
Qanda and the Catalyst Architecture

Pranav Anand David Anderson John Burger∗

John Griffith Marc Light Scott Mardis Alex Morgan
The MITRE Corporation

Bedford, MA 01730 USA

Introduction to Qanda and Catalyst
Qanda is MITRE’s entry into the question-answering (QA)
track of the TREC conference(Voorhees & Harman 2002).
This year, Qanda was re-engineered to use a new architec-
ture for human language technology called Catalyst, devel-
oped at MITRE for the DARPA TIDES program.

The Catalyst architecture was chosen because it was
specifically designed for fast processing and for combin-
ing the strengths of Information Retrieval (IR) and Natural
Language Processing (NLP) into a single framework. These
technology fields are critical to the development of QA sys-
tems.

The current Qanda implementation serves as a prototype
for developing QA systems in the Catalyst architecture. This
paper serves as an introduction to Catalyst and the Qanda
implementation.

What is Catalyst?
Catalyst is a framework for creating and experimenting with
Human Language Technology (HLT) systems. It attempts
to address several problems typical of current approaches to
component-based HLT systems. The principal problems that
Catalyst is designed to ameliorate are these:

• Systems do not scale easily to handle today’s information
processing needs. Systems are needed to process human
language very quickly or in very large amounts.

• Experimenting with a variety of potential system config-
urations is difficult because each pair-wise component in-
teraction typically requires specialized integration code
for smooth operation.

The approach that we are using in the Catalyst framework
to address these problems is to combine standoff annotation
and dataflow.

Standoff Annotation
The Catalyst data model, like those of both the TIPSTER
and GATE architectures(Cunningham, Wilks, & Gaizauskas
1996; Grishman 1996), is annotation based. A signal (text,
audio, etc.) is augmented with annotations that mark up por-
tions of the signal with supplemental or derived information.

∗john@mitre.org
Copyright c© 2002, The MITRE Corporation. All rights reserved.

Catalyst annotations are standoff (versus inline) which
means that the underlying signal is unmodified and anno-
tations are maintained and communicated separate from the
signal. By separating the signal from the annotations and an-
notations of different types from each other, Catalyst is able
to automatically construct customized streams of annotation
for each component in a system. The set of annotations,
attributes and their names can all be transparently modified
between each language processing component without mod-
ifying any component code or inserting additional scripts.

Every standoff annotation has an annotation type identi-
fier, a start position, an end position, and zero or more at-
tributes. The attributes are named fields that provide infor-
mation derived from or associated with the annotated text.
For example, a tokenizer might emit word annotations, with
text, stem and part-of-speech attributes. The start and end
of each such annotation would indicate where in the text the
tokenizer found the words.

Dataflow Processing
In order to support distributed, scalable systems, Catalyst is
based on a dataflow model of language processing compo-
nents. We refer to these components as language processors
(LPs). The dataflow model allows us to describe an HLT
system directly in terms of the data dependencies between
LPs. Furthermore, we are able to use the natural ordering
properties of the standoff annotation indices to synchronize
the operation of the various components.

Each LP in a Catalyst system is connected to others by an-
notation streams consisting of a flow of standoff annotations
serialized according to the following predicate.

A1 < A2 if











A1.start < A2.start
∨ ((A1.start = A2.start) ∧ (A1.end > A2.end))
∨ ((A1.start = A2.start) ∧ (A1.end = A2.end)

∧ (A1.annotation-type < A2.annotation-type))

As a node in a dataflow network, each LP has a declara-
tion that defines its annotation input requirements and anno-
tation outputs. A system declaration identifies the required
language processors and the desired annotation stream con-
nections between them (connections that satisfy each LP’s
input requirements). From these declarations Catalyst can
arrange to deliver to each component only the annotations
that are expected. Thus, components do not need to forward



annotations unrelated to their specific function. For exam-
ple, a sentence tagger may consume the bf word annotations
produced by the tokenizer described above, and emit anno-
tations indicating the boundaries of sentences. The sentence
tagger need not copy the words to its output—if a third com-
ponent requires both sentences and words, Catalyst will ar-
range to deliver the outputs of the tokenizer and the sentence
tagger, suitably merged.

Catalyst’s dataflow approach to building HLT system has
a number of advantages.

• Error dependencies between components are limited to
the precisely specified data dependencies.

• By using dedicated peer-to-peer channels Catalyst elimi-
nates the cost of parsing and generating generic annota-
tion interchange formats (such as XML) between inde-
pendently constructed components.

• Component developers may work directly with an anno-
tation model, rather that with particular data interchange
formats. (Catalyst will support the exchange of data in
XML for system I/O and for use with components not pre-
pared for direct use in a Catalyst system.)

• A system can be run on a single machine or distributed
across many. Individual components can be replicated to
increase throughput.

• Component code can be simplified because the data pre-
sented is always consistent with the LP specification.

Distributability
Catalyst annotation streams are transported over sockets and
can be connected between processes on many machines, per-
mitting a wide range of processing strategies for optimizing
system performance without having to rewrite component
code. Once properly working on a single host, distributing a
system across many machines requires only starting a server
on each machine and editing a few lines in the system con-
figuration file.

Control
A network of Catalyst servers exchange information for the
purpose of creating and maintaining Catalyst-based systems.
Connections are negotiated by servers and then handed-off
to component processes. A single script, compiled from a
static dataflow description of the system, works in concert
with the servers to create each system. Servers also route
and deliver control commands to each language processor.

Logging and Monitoring
A multi-process, distributed system can be difficult to debug
and maintain. To assist component and system developers
in this regard, Catalyst has both distributed logging and dis-
tributed monitoring capabilities.

The Catalyst log capability allows logger processes to col-
lect information from some or all of the processes in a Cat-
alyst system. Logging information includes events such as
when language processors are stopped or started, user log
messages, command events, errors, etc. Logs may be cre-
ated at the same time the system is instantiated or may be

added later as needed. Multiple loggers can be created si-
multaneously to record several views of the log at different
levels of detail and can be used to create logs at multiple
destinations.

The Catalyst monitor is used to examine the configuration
and state of a Catalyst system. Using the monitor, a compo-
nent or system developer can obtain snapshots of the current
system configuration and track the flow of data through a
system. The monitor provides information such as the list
of current running components, the connecting annotation
streams, the amount of information buffered with the sys-
tem, the current indices for the various streams, etc. Debug-
ging multicomponent systems such as Qanda requires a fa-
cility to examine the global system state easily. The monitor
is an important tool for quickly diagnosing component inter-
action problems and identifying performance bottlenecks.

Information Retrieval in Catalyst

In addition to addressing some of the general problems of
HLT system construction, Catalyst is also an experiment in
developing a framework for combining NLP and IR in a sin-
gle system. Standoff token annotations, grouped by term,
form the basis of an inverted index for terms in a large cor-
pus, similar to those used by traditional IR engines. By ex-
tending this usage to all other types of annotation, Catalyst
permits the development of fast information retrieval tech-
niques that query over NLP-generated products (see exam-
ples below).

Catalyst’s dataflow model, combined with flexible in-
verted index streams, makes it possible to develop systems
that can utilize both pre- and post-index NLP to improve
the speed of query responses. Also, retrieval engines can
be built that directly answer complex queries as needed for
question answering (e.g., retrieve all paragraphs containing
a person and one of terms A or B).

Implementing Qanda using Catalyst
Our previous TREC efforts have used inline-XML pipeline
architectures, where all components monotonically added
XML markup to retrieved documents. This approach had
a number of problems:

• Components downstream had to understand (or at least
parse) all upstream annotations, in order to ensure that
these earlier annotations were properly replicated on out-
put.

• This led to an inflation of the markup on documents: Of-
ten the final documents comprised 99% markup and 1%
underlying character data.

• Some components’ only purpose was to rewrite markup
to make it more palatable to downstream components.

• It is difficult to parallelize such an architecture.

Our current Catalyst-based architecture suffers from none
of these problems. Every component is delivered only the
annotations that it requires to do its job. If a component
is producing annotations that no other component currently



IR
Wrapper

Questions

Question
Analysis

Tokenizer

Named
Entity

Geo
Retagger

Misc
Entity

Sentence
Tagger

IR Index

Candidate
Collation

TREC Docs

Answer
Writer

Paragraph
Tagger/Filter

Lucene
IR Engine

Answers

Other
Entity

Taggers
...

Figure 1: Qanda as a Catalyst System—Wide arcs indicate file system IO, narrow arcs are lightweight Catalyst annotation
streams.

requires, Catalyst quietly drops them on the floor.1 If nec-
essary, we can instruct Catalyst to map between different
annotation types in order to accommodate differences in the
natural representations of different components.

Catalyst also allows us to lay the system out in a more
natural manner than a single pipeline. Figure 1 shows our
TREC system, which is naturally expressed as a directed
graph. Note that many components do not need to commu-
nicate with each other, even indirectly, and can thus run in
parallel, e.g., most of the entity taggers. Although we have
not yet taken advantage of it, Catalyst will allow us to run
language processors on different machines, even replicating
slower components in order to increase throughput.

Using Catalyst
Working with Catalyst entails developing Catalyst-enabled
components and assembling them into a system. Catalyst is
designed to simplify this second task. First we describe the
general way in which Catalyst systems are constructed; next
we show two possible paths for integrating existing technol-
ogy with Catalyst.

1Of course, the preferred behavior would be for the component
to neglect computing such annotations in the first place, but at least
they are not further processed.

Building a System in Catalyst

Figure 2 shows how the major components of Catalyst (the
library, the server and the configuration compilers) are used
in creating a running system. A configuration file is written
for each language processing component (LP). It specifies
which annotation streams it is able to process and which it
generates. A component compiler transforms the configura-
tion file into header files and other static information that are
used to create each Catalyst-enabled executable. A system
configuration file, referring to LP configuration files, defines
which LPs are needed in a system and the stream connec-
tions that are required between the LPs. The system com-
piler transforms the system configuration file into a start-
up script that is used to instantiate the system. The script
(presently a PERL 5.0 script) communicates only with Cat-
alyst servers, whose function is to create the operating sys-
tem processes that will contain the LPs, establish connec-
tions between them, and forward configuration and control
information from the script to each process.

The Catalyst library (linked into each component pro-
cess) handles annotation communication between compo-
nents and passes control information to and from the servers.
The library can merge annotations from many different com-
ponents and produce a single annotation stream specialized



Machine 2Machine 1

Component
Executable

LP
Config

file

Compile
System

server

Build
Catalyst

Component

A running system

server
System
Config

file

System
Startup
Script

LP
Code

Catalyst
Library

Figure 2: How Catalyst Builds a System—Configuration compilers transform configuration files into header, data, and script
files that are used to create language processors[LPs] and systems. A compiled start-up script uses the network of Catalyst
servers to create a running system. The system, once started, passes annotations via peer-to-peer communication managed by
the Catalyst library.

to each component’s input declaration. Similarly, a single
stream of output from a component can be broken down
into its constituent annotations and attributes and delivered
piece-meal to many destinations. In this way, Catalyst de-
livers to each component, the precise set of annotations re-
quired by the component’s declaration.

Integrating with Catalyst

There are two basic ways of integrating existing components
with Catalyst: writing a Catalyst wrapper process and using
the Catalyst API. The purpose of a Catalyst wrapper process
is to convert the Catalyst annotations streams to and from
a data format that an existing black box component uses.
The Catalyst API, of course, provides direct access to all of
Catalyst’s features and provides maximum benefit.

A wrapper process allows one to connect existing technol-
ogy into Catalyst without having to modify the component
code. This is the only choice for components for which the
code is unavailable. It would provide the advantage of deliv-
ering a precise set of annotations to the wrapped component
but it would suffer from the cost of transformation to and
from the appropriate interchange format. Also, transforming
annotations from standoff to inline formats and back again
(as most component technologies would require) can be dif-
ficult. The Catalyst project is, however, planning direct sup-
port for inline annotations in XML to facilitate integration
via wrapper processes.

The Catalyst API defines a standoff annotation model and

provides methods for sharing data via annotation streams.
Standoff annotations allow for overlap in ways that cannot
be constructed in an inline format such as XML, permitting,
for example, components to output many possibly overlap-
ping noun phrase bracketings or answer candidates. Addi-
tionally, a component can receive an annotation stream that
contains the combined outputs of several components that
all share the same task (e.g., it is simple to develop a com-
ponent that looks at N different tagger outputs and selects
the best tags by combining the results).

Future Directions for Qanda within Catalyst
Currently, work is proceeding within the Catalyst project on
two important technologies: Persistent annotation archives
and annotation indexes. The goal of archiving annotations is
to store and then later reuse a stream of annotations. For in-
stance, the tokenization and entity tagging in Qanda could be
done on the entire TREC corpus ahead of time, then pulled
from an archive at question-answering time. Consumer lan-
guage processors will not be aware that their input annota-
tions are being read from disk rather than being created by a
“live” producer.

The goal of annotation indexing is to invert arbitrary text
“containers”, not just documents or paragraphs. Thus, one
might query for archived Location entities containing the
term Berlin, to answer a question such as When did the
Berlin wall come down?. In addition, we want to index all
annotations not just on the terms they contain, but on all of



their other contained annotations as well. This is similar to
the work of (Prager et al. 2000; Kim et al. 2001) but in-
tended to be more general and comprehensive. With both of
these capabilities in place, we imagine that complex queries
might be formulated, such as:

Retrieve Sentences containing Dates and also contain-
ing the term wall and also containing Location annota-
tions containing the term Berlin.

We believe that such targeted queries will allow for very
fast and accurate question answering systems. Optimizing
such queries is admittedly complex, however, as is deter-
mining appropriate scoring mechanisms. Deciding how best
to use archived coreference information is also an issue.
Nonetheless, we believe that Catalyst provides a valuable
framework for such sophisticated language processing sys-
tems.

References
Cunningham, H.; Wilks, Y.; and Gaizauskas, R.
1996. GATE – a general architecture for text
engineering. In Proceedings of the 16th Con-
ference on Computational Linguistics (COLING96).
http://citeseer.nj.nec.com/43097.html.
Grishman, R. 1996. Tipster architecture design document
version 2.2. Technical report, DARPA TIPSTER.
Kim, H.; Kim, K.; Lee, G. G.; and Seo, J. 2001. MAYA: A
fast question-answering system based on a predictive an-
swer indexer. In Proceedings of the Workshop on Open-
Domain Question Answering.
Prager, J.; Brown, E.; Coden, A.; and Radev, D. 2000.
Question-answering by predictive annotation. In Proceed-
ings of ACM SIGIR. Athens.
Voorhees, E., and Harman, D., eds. 2002. Proceed-
ings of the Tenth Text Retrieval Conference (TREC-10).
http://trec.nist.gov/pubs.html.


