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Abstract

We compared a multi-class k-nearest neighbor
(kNN) approach and a standard Rocchio method
in the filtering tasks of TREC-10. Empirically, we
found kNN more effective in batch filtering, and
Rocchio better in adaptive filtering. For thresh-
old adjustment based on relevance feedback, we
developed a new strategy that updates a local re-
gression over time based on a sliding window over
positive examples and a sliding window over neg-
ative examples in the history. Applying this strat-
egy to Rocchio and comparing its results to those
by the same method with a fixed threshold, the
recall was improved by 37-39% while the precision
was improved by as much as 9%. Motivated by
the extremely low performance of all systems on
the T10S metric, we also analyzed this metric, and
found that it favors more frequently occurring cat-
egories over rare ones and is somewhat inconsistent
with its most straightforward interpretation. We
propose a change to this metric which fixes these
problems and brings it closer to the Cy.; metric
used to evaluate the TDT tracking task.

1. Introduction

We participated in the TREC-10 information filtering track,
submitting results of a standard Rocchio method and one
variant of our k-nearest neighbor (kNN) algorithms[13] for
the batch and adaptive filtering tasks. Our goals for this
year’s TREC were twofold:

1. To establish a performance baseline for text categoriza-
tion on the new Reuters corpus.

2. To develop an effective adaptive thresholding technique
for the adaptive filtering subtask.

3. To investigate the properties of the T'10S metric using
the isocurve analysis in precision-recall space we devel-
oped for the TREC-9 metrics|[1].

! Authors’ names are in alphabetical order.

Item (1) was motivated by the success of kNN on previous
versions of the Reuters corpus[10, 9] and is addressed by
our batch filtering results, for which we applied the Avg?2
variant of kNN. Item (2) was motivated by our difficulties
in developing an effective adaptive thresholding method for
TREC-9, and is addressed by our new margin-based local
regression technique of adaptive thresholding. We were suc-
cessful in both endeavors, ranking third of eighteen runs
in the batch-filtering task and second of thirty runs in the
adaptive filtering task for both the Fjg and 7105 metrics®

Ttem (3) was motivated by the over 50% drop in performance
for the T'10S metric when moving from the validation to the
test set, compared to a drop of only 27% for the Fj metric.
This observation combined with an analysis of the T'10S
metric in terms of its isocurves in precision-recall space lead
to the discovery of some inconsistencies between the user
behavior that the T10S metric appears to model and what
it actually models. We propose a fix for 7105, and compare
the modified metric to the weighted tracking cost (Ciri)
metric used for the TDT tracking task.

This paper has five sections past the introduction. Sec-
tion 2 reports the experiments with our kNN and Rocchio
systems in batch filtering. Section 3 compares kNN and
Rocchio in adaptive filtering, and introduces our novel ap-
proach for adaptive thresholding. Section 4 analyzes the
potential problems inherent in the 7105 metric, suggests
a minor alteration that resolves these problems, and dis-
cusses the relationships between the modified and unmodi-
fied T'10S and the Fj and Cj,, metrics. Section 5 presents
our conclusions and future research goals for information
filtering.

2. Batch Filtering

We applied our kNN system and our implementation[13] of
a standard Rocchio method to this task to compare these
two methods.

?Rankings were computed by the authors across all runs sub-
mitted to the TREC-10 filtering tasks from official per-category,
per-run performance data supplied by the filtering track coordi-
nators; these rankings are not official.



2.1 K-Nearest Neighbor (kNN)

kNN, an instance-based classification method, has been an
effective approach to a broad range of pattern recognition
and text classification problems [2, 8, 10, 13]. In contrast
to “eager learning” algorithms (including Rocchio, Naive
Bayes, Decision Trees, etc.) which have an explicit train-
ing phase before seeing any test document, kNN uses the
training documents “local” to each test document to make
its classification decision on that document. Our kNN uses
the conventional vector space model, which represents each
document as a vector of term weights, and the distance be-
tween two documents is measured using the cosine value
of the angle between the corresponding vectors. We com-
pute the weight vectors for each document using one of the
conventional TF-IDF schemes [4], defined as:

wq(t) = (1 +logy n(t, d)) x log,(|D[/n(t)) (1)

where n(t, d) is the within-document frequency of term ¢ in
document d, n(t) is the total document frequency of term ¢
in document set D.

Given an arbitrary test document d, the kNN classifier as-
signs a relevance score to each candidate category (c;) using
the following formula:

S(CJ'ad): Z
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where set Ry (d) are the k nearest neighbors (training doc-
uments) of document d. By sorting the scores of all can-
didate categories, we obtain a ranked list of categories for
each test document; by further thresholding on the ranks
or the scores, we obtain binary decisions, i.e. the categories
above the threshold will be assigned to the document. There
are advantages and disadvantages to different thresholding
strategies [12].

2.2 Rocchio

Rocchio is an effective method using relevance judgments
for query expansion in information retrieval[3, 5], and the
most common (and simplest) approach to the filtering tasks
in TREC[14].

The standard Rocchio formula computes a vector as the
prototype or centroid of a class of a documents. Given a
training set of documents with class labels, the prototype
vector is defined to be:
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where R, is the set of positive training examples, R;,k is
the “query zone”[6], that is, the k top-ranking documents
retrieved from the negative training examples when using
the centroid of the positive training examples as the query.
To increase the efficiency of computation, we retain only the
tOP Pmaz components of the prototype vector. The values

of v, k (the size of the local zone) and py,., are the pre-
specified parameters for the Rocchio method.

In the filtering process, Rocchio computes the cosine sim-
ilarity between each test document and the prototype of
every category, where the prototype is updated over time us-
ing the past documents whose category labels are available
through relevance feedback. Thresholding on these scores
yields binary decisions on each document with respect to
every category.

2.3 Batch Filtering Results

In our experiments with Rocchio and kNN, we defined a to-
ken to be the longest possible sequence of letters and digits,
followed by an optional “’s” or “nt”. Tokens which were
purely numbers were discarded, as were common English
words found on a stop word list. Tokens were stemmed
with the Porter stemmer and assigned weights according to
equation 1 above. Per-category thresholds for binary de-
cision making were set by five-fold cross-validation on the
training data.

We submitted two sets of results, labelled “CMUCATa2f5”
and “CMUCATa210”, for batch filtering; the former is op-
timized for the Fj metric and the latter the 7'10S metric.
Both runs used the kNN.avg2 method with kp = 200 (num-
ber of nearest neighbors which are positive examples of the
category) and kn = 500 (number of nearest neighbors which
are negative examples of the category), since this method
and parameter settings had the best performance during
cross-validation for both metrics. Table 1 summarizes the
results.

Based on previous experience with the Reuters-21578 and
OHSUMED corporal9, 11], we applied a variety of feature
selection methods, including document frequency, mutual
information, information gain, and chi-square. None of
them produced any significant improvement in the perfor-
mance of our system on the Reuters 2001 corpus. Why we
should see no improvement on this corpus while we see con-
sidrable improvement on the other corpora requires further
investigation.

3. Adaptive Filtering

Our research strategy consists of two parts:

e analyzing the scores generated by kNN and Rocchio
over time, to see which method produces more discrim-
inatory scores for separating positive and negative ex-
amples of a category; and

e using margin-based local regression (our new approach)
to track the potential shift of the optimal threshold for
each category over time.



RUN ID RECALL PREC T108 Ep RANK-T10S RANK-Fp
CMUCATa2f5 0.322 0.719 0.287 0.511 7/18 3/18
CMUCATa210 0.358 0.618 0.324 0.489 3/18 7 or 8/18
Table 1. Results by CMU-CAT for Batch filtering
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Figure 1. Scores vs. time for on- and off-topic documents by Rocchio for category R83

3.1 Score analysis for Rocchio and kNN

Figures 1 and 2 show the scores for category R83 (“MET-
ALS TRADING”) generated by kNN and Rocchio during
the adaptive filtering process where the relevance judgment
for each test document was made available to the system af-
ter that document is scored, regardless what decision (Yes
or No) the system made for that document; the category
prototype was updated accordingly per test document. We
used the TREC-10 training corpus for this experiment by
splitting the data in to the training and test halves and
then running the systems on these data. The scores gener-
ated in such a process, obviously, are better than those kNN
and Rocchio would generate under the condition required in
TREC for relevance feedback, i.e. relevance judgments are
available for a system only for the documents which the
system make a Yes decision upon. Nevertheless, those fig-
ures allow us to get a rough idea about a major difference
between the scores generated by our two systems. For Roc-
chio, there is clear separation on average between the scores
for the two classes (Yes and No) over time, while for kNN,
the scores for the two classes are will blended. This means
that finding the optimal thresholding function over time us-
ing the scores generated by Rocchio would be a much easier
task than thresholding over the scores generated by kNN.
Also, the average scores for each class by Rocchio seem to
be constant in different time intervals; however, there is a
visible trend (increasing in value over time) in the average
scores by kNN, at least for the particular category being
observed. In fact, we compared pairwise figures for kNN

and Rocchio over all the 84 categories selected from Reuters
2001 for TREC-10, and observed similar patterns with most
categories in the TREC-10 filtering training corpus.

These empirical findings were rather suppressing to us, be-
cause we have found kNN to perform better than Rocchio in
batch filtering and conventional text categorization[9, 10].
On the other hand, we have also found Rocchio works sur-
prising well (comparable or just slightly worse than kNN)
for the event tracking task in the domain of Topic Detection
and Tracking (TDT)[12], which is similar (but not identical)
to adaptive filtering, in the sense that both processes start
with a small number of training examples per class. Why
does Rocchio perform worse than kNN in batch filtering but
better in adaptive filtering? We do not have a satisfactory
interpretation for this question at this point; deeper under-
standing about this invites future research.

3.2 Margin-based local regression

Here we propose a novel approach, namely margin-based
local regression, for predicting optimal thresholds over time.
The intuition is rather simple: if we have two streams of
scores (one for previously-classified positive examples and
the other for previously-classified negative examples for a
particular class), and if the two streams are separable in
value (Figure 1) in any particular time interval, then we
would choose some values inside of the margin between the
two streams as the thresholds, where by margin we mean the
difference between the minimal score for positive examples
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Figure 2. Scores vs. time for on- and off-topic documents by unnormalized kNN for category R83

and the maximal score for negative examples in a particular
time interval. One can think of a waving band with both
its center location and width changing over time in a two
dimensional space of magnitude verses time. We want to use
local regression to track the shift of the “optimal” threshold
over time inside of the band.

This simple description is sufficient to gain intuition into
the method, but is not sufficient for an accurate defini-
tion. First, we do not assume that the positive and negative
streams are always separable, but artificially make those
streams separable by excluding outliers. That is, for the
positive stream, our system only includes the truly positive
examples for which the system predicted YES. All other ex-
amples, including the false-alarms, misses and documents
for which the system correctly predicted NO, form the neg-
ative stream; our system unfortunately cannot exclude the
misses because the relevance judgments for those examples
are not available during the relevance feedback. Second,
we need to relax the definition of margin, to avoid making
our method overly sensitive to outliers. Third, we need to
be precise about what is “optimal”, discussing the concern
about risk minimizing. Fourth, we need specify the local
regression for tracking the shift of optimal thresholds over
time.

The precise definition of our approach uses the following
notation:

o X = {zr1,22...74,} is the sliding window of scores
for the k4 (at most) most recent positive examples for
which the system predicted YES;

oY = {y1,ys...yx_} is the sliding window of scores for
the k_ (at most) false-alarms, misses, and documents
for which the system correctly predicted NO;

e u,(t) = ait + by is the local regression obtained by
fitting a line over the data points in sample X, where
a; and b; are the regression coeflicients;

e ,(t) = ast + by is the local regression obtained by
fitting a line over the data points in sample Y, where
a2 and by are the regression coefficients;

o (t) = pg (t) —py(t) is the local margin (the Mean-Mean
version; see the next section);

o 9(t) = py(t) +nd(t) = at + b is the local regression for
optimal thresholding, where

a=na; + (1—-n)as

b=nb + (1 — T))b2.

This method has five parameters, k., k_, n, Ay and A_
which are empirically chosen (through cross validation). We
purposely allow k4 and k_ to take different values (instead
of a single parameter k) so that we can empirically tune the
window sizes to be sufficient sensitivity to the local trends
for both positive examples and negative examples. As for
parameter 7, it allows us to adjust the position (instead a
fixed position, such as the middle) of the thresholding func-
tion between the margin, in order to overcome the inductive
bias of the system (if any) and to optimize the performance
with respect to different evaluation metrics (T'10S, Fja, or
the like) through cross validation. A, and A_ are the num-
ber of documents the window must slide through before the
positive and negative margins are updated; in our TREC-
10 results, we updated both margins with every document
(AL =A_=1).

For initialization, we set ag = a; = 0 and set by and b;
to return the top 1% of documents in the validation set



for each category. Early on, when there is not sufficient
data to reliably compute the margins (defined in terms of
number of documents within the window and parameterized
by min_ and min, for the positive and negative windows
respectively), we apply the following hueristic to set the
threshold to a reasonable value without drawing too many
false- alarms or misses: if both the positive window and the
negative window have less than min_ and min,; documents,
the threshold is set to just above the score of the last false-
alarm observed.

3.3 Variants of margins
We propose several versions of margin as the variants of our
approach:
1. Min-Max margin:
T = argmin{z,, Ty ...z, }
y = argmax{y1,y2-.-yr_}
6(t) =z —y
0(t) = nz + (1 —n)y.
2. Mean-Mean margin:
Uy () = art + by
py(t) = azt + by
t) = pa(t) — py(t)
t) = py(t) +nd(t)

(
(

0
0

3. MinK-MazK margin:
X' is the bottom ny data points in X = {z;...7x_ },
Y is the top n_ data points in Y = {y1...yx_},
uh (t) = a1t + by is the linear fit to X';
,u; (t) = aat + by is the linear fit to Y;
0'(t) = pp(t) — o, (t)
0(t) = py () +nd'(¢)
where ny and n_ are pre-specified parameters.

4. MeanVar-MeanVar margin:
6(t) = (a(t) + aoz) = (ny(t) + aoy)))
0(t) = py () +nd(t)

where o, is the standard deviation of X, o is the stan-
dard deviation of Y, and « is a pre-specified parameter.

5. Other combinations, e.g., Mean-MazK:
0" () = pa(t) — 1y (1)

0(t) = puy, () + 8" (t)

The Min-Max margin is the simplest, but likely to be over-
sensitive to outliers and under-sensitive to the trend of the
margin within a window. The Mean-Mean margin is the
one we introduced in the previous section, which is less sen-
sitive to extreme values than Min-Max. The MinK-MaxK
has an sensitivity between the previous two, with additional
(ad-hoc) parameters; in fact, Min-Max is just a specific case
of MinK-MaxK in which ny = n_ = 1. MeanVar-MeanVar
take the densities of data points on both sides (the posi-
tive side and the negative side) in to consideration, which
would be more powerful than Mean-Mean but assumes nor-
mal distribution of the scores for the positive and negative
examples and requires more data for the estimation of the
variances. There are other possible variants along this line;
we do not intend to give an exhaustive list.

3.4 Adaptive filtering results

We chose Rocchio over kNN for adaptive filtering. Tables 2
and 3 describe our submitted runs and the results, including
one run (CMUCATmrf5) using Mean-Mean margin (as our
primary submission), one run (CMUCATmr10) using the
Mean-MaxK margin, and two runs for the baseline Rocchio
(CMUCATsrf5 and CMUCATsr10) in which the the proto-
types were adaptive but the thresholds were fixed. The last
two runs were generated as baselines for comparisons with
the margin-based adaptive filtering methods.

In addition to the submitted runs, we also tested other ver-
sions of the margins (MinK-MaxK, for example). We found
the Mean-Mean method with the best results in cross valida-
tion over the TREC-10 training corpus. The Mean-MaxK,
however, performed better on the evaluation data, suggest-
ing that that variant tends to have a large performance vari-
ance.

We were surprisingly pleased by the improvements by the
margin-based regression over the baseline Rocchio with a
fixed threshold. Under the same condition of optimizing Fj,
the Mean-Mean method improved the performance over the
baseline by 37.5% (from 24.8% to 34.1%) in recall and 0.5%
(from 65.8% to 66.1%) in precision. Under the condition
of optimizing T'10S, the Mean-MaxK improved the perfor-
mance over the baseline by 38.7% (from 24.8% to 34.4%) in
recall and 9.2% (from 60.3% to 65.7%) in precision. We are
also surprised that the Rocchio baseline with a fixed thresh-
old worked very well, being ranked at the top four among
30 submissions in both 7'10S and Fjz measure.

It is worth mentioning that the margin-based local regres-
sion approach is not a part of the Rocchio method. Instead,
it can be applied to the output of any system as long as the
average of scores for positive examples by that system are
higher than the average of the scores for negative examples,
and as long as there is some continuous trends over time
in the margins. An interesting point is, when we designed
this method and until our submission to TREC-10, we only
tested Rocchio under the condition of complete relevance
feedback (and did not have the time to run it under more re-



RUN ID DESCRIPTION
CMUCATSsrf5 Adaptive filtering, Rocchio (y = —1.5,k = 200,p;q, = 500),
using fixed threshold, optimized for Fjg
CMUCATSsr10 | Adaptive filtering, Rocchio (v = —1.5,k = 200,pmqz = 500),
using fixed threshold, optimized for 7105
CMUCATmrf5 | Adaptive filtering, Rocchio (v = —1.5,k = 200,pmqz = 500),
using margin-based thresholding with means for both margins, optimized for Fj
CMUCATmr10 | Adaptive filtering, Rocchio (y = —1.5,k = 200,p,n4. = 500),
using margin-based threshold with lower margin computed
from median of top 20 negative examples and higher margin
computed from mean of positive margin, optimized for 710S.
Table 2. Official submissions by CMU-CAT for the Adaptive filtering task
RUN ID RECALL PREC T10S Fp RANK by T10S RANK by Fj
CMUCATSsrf5 0.248 0.658 0.211 0.467 7/30 4/30
CMUCATSsr10 0.248 0.603 0.228 0.415 4/30 6/30
CMUCATmrf5 0.341 0.661 0.251 0.489 3/30 3/30
CMUCATmr10 0.344 0.657 0.263 0.499 2/30 2/30

Table 3. Results by CMU-CAT for Adaptive Filtering

alistic settings of relevance feedback); under that condition
we did not found dynamic trends in the margins among the
scores by Rocchio. We took this approach anyway because
it was rational. The strong results, 37.5-38.7% improvement
in recall while precision improved in the same direction over
Rocchio baseline, suggest that, perhaps, there were indeed
dynamic trends in the margins that worth tracking.

4. Metrics

[T105 | F;
Batch filtering
Minimum | 0.081 | 0.154
Mean 0.239 | 0.429
Maximum | 0.414 | 0.606
Adaptive filtering
Minimum | 0.015 | 0.046
Mean 0.134 | 0.266
Maximum | 0.291 | 0.519

Table 4. Macro-average performance summary for the TREC-10
filtering task

The adaptive and batch filtering tasks for this year used
two metrics: 7105 and van Rijsbergen’s Fp[7], which are
defined as with respect to a category C' as:

_ max(2A — B,minU) — minU

T105(C) = 2% Ny —minU @
__(F+1nA
B0 = 5w, @

where A is the number of documents correctly assigned to C,
B is the number of documents incorrectly assigned to C' (aka

false-alarms), N is the number of documents relevant to C,
minU is the lower bound on the unscaled utility (24 — B),
and 3 is a constant that specifies the relative weight between
recall and precision for Fjg. Both T'10S and Fj3 are scaled to
fall between 0 and 1, and for TREC-10, minU was fixed at
-100 and S at 0.5 for all categories. The overall performance
of the system for the task was obtained by computing the
unweighted average across all categories (called the macro-
average in the information retrieval literature).

The most straightforward interpretation of the 710S met-
ric is that it computes the return the user receives in terms
of information gained vs. effort expended in reading the
documents assigned by the filtering system to a particular
category, scaled relative to the range of possible returns,
where 1.0 represents maximum information gain with mini-
mum effort, and 0.0 represents the point at which the effort
required in reading the documents for the category in ques-
tion so exceeds the information gained that the user regards
any information contained in those documents as worthless.
The Fjg metric does not have such a straighforward inter-
pretation in terms of the preferences of a particular user,
but is instead the weighted harmonic average of recall 3 and
precision* over the set of documents assigned to a category.

An examination of table 4 shows that systems participating
in the batch and adaptive filtering tasks performed much
worse on T10S than on Fg. Does the T'10S measure, in
fact, describe a harder task than the F3 measure or are there

3 Recall is defined for a category as the ratio of documents cor-
rectly assigned to that category to the total number of documents
relevant to that category, e.g. r = A%.

4 Precision is defined for a category as the ratio of documents
correctly assigned to the category to the total number of docu-

ments assigned to that category, e.g. p= 755-



other factors at work which would cause this performance
gap? In the following section, we analyze the properties
of the T'10S metric and find that, while T10S is a definite
improvement over T9U, it still has an undesirable charac-
teristic that biases it against frequently-occuring categories.
We propose a minor modification to 710S which fixes the
undesirable properties and brings it closer to the tracking
cost (Cyrg) metric used in the TDT evaluations.

4.1 T10S
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Figure 5. Isocurves of T10S for a = —2

T10S is a scaled version of the linear utility metric used in
TREC-9 (T9U). This scaling addressed some of the prob-
lems of T9U (which are discussed in detail in [1]), specifi-
cally, the wide variation in the maximum value of T9U with
the number of relevant documents for the category, which
makes the macro-average of T9U difficult to interpret and

causes performance on common categories to dominate the
average. However, the scaling introduced another problem,
which can be seen if T10S is written in terms of recall(r)
and precision(p):

3p

maz(r* p_l,a)—a .
T10S = — 2=a ifp>0,a<2
Some value in [0,52-] if p=10,a <2 (©)
_minU
=N,

The isocurves of T10S for « = —0.1, « = —1 and o = —2
are shown in figures 3 through 5. The biggest problem with
T10S is that the locations of its isocurves are dependent on
the number of examples of the category in question, giving
two different categories with the same relative performance
different 7105 values. In particular, the larger the number
of relevant documents for a category, the lower it’s T10S
score for the same relative performance compared to a cate-
gory with fewer documents. Given the large number of cat-
egories with 5,000 or more relevant documents in the test
set used for TREC-10, it’s not surprising that the scores for
this metric were significantly lower than those for Fj.

Another problem with 710S is that it’s lower bound of
minU is applied before the metric is scaled. This means
that the user’s tolerance for poor-performing profiles (as
modeled by T'10S5) also varies with the number of relevant
documents for the category. In particular, the user is far
more tolerant of poor performance (in relative terms) for
categories with fewer documents. Furthermore, the value of
minU controls not only the user’s tolerance for poor perfor-
mance but also how sensitive the locations of the isocurves
are to changes in the value of N, ; the larger the magnitude
of minU, the less sensitive 7'10S is to variations in V.
This linkage between the minimum return the user is will-
ing to accept on his or her investment in reading documents
before he or she gives up and the preference of the user for
categories with fewer relevant documents is counterintuitive
and not obvious from the form of the 710S metric itself.

One could dismiss these objections to 7105 by claiming
that it is not necessary for T10S to have consistent prop-
erties across categories with respect to recall and precision,
since 7'10S is not based on those metrics. However, having
inconsistent properties with respect to recall and precision
leads to inconsistencies within the 7'10S metric itself if we
take the most straightforward interpretation described in
section 4. Under this interpretation, each document on av-
erage requires equal effort to read and provides the same
amount of information, which are reasonable assumptions
given that the TREC filtering tasks only supply binary rel-
evance judgements and no judgements about the effort re-
quired to read a document. Furthermore, the TREC fil-
tering tasks make no distinctions among categories as to
which might be more or less important to the user. These
conditions imply that a reasonable user should expect to
spend more effort reading documents for categories that oc-
cur more frequently than for those that occur less frequently,



and that the metric used to model the user should take this
into account. Moreover, two sets of documents assigned to
two different categories with different occurence frequencies
which have the same relative amount of information (e.g.
same recall) and require the same relative effort to extract
that information (e.g. same precision), should be regarded
as equally useful to the user, since all documents require
the same effort, all relevant documents have the same infor-
mation content, and the user expects to spend more effort
on the more frequently-occuring category. In violating this
latter principle that equal recall and precision should yield
equal utility, 7105 implicitly assumes that the user favors
rare categories over more common ones, that the utility of
relevant documents decreases as more of them are found
while effort to read them remains the same, or that the ef-
fort required to read a document decreases in proportion to
the number of relevant documents for a category while the
utility of relevant documents remains the same. None of
these latter assumptions are consistent with the straightfor-
ward interpretation of T10S described above, or with the
fact that the TREC filtering tasks make no explicit distinc-
tions between categories.

4.2 Normalized Filtering Utility

Given that outside of its variable properties in precision-
recall space, T'10S is otherwise a good metric with an un-
derstandable user model, one wonders if it might be possible
to correct for these problems while still preserving it’s under-
standable user model and hyperbolic isocurves in precision-
recall space. We can gain insight in how to do so if we
consider another linear metric: unnormalized tracking cost
(Cyrr;) which is used for the TDT tracking task (which is
similar in many ways to the TREC filtering tasks). The
value of Cy, is defined for category C' as:

Ctrk(c) = Chiss * Pon * Priss +Cfa*P0ff*Pfa
N, —A

N, )+ CraxPoppx(

= miss*Pon*( W
— Ny

(7)

where:

o Chiss and Cy, are the relative costs of a miss (rele-
vant document not assigned to C) and a false-alarm
respectively

o Ppiss and Py, are the conditional probabilities of a miss
or a false-alarm occuring, given that the document is
relevant or not relevant to C' respectively

e P,, and P,y are the prior probabilities that a docu-
ment is relevant or not-relevant to C. P, 4+ Posr =1
naturally.

e A B, and N, are the number of correct assignments,
false-alarms, and documents relevant to C' respectively.

N is the total number of documents in the corpus.

In TDT, the values of P,, and P,; are fixed to their prior
probabilities of 0.02 and 0.98 respectively for all categories
in the tracking task. However, if we replace these values
with their posterior probabilities (e.g. P,, = N;/N and
P,;s = (N — N+)/N, then equation 7 becomes:

N,—A B

Ctrk (C) = sz'ss * N + Cfa * N (8)

Written in terms of recall and precision, this form of Cy,x is

Coi(C) = %(cm,-ss $(L=1) + Cpa xr(*=

Py, p#0
)

This immediately suggests that by normalizing Ci, by Py,
we can obtain a version of Cyi, designated Cj,, which is
stable in precision-recall space. Written in terms of A, B,
and Ny, Cj . is:

N N, -A B
éTk(C) = N, (Cmiss * T + Cfa * N) 0
=C +Cfa*B Crniss * A ( )
- miss N+ N+

If we subtract C},, from Cpy;ss (Which is equivalent to flip-
ping the scale and moving the zero point), scale by 1/Ciss
so that the upper bound becomes 1, and rename C,,;ss t0O
Ceorr, we get the following normalized linear utility metric,
which we call normalized filtering utility and designate Uy:

CCOTT *A—Cfa * B
CCOT‘T‘ * N+
— Ccorr*Pon*PcorT_Cfa*Poff*Pfa (11)
Ceorr * Por
Cra_

1-p
oot )

Us(C) =

= (1 (

Uy is essentially an unbounded T'10S. We derrive it in this
fashion to emphasize both it’s connection to the Cy,r metric
used in TDT and its theoretical justification in terms of be-
ing a weighted combination of the conditional probabilities
of correctly and incorrectly identifying relevant documents.
Unlike T'10S, Uy has consistent isocurves in precision-recall
space, and thus it’s straighforward interpretation as measur-
ing the trade-off between effort expended and information
gained is consistent with what it actually measures.

As an unbounded metric, U; suffers from the weakness
that poor-performing categories can dominate the macro-
average. We address this by limiting the limiting the lower
value of Uy to Ufmin. Like minU for T10S, Uf min rep-
resents the lowest return on reading the set of documents
assigned a category the user is willing to accept before he
or she regards that set as worthless, but since Uy, min is ap-
plied after normalization, the tolerance of the user for poor
performance by the filtering system remains consistent from



category to category. We can now scale Uy to fall between
0 and 1 by:

U = maz(Uy, Us,min) — Ugmin

12
1- Uf,mzn ( )

where 1 represents maximum information gain with mini-
mum effort, and 0 represents the point where the documents
become worthless.

4.3 Comparison of Metrics

As an example, figure 6 plots Fz and T'10S vs. precision
across all runs submitted to the adaptive and batch filtering
subtasks for category R15. As we expect from our analysis
in section 4.1, Fjg and T'10S are correlated when precision is
greater than or equal to 1/3, since the isocurves of 710 in
this region have a similar shape to the isocurves for Fjg and
thus a strategy that maximizes T10s is also likely to maxi-
mize Fj3 and vice-versa, but are uncorrelated when precision
is less than 1/3. Note that because most runs have a pre-
cision above 1/3 for most categories, the macro-average Fp
and T'10S for each run will appear to track each other, even
though the metrics are not necessarily correlated.

Batch Adaptive
Metric | Validation | Test | Validation | Test
T10S 0.681 0.324 0.387 0.263
Fp 0.703 0.511 0.343 0.499
U]’c 0.671 0.548 0.362 0.463

Table 5. Performance of our systems on for 7105, Fp and Uj
metrics

Table 5 shows the performance of our batch and adaptive
filtering systems on both the validation and test sets for
all three metrics. For U]'c, we set Ceorr = 2, Cpq = 1 and
Ug, min = —0.5, which corresponds to T10S with an a of
-1.0. Note that Fjz and U} have much more stable perfor-
mance when going from validation to evaluation conditions,
than 7T'10S for which performance decreases by more than
half for the batch filtering tasks. In the adaptive filtering
task, the performance drop experienced by the increase of
Ny in going from validation to test data hides an impor-
tant observation: that the margin-based algorithm actually
performs signifcantly better (significantly improved recall)
on the test data than on the validation data! This again il-
lustrates the effect of the variation of the isocurves of 7105
with number of relevant documents for a category; a system
tuned to an optimal region on the validation data may find
itself in a very suboptimal region when evaluated on the
test data and the isocurves of T'10S shift with the change in
category frequency, even though its relative performance on
both validation and test data remains approximately that
same.

Note also that Fjg and U} have similar values for both batch
and adaptive filtering and validation and test conditions.
This is to be expected, since for most categories, we are

operating in the region (p > 1/3) where Fj3 and U} have
similar isocurves.

5. Conclusions

In our TREC-10 experiments and analysis, we observed the
following;:

e Standard Rocchio using relevance feedback to update
the profiles but not the threshold performed surpris-
ingly well: ranking fourth of thirty runs for both the
Fj and T'10S metrics.

e Rocchio using relevance feedback and margin-based lo-
cal regression (our new approach to adaptive thresh-
olding) significantly outperformed the baseline Rocchio
using relevance feedback and constant thresholds.

e The isocurves of the T'10S metric vary their locations
in precision-recall space with the number of documents
relevant to a particular category, causing this metric
to favor common categories over rare ones and poten-
tially obscuring important observations. We propose
a slight but important modification to 7105 which re-
moves these undesirable properties.

For future research, we would like to consider the following
open questions:

e Why Rocchio produced more separable scores than
kNN remains an open question. More failure analy-
sis with methods other than kNN and Rocchio would
be helpful in understanding the nature of adaptive fil-
tering.

e Are all of the current classifiers used for adaptive filter-
ing only finding those relevant documents which sur-
round the initial two positive examples for each cate-
gory? How can a classifier obtain relevance feedback
for positive examples in clusters other than the initial
one?

¢ How can we measure redundant information and return
the set of documents which best covers what the user
needs to know? What sorts of metrics are best suited
for measuring this task?

e Why did feature selection fail to produce any improve-
ment for our batch filtering results, when it has pro-
duced considerable improvement in other text catego-
rization tasks on other corpora?
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