxxxxxxxxx.xx.xxxxxxxxxxxxxx.x..xx.xx 0 35

xxxxxx-x.-x.xxxxxxxx..x-xxxxxxxxxx.xxxxx.x.xxx.-xx 4 38
xx.....x.-xx.....xx....x.xx.x..xxx.xx...xx.x..xx.x 1 22
.-...x.xx-..x..x.xx....xx.x...xx.....x..xxx....xx. 2 18
........x....x..xxxx...x...xx....xxxxx--......xxx. 2 17
..x.xxx...-x-...xx.....x...xx--.xx-....xx..x..x... 5 16
..x.x.-......x....x.x-.x.xx...-x-x-x-...-..x-x.x.x 8 15
x..-x.....x.x.....-..........-...-..x.-....-..x... 6 6
.x--......xx....-.-..x.-....-.-..x...........--... 9 5
-.-.-..--...-x.xx....-.-x......-.....-..-...-.x.-. 13 5

x correctly answered question
. incorrectly answered question
- NIL question according to NIST

Figure 2: TREC-10 training data for NIL assignment

Figure 2. It represents the 491 Trec-10 questions (9 ques-
tions were thrown out, see (Voorhees, 2001)) split into
blocks of 50 (based on TREC-10 we expected approxi-
mately 50, or 10%, of the questions to have no answers).
Next to each block we plotted the number of questions
within that block that were answered correctly and the
number of NIL questions within that block. As can be
seen in Figure 2, the numbers change almost monoton-
ically, which suggests that the confidences produced by
the system could be a reasonably reliable indicator of the
system’s performance on a given question.

According to Figure 2, the final two blocks contain
more NIL questions than correctly answered questions.
This means that changing the system’s answer to NIL
for all the questions in these two blocks will produce a
net gain of 12 correctly answered questions. It will also
change the incorrect answers to NIL for 68 questions,
which is valuable from the user’s point of view, assum-
ing that “NIL” could be interpreted as “I don’t know.”1

Based on this analysis we manually picked (on the
training data) a confidence threshold that would allow
us to select the 100 lowest ranked questions. We used
the same threshold on the test set and changed whatever
answers the system found for the questions below the
threshold to NIL.

We also looked at how the average precision changed
within a 50-question window as we moved it by one ques-
tion at a time down the ranking, and we found the trend
to be close to monotonic. Since changing the answers
in the final two blocks to NIL caused the average preci-
sion within these blocks to increase, we decided to move
the two blocks higher in the ranking to the rank with the
same average precision. We computed the difference in
confidence value between the answer at the target rank
and the highest ranking answer in the NIL-block. This
difference was then added to the confidence values of all

1If the systems participating in the competition were penal-
ized for providing incorrect answers, the questions in the third-
to-last block could also be changed to NIL with no net gain
in the number of correctly answered questions but significantly
fewer potentially confusing answers.

NIL answers in our runs submitted to TREC.

5 Performance Evaluation

5.1 Experimental Setup

For the 2002 TREC QA track, we submitted three runs,
each evaluating a different aspect of PIQUANT’s multi-
strategy, multi-source architecture. These three runs were
set up as follows:

1. Run “IBMPQ” exploits the multi-source aspect of
PIQUANT with the knowledge-based answering
agent. However, instead of only searching in the
AQUAINT corpus for relevant passages, we adopt
two other supporting corpora: the corpus used in the
TRECs 8-10 QA tracks (henceforth referred to as
the TREC corpus) and a subset of the Encyclopedia
Britannica. A corpus plays a supporting role when
candidate answers found in that corpus can be used
to boost the confidence of the same answer found in
the main corpus, but the corpus cannot propose new
answers not found in the main corpus.

2. Run “IBMPQSQA” exploits the multi-strategy as-
pect of PIQUANT by incorporating results from the
SQA statistical answering agent made available to
us by Ittycheriah and Roukos (Ittycheriah et al.,
2001). The knowledge-based answering agent was
configured to retrieve relevant passages from the
AQUAINT and TREC corpora. Additionally, the
top 10 passages with the correct answer type re-
trieved by the statistical answering agent were also
considered. PIQUANT’s answer resolution com-
ponent then selects and ranks answers based on
passages from the three answering agents/sources.
Once the top answer for each question is determined,
PIQUANT’s confidence score for the answer is ad-
justed based on the answer given independently by
the statistical answering agent. A large boost in con-
fidence is given to identical answers proposed by
both systems, whereas a small boost in confidence
is given to partially overlapping answers.

3. Run “IBMPQSQACYC” examines the effect of the
Cyc sanity checker as a post-hoc filtering process.
The system is configured exactly as in run “IBM-
PQSQA” with the following exception. Prior to
determining the top answer for each question, PI-
QUANT repeatedly invokes the Cyc sanity checker
with a semantic representation of the question and
the topmost uneliminated candidate answer as long
as the sanity checker deems the given answer “out of
range”. PIQUANT then eventually selects its most
confident answer acceptable to the sanity checker.
Note that if this top ranked answer is considered “in

range” (as opposed to “don’t know”), its confidence
is given a strong boost, as it is independently vali-
dated by a structured knowledge source.

After PIQUANT generates the answer to each ques-
tion and its associated confidence, the NIL-assignment
process discussed in Section 4 is invoked. As a result,
answers with low confidences were changed to NIL and
their confidences slightly increased.

5.2 Results and Analysis

5.2.1 Results of Submitted Runs

Table 1 shows the results of our three runs both in terms
of percent correct and average precision. For compari-
son purposes, it shows, in addition, the performance of
the statistical answering agent submitted independently
to the same track (ibmsqa02a) (Ittycheriah and Roukos,
2002), as well as the performance of the knowledge-
based answering agent using only the AQUAINT corpus
(PQ single).2 A comparison between the results for PQ
single and IBMPQ shows the impact of the multi-source
aspect of PIQUANT. Our results show that by attempting
to identify supporting evidence from two additional cor-
pora, the system achieved 19.9% relative improvement in
the percentage of correct answers, and the average preci-
sion score improved by 14.6%. A comparison of the re-
sults for runs IBMPQ, ibmsqa02a, and IBMPSQA shows
the contribution of adopting multiple strategies for ques-
tion answering in PIQUANT. Although the percentage
of questions answered correctly improved for both sys-
tems (from 33.8% for IBMPQ and 28% for ibmsqa02a to
35.6% combined), the gain in average precision is much
more substantial (9.7% relative improvement compared
to IBMPQ). This confirms our intuition that when an-
swering agents (semi-)independently arrive at the same
answer, we can be more confident that the answer is a
correct one. A comparison of the results for runs IBM-
PQSQA and IBMPQSQACYC illustrates the impact of
the Cyc sanity checker. Although the impact as shown is
very minimal, we should note that because of the limita-
tions in PIQUANT’s current question understanding ca-
pabilities, the sanity checker was invoked only for 3 out
of the 500 questions (although there were several more
questions which fit the profile but were not detected as
such). Additionally, out of the 3 questions, Cyc only had
knowledge about one of them,“What is the population of
Maryland?” It is the effect of sanity checking on this
question that led to the improved performance for our
last run. PIQUANT’s top ranked answer for this ques-
tion in run IBMPQSQA was “50,000”, from the sentence

2The results for PQ single were obtained by manual evalua-
tion by one of the authors with reference to available judgments
by NIST accessors and answer patterns made available by Ken
Litkowski.

“Maryland’s population is 50,000 and growing rapidly.”
This would otherwise be an excellent answer if it were
not for the fact that the article from which this passage is
extracted discusses (the Maryland population of) an ex-
otic species called nutria. By employing sanity check-
ing, however, PIQUANT was able to consider that answer
“out of range”, and return an initially lower-ranked cor-
rect answer “5.1 million” instead with high confidence.

5.2.2 Effects of NIL Assignment
In our best submission run (IBMPQSQACYC), the

confidence-based NIL-assignment strategy resulted in
147 NIL answers, which was more than we anticipated.
This is due to the generally lower confidences on a new
question set. The system correctly assigned NIL to 29
out of 46 questions, which translates to a recall of 0.630
and precision of 0.196. By assigning the NIL answers,
the system changed 9 correct answers incorrectly to NIL,
which gave us a net gain of 20 questions (given the an-
swer pattern set currently available to us). The ques-
tions for which the answer was changed to NIL were
then moved to rank 288, which resulted in a very minimal
(below 0.5%) improvement in the final average precision
score.

5.2.3 Analysis of the Average Precision Metric
If the same scoring method had been used this year

as in previous TREC QA tracks, the mean reciprocal
rank (MRR), exercised over a single answer per question
would amount to a simple count of number correct. How-
ever, in order to begin to tackle the issue of answer reli-
ability, answers this year were returned by participants
in decreasing order of system confidence (although no
numerical values representing confidence were returned).
The systems’ final scores were evaluated by Average Pre-
cision, the average being computed over the first answer,
the first two answers, the first three answers, and so on
up to the whole set. Clearly, this gives considerably more
relative weight to the earlier answers, and considerably
less to the last answers. The contributionck of a correct
answer in positionk out of N questions in total is given
by ln(N+1

k+1) ≤ Nck ≤ ln(N
k) + 1

k .
The plot in Figure 3 shows this contribution, in units

of 1/500, for positions 1 to 500 for a set of 500 questions.
Relative to a score of approximately 1 unit for the greater
part of the range, the contribution of the first position is
nearly 7, indicating how important it is for systems to sort
their submissions well.

Another view of the evaluation space introduced by
the Average Precision metric is presented in Figure 4.
The diagonal line and “cloud” represent what happens
with no attempt to sort the results. The solid line in the
center of the cloud is the ideally-uniformly-distributed
case (i.e. if 1/3 of the answers are right, the sub-
mitted list goes ...RWWRWWRWWRWW...), and the

IBMPQ IBMPQSQA IBMPQSQACYC ibmsqa02a PQ single
% Correct 33.8% 35.6% 35.8% 28.0% 28.2%
Avg Prec 0.534 0.586 0.588 0.454 0.466

Table 1: PIQUANT’s TREC 2002 Run Results

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500

Rank Position

C
o

n
tr

ib
u

ti
o

n
u

n
it

s
 o

f
1
/5

0
0

Figure 3: Contribution of Correct Answers to Average
Precision Score

cloud is a simulation of randomly-distributed rights and
wrongs, given the number of correct answers. The
width of the cloud approximately represents a 3-standard-
deviation spread. The upper curve is the optimal case
(e.g. RRRRRR......WWWWW), while the lower curve is
the pessimal case (i.e. all the right answers are sorted to
the end.)

5.2.4 Ranking Ability

The circled points in the middle of Figure 4 represent
our TREC runs. The maximum possible score, repre-
sented by the upper curve, forn correct out ofN is ap-
proximately n

N (1 + ln N
n+1). By examining how far up

a virtual vertical line from the diagonal (expected) to the
upper curve (max) a plotted point (actual) lies, one can
see how well the system sorted its answers for submis-
sion - i.e. how well it knows what it knows. This frac-
tion, which we call theRanking Ability, can be computed
as actual−expected

max−expected . In the case of our best run, we scored
179 questions correct (35.8%), for which the expected
unsorted average precision is 0.358. The maximum pos-
sible average precision is 0.726 for this number correct,
based on the above formula. Our score of 0.588 repre-
sents a ranking ability of .625, indicating a good correla-
tion of confidence and correctness. The top 15 submis-
sions are shown in Table 2, sorted by ranking ability.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500

Questions Correct

A
v
e
ra

g
e
 P

re
c
is

io
n

Figure 4: Upperbounds and Lowerbounds for Average
Precision Scores

6 Conclusions and Future Work

We have presented here the first quantitative results from
our new PIQUANT question answering system. PI-
QUANT exploits a multi-strategy and multi-source ap-
proach to QA, enabling not only the best approach to be
taken on a per-question basis, but the use of mutual re-
inforcement when multiple agents or sources are used si-
multaneously. Based on our submissions to TREC and
their results, we have shown significant improvements
achieved by our approaches over baseline systems. First,
we have shown an 14.6% relative gain in average preci-
sion score with multiple corpora over a single one, and a
further 9.7% relative gain by adding a statistical answer-
ing agent. Second, we have identified an effective method
for assigning NIL answers to questions based on the con-
fidence values generated by our system. This method
identified 63% of all no-answer questions in the test set
with minimal false negatives. Third, we have shown that
a multi-agent approach to question answering allows us
to achieve a good correlation of confidence values and
correctness. Our average precision of 0.588 on 179 cor-
rect questions achieved 62.5% of the gain achievable by
sorting, a significant improvement over the baseline of
random sorting.

We have only just begun to incorporate a knowledge

Submission AP % Correct Ranking Ability
limsiQalir2 .497 26.6 .657
IBMPQSQACYC .588 35.8 .627
BBN2002C .499 28.4 .603
nuslamp2002 .396 21.0 .569
IRST02D1 .589 38.4 .559
isi02 .498 29.8 .555
FDUT11QA1 .434 24.8 .539
ibmsqa02c .455 29.0 .461
exactanswer .691 54.2 .449
ilv02wt .450 30.8 .392
uwmtB3 .512 36.8 .392
ali2002b .496 36.2 .365
aranea02a .433 30.4 .357
LCCmain2002 .856 83.0 .168
pris2002 .610 58.0 .095

Table 2: Ranking Ability of Top 15 Submissions

base and inference engine (Cyc) to do sanity checking
of answer candidates: the number of times this capabil-
ity was invoked are too few to do other than say that the
approach looks promising. In our future work, we plan
to expand PIQUANT’s ability to recognize cases when
sanity checking is appropriate, improve Cyc’s coverage
of valid answer ranges, as well as adopt a confidence-
based approach to selecting answering agents. Improve-
ments since TREC have led to 16 invocations of the sanity
checker on the TREC 2002 question set. These invoca-
tions led to one additional correct 1st, 2nd, and 3rd place
answers each, validated 4 correct 1st place answers while
erroneously validating 3 incorrect 1st place answers, and
rejected 122 incorrect answers without any erroneous re-
jections.

Acknowledgments

We would like to thank Abe Ittycheriah and Salim
Roukos for making available their system and results for
experimental purposes, Stefano Bertolo for his help with
Cyc integration, and Ruchi Kalra for ontology popula-
tion. This work was supported in part by the Advanced
Research and Development Activity (ARDA)’s Ad-
vanced Question Answering for Intelligence (AQUAINT)
Program under contract number MDA904-01-C-0988.

References

Charles Clarke, Gordon Cormack, and Thomas Lynam.
2001a. Exploiting redundancy in question answering.
In Proceedings of the 24th SIGIR Conference, pages
358–365.

C.L.A. Clarke, C.V. Cormack, T.R. Lynam, C.M. Li, and
McLearn G.L. 2001b. Web reinforced question an-
swering. InProceedings of the Tenth Text Retrieval
Conference, pages 673–679.

Sanda Harabagiu, Dan Moldovan, Marius Pasca, Rada
Mihalcea, Mihai Surdeanu, Razvan Bunescu, Roxana
Girju, Vasile Rus, and Paul Morarescu. 2001. The
role of lexico-semantic feedback in open-domain tex-
tual question-answering. InProceedings of the 39th
Annual Meeting of the Association for Computational
Linguistics, pages 274–281.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Michael
Junk, and Chin-Yew Lin. 2000. Question answering
in Webclopedia. InProceedings of the Ninth Text RE-
trieval Conference, pages 655–664.

Abraham Ittycheriah and Salim Roukos. 2002. IBM’s
statistical question answering system – TREC-11. In
Proceedings of the Eleventh Text Retrieval Conference.

Abraham Ittycheriah, Martin Franz, and Salim Roukos.
2001. IBM’s statistical question answering system –
TREC10. InProceedings of the Tenth Text Retrieval
Conference, pages 258–264.

Douglas B. Lenat. 1995. Cyc: A large-scale investment
in knowledge infrastructure.Communications of the
ACM, 38(11).

George Miller. 1995. Wordnet: A lexical database for
english.Communications of the ACM, 38(11).

Dan Moldovan, Sanda Harabagiu, Marius Pasca, Rada
Mihalcea, Roxana Girju, Richard Goodrum, and Vasile
Rus. 2000. The structure and performance of an open-
domain question answering system. InProceedings of
the 39th Annual Meeting of the Association for Com-
putational Linguistics, pages 563–570.

Marius Pasca and Sanda Harabagiu. 2001. High per-
formance question answering. InProceedings of the
24th SIGIR Conference on Research and Development
in Information Retrieval, pages 366–374.

John Prager, Eric Brown, Anni Coden, and Dragomir
Radev. 2000. Question-answering by predictive anno-
tation. InProceedings of the 23rd SIGIR Conference,
pages 184–191.

John Prager, Dragomir Radev, and Krzysztof Czuba.
2001. Answering what-is questions by virtual anno-
tation. InProceedings of Human Language Technolo-
gies Conference, pages 26–30.

John Prager, Jennifer Chu-Carroll, Eric Brown, and
Krzysztof Czuba. 2003. Question answering using
predictive annotation. InAdvances in Question An-
swering. To appear.

Deepak Ravichandran and Eduard Hovy. 2002. Learning
surface text patterns for a question answering system.
In Proceedings of the 40th Annual Meeting of the As-
sociation for Computational Linguistics, pages 41–47.

Ellen M. Voorhees. 2001. Overview of the TREC 2001
question answering track. InProceedings of the 10th
Text Retrieval Conference, pages 42–51.

