
Integrating Features, Models, and Semantics for TREC Video
Retrieval

John R. Smith†, Savitha Srinivasan‡, Arnon Amir‡, Sankar Basu†, Giri Iyengar†,
Ching-Yung Lin†, Milind Naphade†, Dulce Ponceleon‡, Belle Tseng†

†IBM T. J. Watson Research Center, 30 Saw Mill River Road, Hawthorne, NY 10532 USA
‡IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 USA

Abstract

In this paper, we describe a system for automatic and inter-
active content-based retrieval of video that integrates fea-
tures, models, and semantics. The novelty of the approach
lies in the (1) semi-automatic construction of models of
scenes, events, and objects from feature descriptors, and
(2) integration of content-based and model-based querying
in the search process. We describe several approaches for
integration including iterative filtering, score aggregation,
and relevance feedback searching. We describe our effort
of applying the content-based retrieval system to the TREC
video retrieval benchmark.

1 Introduction

The growing amounts of digital video are driving the need
for more effective methods for storing, searching, and re-
trieving video based on its content. Recent advances in con-
tent analysis, automatic feature extraction, and classifica-
tion are improving capabilities for effectively searching and
filtering digital video using information based on percep-
tual features, content structure, models, and semantics. The
emerging MPEG-7 multimedia content description stan-
dard promises to further improve content-based searching
by providing a rich set of standardized tools for describ-
ing multimedia content in XML [SS01]. However, MPEG-
7 does not standardize methods for extracting descriptions
nor for matching and searching. The extraction and use
of MPEG-7 descriptions remains a challenge for future re-
search, innovation, and industry competition [Smi01].

In this paper, we describe a system for automatic and
interactive content-based retrieval that integrates features,
models, and semantics [SBL+01]. The system analyzes
the video by segmenting it into shots, selecting key-frames,
and extracting audio-visual descriptors from the shots. This
allows the video to be searched at the shot-level using
content-based retrieval approaches. However, we further
analyze the video by developing and applying models for
classifying content. The approach requires the manual- or

semi-automatic annotation of the video shots to provide
training data. The models are subsequently used to auto-
matically assign semantic labels to the video shots. In order
to apply a small number of models but have at the same time
to have large impact on classifying the video shots, we have
primarily investigated models that apply broadly to video
content, such as indoorvs. outdoor, naturevs. man-made,
face detection, sky, land, water, and greenery. However, we
have also investigated several specific models including air-
planes, rockets, fire, and boats. While the models allow the
video content to be annotated automatically using this small
vocabulary, the integration of the different search methods
together (content-based and model-based) allows more ef-
fective retrieval.

In the paper, we describe the approach for integrating
features, models, and semantics in a system for content-
based retrieval of video. We have applied these systems
and methods to the NIST TREC video retrieval benchmark,
which consists of 74 queries of a video corpus containing
approximately 11 hours of video. The queries, which were
designed to access video based on semantic contents, per-
mit automatic and/or interactive approaches for retrieving
the results. We enhance the automatic retrieval by using
the models in conjunction with the features to match the
query content with the target video shots. For interactive
retrieval, we allow the user to apply several methods of
iterative searching that combines features, semantics, and
models using different filtering operations and weighting
methods. In this paper, we describe more details about the
approach and discuss results for the TREC video retrieval
benchmark.

2 Content analysis system

The video content is analyzed through several processes that
involve shot detection, feature extraction, and classification,
as shown in Figure 1. The video is segmented temporally
according to shot boundaries, and descriptors are extracted
for each shot. The descriptors are ingested into a storage
system. The descriptors are used as input into the model-
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based classification system which assigns semantic labels
to each shot. The system also ingests any meta-data related
to the content such as title, format, source, and so forth.
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Figure 1: The video content ingestion engine first segments
the video temporally using shot detection and selects key-
frames, then extracts descriptors of the audio-visual features
and applies models in order to classify the content.

2.1 Shot detection

The video content is pre-processed by splitting it into
temporal segments using theIBM CueVideo (program
cuts.exe with the default settings) [Cue]. After the shots
are detected, key-frames are selected and extracted, and all
MPEG I-frames are extracted, as shown in Figure 2. These
images are stored and indexed and are used for accessing
the shots.

... ...

input video

... ...

shot detection

...

key-frame selection key-frame selection

...

i-frame extraction

feature extraction

Figure 2: The shot detection system automatically segments
the video into temporal segments and selects a key-frame
for each shot.

CueVideo uses sampled three dimensional color his-
tograms in RGB color space to compare pairs of frames.
Histograms of recent frames are stored in a buffer to al-
low a comparison between multiple frames. Frame pairs at
one, three and seven frames apart and their corresponding
thresholds are shown by the three upper graphs in Figure 3.
Statistics of frame differences are computed in a moving
window around the processed frame and are used to com-
pute the adaptive thresholds. Hence the program does not
require sensitivity-tuning parameters.
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Figure 3: This example represents a 53 Seconds sequence
with four cuts and three dissolves in high noise (from
bor17.mpg, frame numbers: 31800–33400). The middle cut
is mistakenly detected as a short dissolve (Alm2).

A state machine is used to detect and classify the dif-
ferent shot boundaries, shown at the botom of Figure 3
with all thirteen states listed. At each frame a state tran-
sition is made from the current state to the next state, and
any required operation is taken (e.g., report a shot, save a
key-frame to file). The algorithm classifies shot boundaries
into Cuts, Fade-in, Fade-out, Dissolve and Other. It works
in a single pass, is robust to possibly uncompliant MPEG
streams, and runs about 2X real time on a 800MHz P-III.

2.2 Feature extraction

The system extracts several different descriptors for each of
the key-frames and i-frames. We have used the following
descriptors:

1. color histogram (166-bin HSV color-space),

2. grid-based color histogram (4x4 grid of the HSV his-
togram),

3. texture spatial-frequency energy (variance measure of
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each of 12 bands of quadrature mirror filter wavelet
decomposition, and

4. edge histogram (using Sobel filter and quantization to
8 angles and 8 magnitudes).

Each of these descriptors is stored and indexed separately.
However, at retrieval time, the CBR matching function al-
lows the descriptor values to be combined using an arbitrary
weighting function in order to determine the similarity of
the query and target images based on multiple features.

2.3 Semi-automatic annotation

In order to allow a model-based approach to video retrieval,
ground-truth data is needed for training the models. In or-
der to create training data, we developed a video annotation
tool that allows the users to annotate each shot in the video
sequence, as shown in Figure 4. The tool allows the user to
identify and label scenes, events, and object by applying the
labels at the shot-level. The tool also allows the user to as-
sociate object-labels with individual regions in a key-frame.

Figure 4: The video annotation tool allows users to label the
events, scenes, and objects in the video shots.

For annotating video content, we created a lexicon for de-
scribing events, scenes, and objects; the following excerpt
gives some of the annotation terms:

• Events: water skiing, boat sailing, person speaking,
landing, take-off/launch, and explosion;

• Scenes: outer space (moon, mars), indoors (classroom,
meeting room, laboratory, factory), outdoors (nature,
sky, clouds, water, snow, greenery, rocks, land, moun-
tain, beach, field, forest, canyon, desert, waterfall), and
man-made (road, cityscape);

• Objects: non-rigid objects (animal, deer, bird, duck,
human), rigid objects (man-made structure, building,
dam, statue, tree, flower), transportation (rocket, space

shuttle, vehicle, car, truck, rover, tractor), and astron-
omy.

The video anntotation tool allows the user to process the
video shot-by-shot, and assign the labels to each shot. The
tool is semi-automatic in that it automatically propagates
labels to “similar” shots as described in [NLS+02]. The
system requires the user to confirm or reject the propagated
labels.

2.4 Content modeling

The content modeling system uses the labeled training
video content to classify other video content (in our case,
the test TREC video corpus). We have investigated several
different types of static models including Bayes nets, multi-
nets [NKHR00], and Gaussian mixture models. In some
cases, we have used additional descriptors in the models,
which are not applied for content-based retrieval, such as
motion activity and color moments.

We have developed statistical models for the following
concepts:

• Events: fire, smoke, launch;

• Scenes: greenery, land, outdoors, rock, sand, sky, wa-
ter;

• Objects: airplane, boat, rocket, vehicle.

2.4.1 Statistical modeling

In the statistical modeling approach, the descriptors ex-
tracted from the video content are modeled by a multi-
dimensional random variableX. The descriptors are as-
sumed to be independent identically distributed random
variables drawn from known probability distributions with
unknown deterministic parameters. For the purpose of clas-
sification, we assume that the unknown parameters are dis-
tinct under different hypotheses and can be estimated. In
particular, each semantic concept is represented by a binary
random variable. The two hypotheses associated with each
such variable are denoted byHi, i ∈ {0, 1}, where0 de-
notes absence and1 denotes presence of the concept. Un-
der each hypothesis, we assume that the descriptor values
are generated by the conditional probability density func-
tion Pi(X), i ∈ {0, 1}.

In case of scenes, we use static descriptors that represent
the features of each key-frame. In case of events, which
have temporal characteristics, we construct temporal de-
scriptors using time series of static descriptors over the mul-
tiple video frames. We use aone-zeroloss function [Poo99]
to penalize incorrect detection. This is shown in Equation
1:

λ(αi|ωj) =
{

0 if i = j
1 otherwise

(1)
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The risk corresponding to this loss function is equal to
the average probability of error and the conditional risk with
actionαi is 1 − P (ωi|x). To minimize the average proba-
bility of error, classωi must be chosen, which corresponds
to the maximum a posteriori probabilityP (ωi|x). This cor-
responds to the minimum probability of error (MPE) rule.

In the special case of binary classification, the MPE rule
can be expressed as deciding in favor ofω1 if

p(x|ω1)
p(x|ω2)

>
(λ12 − λ22)P (ω2)
(λ21 − λ11)P (ω1)

(2)

The termp(x|ωj) is thelikelihoodof ωj and the test based
on the ratio in Equation (2) is called thelikelihood ratio test
(LRT) [DH73, Poo99].

2.4.2 Parameter estimation

For modeling the TREC video content, we assume that the
conditional distributions over the descriptorsX under the
two hypotheses – concept present (H1) and concept absent
(H0) – have been generated by distinct mixtures of diag-
onal Gaussians. The modeling of these semantic concepts
involves the estimation of the unknown but determinsitic
parameters of these Gaussian mixture models (GMMs) us-
ing the set of annotated examples in the training set. For this
purpose the descriptors associated with training data corre-
sponding to each label are modeled by a mixture of five
gaussians. The parameters (mean, covariance, and mixture
weights) are estimated by using the Expectation Maximiza-
tion (EM) [DLR77] algorithm.

The rest of the training data is used to build a negative
model for each label in a similar way, which corresponds
to a garbage model for that label. The LRT is used in each
test case to determine which of the two hypotheses is more
likely to account for the descriptor values. The likelihood
ratio can also be looked upon as a measure of theconfidence
of classifying a test image to the labeled class under consid-
eration. A ranked list of confidence measures for each of
the labels can be produced by repeating this procedure for
all the labels under consideration.

2.4.3 Region merging

We use manually assigned bounding boxes encompassing
regions of interest obtained during annotations for extract-
ing features. The testing is also done at the regional bound-
ing box level. To fuse decisions from several bounding
boxes in a key-frame, we use the following hypothesis: If a
concept is to be declared absent in a frame, it must be absent
in each and every bounding box tested. We can then com-
pute the product of the probability of the ”concept absent”
hypothesis to obtain the probability of the concept being ab-
sent in the frame. Alternately, we can also use the maximum

possible probability of the concept being detected in any re-
gion as the probability of its occurrence in the image/frame.
For concepts which are global in terms of feature support,
this step is not needed. Localized or regional concepts in-
cluderocket, face, sky, and so forth.

2.4.4 Feature fusion

The objective of feature fusion is to combine multiple statis-
tical models for the different video features. Separate GMM
models are used for each of the different descriptors (e.g.,
color histogram, edge direction histogram, texture, and so
forth). This results in separate classifications and associ-
ated confidence for each test image depending on the de-
scriptor. While the classifiers can be combined in a many
ways, we explored straightforward methods such as taking
sum, maximum,and product of the individual confidences
for each descriptor in computing an overall classification
confidence.

While this strategy of “late feature fusion” is fairly sim-
ple, one can envision other “early feature fusion” meth-
ods such as concatenating different descriptors into a sin-
gle vector and then building a single GMM. We did not
pursue this strategy due to the large dimensionality of the
descriptors, especially in view of the paucity of training
video content depicting the concepts of interest. However,
it may be possible to consider discrimination in reduced
dimensional subspaces of the feature space by using tech-
niques such as the principal component analysis (PCA) or
by using more sophisticated dimensionality reduction tech-
niques that would allow concatenation and modeling of
high-dimensional descriptors.

2.4.5 Training

The performance of statistical models such as the GMM de-
pend to a large extent on the amount of training data. Due
to the relatively small amount of labeled training video data
beyond the TREC video corpus, we adopted a “leave one
clip out strategy.” This means that we trained a model for
each concept as many number of times as the number of
video clips. During each such training, one clip was left out
from the training set. The models for the two hypotheses
thus trained were used to detect the semantic concept in the
clip that was left out.

2.5 Speech indexing

In addition to automatic analysis and modeling of the fea-
tures of the video content, we also investigated the use of
speech indexing as an alternative approach for video re-
trieval [PS01]. We used theIBM ViaVoicespeech recog-
nition engine to transcribe the audio and generate a con-
tinuous stream of words. We define a unit-document to be
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a 100 word temporal segment where consecutive segments
overlap partially in order to address the boundary truncation
effect. There are several operations performed in sequence
in this processing.

First, the words and times from the recognizer output are
extracted to create the unit-document files with associated
timestamps. The Julian time at the start of the audio is used
as the reference basis. This is followed by tokenization to
detect sentence/phrase boundaries and then part-of-speech
tagging such as noun phrase, plural noun etc. The morpho-
logical analysis uses the part-of-speech tag and a morph dic-
tionary to reduce each word to its morph. For example, the
verbs, lands, landing and land will all be reduced to land.
Then, the stop words are removed using a standard stop-
words list. For each of the remaining words, the number
of unit-documents that it belongs to (the inverse document
frequency) is computed and is used to weight these word.

3 Video retrieval

Once the video content is ingested, the descriptors and
model results are stored and indexed. This allows the user
to carry out the searches in a video query pipeline pro-
cess as shown in Figure 6, in which queries are processed
in a multi-stage search in which the user selects models
and clusters or examples of video content at each stage.
By operating on the interim results, the user controls the
query refinement. As shown in Figure 6, at each stage of
the search, a queryQi produces a result listRi. The re-
sult list Ri is then used as input into a subsequent query
Qi+1, and through various selectable operations for com-
bining and scoringRi with the matches forQi+1, the result
list Ri+1 is produced. The user can continue this iterative
search process until the desired video content is retrieved.

3.1 Content-based retrieval

Content-based retrieval is the most amenable to automatic
retrieval in the case that the query provides example con-
tent. For TREC video retrieval, each of the queries pro-
vided example content which included anywhere from a
single image to several video clips. For automatic content-
based retrieval, the following approach was adopted: the
query content was analyzed using shot detection, key-frame
selection, and feature extraction to produce a set of de-
scriptors of the query content. Then, the query descrip-
tors were matched against the target descriptors. We con-
sidered two approaches for automatic content-based match-
ing: (1) matching of descriptors of the query and target key-
frames, and (2) matching of descriptors for multiple frames
(i-frames) from the query and target video, as shown in Fig-
ure 5.

3.1.1 Multi-frame matching

For multi-frame matching, different semantics of the match-
ing are possible depending on the nature of the query. For
example, if all of the individual images in the query con-
tent are important for the query (“all” semantics), then the
matching semantics is such that the best target video shot
from the database should have the best overall score of
matching all of the query images to images in the target
shot.

...

... ...

target shot #1 target shot #2

query frames

...

Figure 5: Content-based retrieval matches multiple query
frames against multiple frames in the target shots.

Multi-frame matching requires first the determination of
the best matches among individual images from the query
and target, and then computation of the overall score of all
the matches. However, alternatively, if the query images are
meant to illustrate different variations of the content (“or”
semantics), then the matching semantics is such that the best
target video should be the ones that have a single frame that
best matches one of the query images.

3.1.2 Interactive retrieval

For interactive retrieval, we enhanced the content-based ap-
proach by allowing the user to conduct multiple rounds of
searching operations in which each successive round refines
or builds on the results of a previous round. Each round
consists of the following: (1) a similarity search in which
target shots are scored against query content (using single
frame or multi-frame search), and (2) a combining of these
search results with the previous results list. This way, each
successive round combines new results with a current list.
We investigated several ways of combining results which
involve different ways of manipulating the scores from the
successive rounds. We have used a choice of the following
aggregation functions for combining the scores:

Di(n) = Di−1(n) + Dq(n), (3)

and
Di(n) = min(Di−1(n), Dq(n)), (4)

whereDq(n) gives the score of video shotn for the present
query, andDi−1(n) gives the combined score of video shot
n for the previous query, andDi(n) gives the combined
score result for the current round. Eq. 3 simply takes the
sum of the score of each target video shot for the current
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Figure 6: The video content retrieval engine integrates methods for searching in an iterative process in which the user
successively applies content-based and model-based searches.

query plus the cumulative score of the previous queries.
This has the effect of weighting the most recent query
equally with the previous queries. Eq. 4 takes the minimum
of the current score and the previous scores for each target
video shot. This has the effect of ranking most highly the
target shots that best match any one of the query images.
Although, Eq. 3 and Eq. 4 are simple monotonic functions,
other combining functions that use arbitrary join predicates
are possible [NCS+01].

For combining content-based and model-based retrieval,
we allow the above methods for combining results, how-
ever, we allow additionally a filtering method that computes
the intersection of the previous result list with the results
from the current query, as described next.

3.2 Model-based retrieval

The model-based retrieval allows the user to retrieve the tar-
get shots based on the semantic labels produced by the mod-
els. Each semantic label has an associated confidence score.
The user can retrieve results for a model by issuing a query
for a particular semantic label. The target video shots are
then ranked by confidence score (higher score gives lower
rank). Since the models do not assign labels to all of the
target shots, only the ones that are positively classified tothe

semantic class, the model-based search does not give a total
ranking of the target shots. That is, the model-based search
both filters and ranks the target shots, which has implica-
tions for its use in iterative searching.

Model

Model

Model

Model

.

..

Figure 7: Parallel model search allows the user to define
weighting of multiple models.

The models can be applied sequentially or in parallel as
shown in Figure 7. In the case of parallel search, the user
defines weighting of multiple models in a single query. In
sequential search, the user decides based on interim results
which models to apply. For example, a parallel model-based
search is as follows: nature= 0.5∗outdoors+0.25∗water+
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0.25∗sky. An example sequential model-based search is as
follows: outdoors→ no faces→ no water.

3.3 Video query pipeline

The integrated search is carried out by the user successively
applying the content-based and model-based search meth-
ods as shown in Figure 8.

CBR Model CBRCluster ...

Figure 8: Integration of content-based and model-based
searching in the video query pipeline.

For example, a user looking for video shots showing a
beach scene can issue the following sequence of queries in
the case that beach scenes have not been explicitly labeled::

1. Search for model = “outdoors”,

2. Aggregate with model = “sky”,

3. Aggregate with query image (possibly selected image)
resembling desired video shot,

4. Aggregate with model = “water”,

5. Aggregate with selected relevant image, video shot,

6. Repeat.

The iterative searching allows the users to apply sequen-
tially the content-based and model-based searches. Differ-
ent options can be used for scoring the results at each stage
of the query and combining with the previous results. For
TREC video retrieval, a choice of the following different
approaches using different aggregation functions were pro-
vided for combining the scores:

1. Inclusive: each successive search operation issues new
query against target database:

D0(n) = Dq(n), (5)

2. Iterative : each successive search operation issues
query against current results list and scores by new
query:

Di(n) = Dq(n), (6)

3. Aggregative: each successive search operation issues
query against current results list and aggregates scores
from current results and new query results:

Di(n) = f(Di−1(n), Dq(n)), (7)

wheref(.) corresponds tomin, max, or avg. The distance
scoresDi(n) are based on feature similarity (for CBR) and
label confidence (for models). For the models,Dq(n) =
1 − Cq(n), whereCq(n) gives the confidence of the query
label for video shotn, andDi−1(n), andDi(n) are defined
as above. The lossy filtering is accounted for in that some
target shotsn∗ have confidence scoreCq(n∗) = −∞. Eq. 7
combines the label score of each target video shot for the
current query plus the cumulative label score of the previous
queries, whereas Eq. 6 takes only the latest score.

3.4 Speech retrieval

To compute the video retrieval results using speech index-
ing for the TREC video retrieval, we used the textual state-
ment of information need associated with each topic with-
out any refinement or pruning of the text. The speech re-
trieval system works as follows: the system first loads the
inverted index and precomputed weights of each of the non-
stop words. A single pass approach is used to compute a rel-
evancy score with which each document is ranked against a
query, where the relevancy score is given by the Okapi for-
mula [RWSJ+95].

Each word in the query string is tokenized, tagged, mor-
phed and then scored using the Okapi formula above. The
total relevancy score for the query string is the combined
score of each of the query words. The scoring function takes
into account the number of times each query term occurs in
the document normalized with respect to the length of the
document. This normalization removes bias that generally
favor longer documents since longer documents are more
likely to have more instances of any given word.

4 Retrieval system

We have applied this type of iterative and integrated
content-based and model-based searching procedure for
computing the results for many of the TREC video retrieval
topics. Example topics for which this approach was used in-
clude: “scenes with sailing boats on a beach,”, “scenes with
views of canyons,” and “scenes showing astronaut driving
a lunar rover.” The video retrieval system is illustrated in
Figure 9.

4.1 Benchmark

The TREC video retrieval benchmark1 was developed
by NIST2 to promote progress in content-based retrieval
(CBR) from digital video via open, metrics-based evalua-
tion. The benchmark involves the following tasks:

• Shot boundary detection

1http://www-nlpir.nist.gov/projects/t01v/revised.html
2http://trec.nist.gov/call01.html
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Figure 9: Screen image of the video retrieval system.

• Known item search

• General statements of information need.

The benchmark consists of the following:

• Approximately 11 hours of video

• 74 query topics, which include statements of informa-
tion needs in text and example content

• Ground truth assessments (provided by participants for
known-item queries)

• Quantitative metrics for evaluating retrieval effective-
ness (i.e., precisionvs. recall).

The benchmark focuses on content-based searching in
that the use of speech recognition and transcripts is not
emphasized. However, the queries themselves typically in-
volve information at the semantic-level, i.e., “retrieve video
clips of Ronald Reagan speaking,” and opposed to “re-
trieve video clips that have this color.” The two kinds of
queries, known-item and general information need, are dis-
tinguished in that the number of matches for the known-
item queries is pre-determined, i.e., it is known that there
are only two clips showing Ronald Reagan. On the other
hand, for the general searches, the number of matches in
the corpus in not known, i.e., “video clips showing nature
scenes.”

4.2 Shot detection benchmark results

The results of the shot boundary detection on the TREC
video corpus is shown in Table 1. The system performed
extremely well for shot detection giving very high precision
and recall.

Ins. Rate Del. Rate Precision Recall
Cuts 0.039 0.020 0.961 0.980
Gradual 0.589 0.284 0.626 0.715
All 0.223 0.106 0.831 0.893

Table 1: Shot boundary detection results for TREC video
shot detection.

The results in Table 1 shows that the results for gradual
changes could be improved. We found that in many of the
cases, which were reported as errors, there was a detection
of a boundary but the reported duration was too short. In
such a case, the ISIS-based evaluation algorithm [ISI99] re-
jects the match, and considers it as both a deletion error and
an insertion error. This is an undesired property of the eval-
uation criteria. If, for example, the system would not find
a boundary at all, the evaluation would conider it as just a
deletion, and rank the system better. In some other cases,
a cut was reported as a short dissolve, with similar conse-
quences.

Shot detection errors also resulted from the high noise
level in the compressed MPEG video. For example, a peri-
odic noisy pattern can be observed in Figure 3 at a period
of 15 frames (one GOP) due to the color coding errors in-
troduced by the MPEG encoding scheme. From our expe-
rience this noise level seemed somewhat high, but we have
not quantified it.

4.3 Retrieval benchmark results

The results of the first retrieval experiment are shown in Ta-
ble 2, which evaluates the average number of hits over the
46 “general search” queries. The interactive content-based
retrieval (CBR) method is compared an automatic speech
recognition (ASR) approach in which ASR was applied to
the audio, and text indexing was used for answering the
queries. The results show a signficant increase in retrieval
quality using the interactive CBR approach.

Approach Hits/query
Automatic speech recognition (ASR) 1.9
Interactive Content-based retrieval (CBR) 4.3

Table 2: Video retrieval results (avg. hits/query over46
general searches).

Specific examples comparing retrieval performance for
interactive CBR and ASR approaches are given in Table 3.
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In some cases, such as topics VT66 and VT47, the ASR
approach gave better retrieval results. In these topics, the
relevant information was not easily captured by the visual
scenes. However, for other topics, such as VT55, VT49,
VT43, and VT42, the interactive CBR approach gave better
performance than the ASR approach.

Topic# Description ASR CBR
VT66 Clips about water project 9 3
VT47 Clips that deal with floods 8 1
VT55 Pictures of Hoover Dam 3 8
VT49 Lecture showing graphic 4 20
VT43 Shots showing grasslands 0 8
VT42 Shots of specific person 1 9

Table 3: Video retrieval results (hits/query) comparing in-
teractive CBR and ASR methods for specific queries.

We also compared the interactive CBR approach to non-
interactive (or automatic) CBR in which only a single it-
eration of searching was allowed. The results for two of
the topics given in Table 4 show a significant increase in
retrieval performance using the interactive CBR approach.

Topic Description Automatic Interactive
# CBR CBR

VT54 Glen Canyon Dam 3 12
VT15 Shots of corn fields 1 5

Table 4: Video retrieval results (hits/query) comparing au-
tomatic and interactive CBR methods for specific queries.

5 Summary

In this paper, we described a system for automatic and inter-
active content-based retrieval that integrates features, mod-
els, and semantics. The system extracts feature descriptors
from shots, which allows content-based retrieval, and clas-
sifies the shots using models for different events, scenes,
and objects. The retrieval system allows the integration
of content-based and model-based retrieval in an iterative
search process. We developed also an approach based on
speech indexing to provide a comparison with the content-
based/model-based approach. We described the results of
applying these methods to the TREC video retrieval bench-
mark.
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