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Abstract semi-automatic annotation of the video shots to provide
training data. The models are subsequently used to auto-
In this paper, we describe a system for automatic and intefatically assign semantic labels to the video shots. In order
active content-based retrieval of video that integrates fer-apply a small number of models but have at the same time
tures, models, and semantics. The novelty of the approagshave large impact on classifying the video shots, we have
lies in the (1) semi-automatic construction of models pfimarily investigated models that apply broadly to video
scenes, events, and objects from feature descriptors, @e@itent, such as indoes. outdoor, naturess. man-made,
(2) integration of content-based and model-based queryifage detection, sky, land, water, and greenery. However, we
in the search process. We describe several approachesHave also investigated several specific models including air-
integration including iterative filtering, score aggregationplanes, rockets, fire, and boats. While the models allow the
and relevance feedback searching. We describe our efigtieo content to be annotated automatically using this small
of applying the content-based retrieval system to the TRE§ecabulary, the integration of the different search methods
video retrieval benchmark. together (content-based and model-based) allows more ef-
fective retrieval.
. In the paper, we describe the approach for integratin
1 Introduction features, pmgdels, and semantics irr:pa system for gontenqt-

based retrieval of video. We have applied these systems

The growing amounts of digital video are driving the neegh nethods to the NIST TREC video retrieval benchmark,
for more effective methods for storing, searching, and t&xich consists of 74 queries of a video corpus containing
trieving video based on its content. Recent advances in CQBbroximater 11 hours of video. The queries, which were
tent analysis, automatic feature extraction, and CIaSSiﬁﬁ%'signed to access video based on semantic contents, per-
tion are improving capabilities for effectively searching ang; 5\tomatic and/or interactive approaches for retrieving
filtering digital video using information based on perceRpe resuits. We enhance the automatic retrieval by using
tual features, content structure, models, and semantics. ilmaemodels in conjunction with the features to match the
emerging MPEG-7 multimedia content description stafyery content with the target video shots. For interactive
dard promises to further improve content-based SearChrlBgrieval, we allow the user to apply several methods of

by providing a rich set of standardized tools for descrifi atiye searching that combines features, semantics, and

ing multimedia content in XML [SSO1]. However, MPEGy,,es using different filtering operations and weighting

7 does not standardize methods for extracting descriptiqﬂéthods_ In this paper, we describe more details about the

nor for matching and searching. The extraction and Ugg,oach and discuss results for the TREC video retrieval
of MPEG-7 descriptions remains a challenge for future "Eenchmark.

search, innovation, and industry competition [SmiO1].

In this paper, we describe a system for automatic and
interactive content-based retrieval that integrates featur2s, Content analysis system
models, and semantics [SBD1]. The system analyzes
the video by segmenting it into shots, selecting key-framdg)e video content is analyzed through several processes that
and extracting audio-visual descriptors from the shots. Tlmsolve shot detection, feature extraction, and classification,
allows the video to be searched at the shot-level usiag shown in Figure 1. The video is segmented temporally
content-based retrieval approaches. However, we furtbecording to shot boundaries, and descriptors are extracted
analyze the video by developing and applying models ffar each shot. The descriptors are ingested into a storage
classifying content. The approach requires the manual-sgstem. The descriptors are used as input into the model-



based classification system which assigns semantic labelSueVideo uses sampled three dimensional color his-
to each shot. The system also ingests any meta-data relagdams in RGB color space to compare pairs of frames.
to the content such as title, format, source, and so forth. Histograms of recent frames are stored in a buffer to al-
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low a comparison between multiple frames. Frame pairs at
one, three and seven frames apart and their corresponding
thresholds are shown by the three upper graphs in Figure 3.
Statistics of frame differences are computed in a moving
window around the processed frame and are used to com-
pute the adaptive thresholds. Hence the program does not
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Figure 1: The video content ingestion engine first segmel
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temporal segments using thiBM CueVideo (program
cuts.exe  with the default settings) [Cue]. After the shotgigure 3: This example represents a 53 Seconds sequence
are detected, key-frames are selected and extracted, angiigi four cuts and three dissolves in high noise (from
MPEG I-frames are extracted, as shown in Figure 2. Thasgr17. mpgframe numbers: 31800-33400). The middle cut
images are stored and indexed and are used for accesgimgistakenly detected as a short dissolve (Alm2).

the shots.

A state machine is used to detect and classify the dif-

input video ) X
ferent shot boundaries, shown at the botom of Figure 3
‘ ‘ ‘ H ‘ ‘ ‘ ‘ H H ‘ ‘ ‘ with all thirteen states listed. At each frame a state tran-
sition is made from the current state to the next state, and
l shot detection

any required operation is taken (e.g., report a shot, save a
key-frame to file). The algorithm classifies shot boundaries
into Cuts, Fade-in, Fade-out, Dissolve and Other. It works
in a single pass, is robust to possibly uncompliant MPEG
streams, and runs about 2X real time on a 800MHz P-IIl.

l key-frame selection

key-frame selection l

]

l i-frame extraction
The system extracts several different descriptors for each of
‘ A H X ‘ ’ X ’ the key-frames and i-frames. We have used the following
l descriptors:

2. grid-based color histogram (4x4 grid of the HSV his-

Figure 2: The shot detection system automatically segments togram)
the video into temporal segments and selects a key-frame
for each shot. 3. texture spatial-frequency energy (variance measure of

2.2 Feature extraction

XX

1. color histogram (166-bin HSV color-space),



each of 12 bands of quadrature mirror filter wavelet shuttle, vehicle, car, truck, rover, tractor), and astron-
decomposition, and omy.

4. edge histogram (using Sobel filter and quantization toThe video anntotation tool allows the user to process the
8 angles and 8 magnitudes). video shot-by-shot, and assign the labels to each shot. The
. ) . tool is semi-automatic in that it automatically propagates
Each of these descriptors is stored and indexed separajglye|s to “similar” shots as described in [NES2]. The

However, at retrieval time, the CBR maitching function aly stem requires the user to confirm or reject the propagated
lows the descriptor values to be combined using an arbitrglyq|s.

weighting function in order to determine the similarity of

the query and target images based on multiple features. .
aer g g P 2.4 Content modeling

2.3 Semi-automatic annotation The content modeling system uses the labeled training

. . video content to classify other video content (in our case,
In order to allow a model-based approach to video retrievile test TREC video corpus). We have investigated several
ground-truth data is needed for training the models. In Qfitterent types of static models including Bayes nets, multi-
der to create training data, we developed a video annotatipfg [NKHROO], and Gaussian mixture models. In some
tool that allows the users to annotate each shot in the VideRes \we have used additional descriptors in the models
sequence, as shown in Figure 4. The tool allows the use{,igich are not applied for content-based retrieval, such as
identify and label scenes, events, and object by applying {igtion activity and color moments.

labels at the shot-level. The tool also allows the user to asy\e pave developed statistical models for the following
sociate object-labels with individual regions in a key'framgoncepts:

=
e Yew tep

e Events fire, smoke, launch;

Shot Amataion

e Scenesgreenery, land, outdoors, rock, sand, sky, wa-
ter;

e Objects: airplane, boat, rocket, vehicle.

2.4.1 Statistical modeling

In the statistical modeling approach, the descriptors ex-
tracted from the video content are modeled by a multi-
dimensional random variabl&. The descriptors are as-
sumed to be independent identically distributed random
variables drawn from known probability distributions with

. . ) unknown deterministic parameters. For the purpose of clas-
Figure 4: The video annotation tool allows users to label tQgication, we assume that the unknown parameters are dis-
events, scenes, and objects in the video shots. tinct under different hypotheses and can be estimated. In
articular, each semantic concept is represented by a binary

For annotating video content, we created a lexicon for (%(ndom variable. The two hypotheses associated with each

scribing events, scenes, and objects; the following exceLpth variable are denoted b, i € {0,1}, where0 de-

gives some of the annotation terms: notes absence ariddenotes presence of the concept. Un-

« Events water skiing, boat sailing, person speakinéj,er each hypothesis, we assume that th('a.descrip.tor values

landing, take-off/launch, and explosion; are generated by the conditional probability density func-
tion P;(X),4 € {0,1}.

e Scenesouter space (moon, mars), indoors (classroom,In case of scenes, we use static descriptors that represent
meeting room, laboratory, factory), outdoors (naturthe features of each key-frame. In case of events, which
sky, clouds, water, snow, greenery, rocks, land, moumave temporal characteristics, we construct temporal de-
tain, beach, field, forest, canyon, desert, waterfall), aadriptors using time series of static descriptors over the mul-
man-made (road, cityscape); tiple video frames. We useane-zerdoss function [Poo99]

. L . . ) to penalize incorrect detection. This is shown in Equation
e Objects: non-rigid objects (animal, deer, bird, ducky.

human), rigid objects (man-made structure, building, 0 ifi=j
dam, statue, tree, flower), transportation (rocket, space Aailw;) = 1 otherwise @)

Frames svthe Shol - Shots i the Vadeo |

k = 'h = o




The risk corresponding to this loss function is equal fmossible probability of the concept being detected in any re-
the average probability of error and the conditional risk witlfion as the probability of its occurrence in the image/frame.
actionq; is 1 — P(w;|x). To minimize the average proba+or concepts which are global in terms of feature support,
bility of error, classv; must be chosen, which correspondsis step is not needed. Localized or regional concepts in-
to the maximum a posteriori probabilify(w;|x). This cor- cluderocket face sky, and so forth.
responds to the minimum probability of error (MPE) rule.

In the special case of b_in.ary.classification, the MPE ruf4.4 Feature fusion
can be expressed as deciding in favoweff

The objective of feature fusion is to combine multiple statis-
p(xlwr) _ (M2 — Aa) P(w2) (2) tical models for the different video features. Separate GMM
p(xlwz) = (A21 — A1) P(wr) models are used for each of the different descriptors (e.g.,
color histogram, edge direction histogram, texture, and so

The termp(z|w; ) is thelikelihood of w; and the test basedforth). This results in separate classifications and associ-
on the ratio in Equation (2) is called thikelihood ratio test ated confidence for each test image depending on the de-
(LRT) [DH73, P0099]. scriptor. While the classifiers can be combined in a many
ways, we explored straightforward methods such as taking
sum, maximum,and product of the individual confidences
for each descriptor in computing an overall classification
For modeling the TREC video content, we assume that #t@nfidence.
conditional distributions over the descriptaks under the  While this strategy of “late feature fusion” is fairly sim-
two hypotheses — concept preseHt | and concept absentple, one can envision other “early feature fusion” meth-
(Hp) — have been generated by distinct mixtures of diagds such as concatenating different descriptors into a sin-
onal Gaussians. The modeling of these semantic concegiésvector and then building a single GMM. We did not
involves the estimation of the unknown but determinsitmursue this strategy due to the large dimensionality of the
parameters of these Gaussian mixture models (GMMs) dsscriptors, especially in view of the paucity of training
ing the set of annotated examples in the training set. For thideo content depicting the concepts of interest. However,
purpose the descriptors associated with training data coitenay be possible to consider discrimination in reduced
sponding to each label are modeled by a mixture of fidgmensional subspaces of the feature space by using tech-
gaussians. The parameters (mean, covariance, and mixtugees such as the principal component analysis (PCA) or
weights) are estimated by using the Expectation Maximizay using more sophisticated dimensionality reduction tech-
tion (EM) [DLR77] algorithm. nigues that would allow concatenation and modeling of

The rest of the training data is used to build a negatitgh-dimensional descriptors.
model for each label in a similar way, which corresponds
to a garbage model_ for thgt label. The LRT is used ip eagpl'S Training
test case to determine which of the two hypotheses is more
likely to account for the descriptor values. The likelihoodhe performance of statistical models such as the GMM de-
ratio can also be looked upon as a measure afdiméidence pend to a large extent on the amount of training data. Due
of classifying a test image to the labeled class under condiglthe relatively small amount of labeled training video data
eration. A ranked list of confidence measures for eachl#yond the TREC video corpus, we adopted a “leave one
the labels can be produced by repeating this proceduredtip out strategy.” This means that we trained a model for
all the labels under consideration. each concept as many number of times as the number of
video clips. During each such training, one clip was left out
from the training set. The models for the two hypotheses
thus trained were used to detect the semantic concept in the

We use manually assigned bounding boxes encompassitigthat was left out.

regions of interest obtained during annotations for extract-

@ng features. The testing is a_ls_o done at the regional bog@% Speech indexing

ing box level. To fuse decisions from several bounding

boxes in a key-frame, we use the following hypothesis: Ifla addition to automatic analysis and modeling of the fea-
conceptis to be declared absent in a frame, it must be abserds of the video content, we also investigated the use of
in each and every bounding box tested. We can then capeech indexing as an alternative approach for video re-
pute the product of the probability of the "concept absentieval [PS01]. We used thBBM ViaVoice speech recog-
hypothesis to obtain the probability of the concept being atition engine to transcribe the audio and generate a con-
sentin the frame. Alternately, we can also use the maximtimuous stream of words. We define a unit-document to be

2.4.2 Parameter estimation

2.4.3 Region merging



a 100 word temporal segment where consecutive segmeéhisl Multi-frame matching

overlap partially in order to address the boundary truncation . _ . .
PP y y E%multl-frame matching, different semantics of the match-

effect. There are several operations performed in seque . _
P P q Ing are possible depending on the nature of the query. For

inthis processing. example, if all of the individual images in the query con
First, the words and times from the recognizer output ar Pie, g query

i . ) ._lent are important for the query (“all” semantics), then the
extracted to create the unit-document files with associal tching semantics is such that the best target video shot
timestamps. The Julign timg a}t the start of the auQio i.s USHSim the database should have the best overall score of
SZtLhce'u ;ifstf:gee/ basis. This is f(_)llowed by tokenization atching all of the query images to images in the target

phrase boundaries and then part-of-sp Figlif'
tagging such as noun phrase, plural noun etc. The morpho-
logical analysis uses the part-of-speech tag and a morph dic- query frames
tionary to reduce each word to its morph. For example, the ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
verbs, lands, landing and land will all be reduced to land.
Then, the stop words are removed using a standard stop- _—_— 7~ ™, .,
words list. For each of the remaining words, the numbm—H H ‘ ‘ ‘ ‘ H H ‘ ‘ ‘
of unit-documents that it belongs to (the inverse docume
frequency) is computed and is used to weight these word. target shot #1 terget shot #2

Figure 5: Content-based retrieval matches multiple query

frames against multiple frames in the target shots.
3 Video retrieval

Multi-frame matching requires first the determination of

Once the video content is ingested, the descriptors dhd best matches among individual images from the query
model results are stored and indexed. This allows the uaed target, and then computation of the overall score of all
to carry out the searches in a video query pipeline pritte matches. However, alternatively, if the query images are
cess as shown in Figure 6, in which queries are processsghnt to illustrate different variations of the content (“or”
in a multi-stage search in which the user selects modsetmantics), then the matching semantics is such that the best
and clusters or examples of video content at each stageget video should be the ones that have a single frame that
By operating on the interim results, the user controls thest matches one of the query images.
query refinement. As shown in Figure 6, at each stage of
the search, a quer§; produces a result lisR;. The re- 3.1.2 |nteractive retrieval
sult list R; is then used as input into a subsequent query ) .
Qi+1, and through various selectable operations for cofi@f interactive rgtrleval, we enhanced the content-based ap-
bining and scoring?; with the matches fo€); 1, the result proach_ by aIIowmg th_e user to conduct mulpple rounds _of
list ;1 is produced. The user can continue this iteratiggarching operations in which each successive round refines

search process until the desired video content is retrievefl! Puilds on the results of a previous round. Each round
consists of the following: (1) a similarity search in which

target shots are scored against query content (using single
3.1 Content-based retrieval frame or multi-frame search), and (2) a combining of these

search results with the previous results list. This way, each
Content-based retrieval is the most amenable to automaticcessive round combines new results with a current list.
retrieval in the case that the query provides example cafie investigated several ways of combining results which
tent. For TREC video retrieval, each of the queries priowolve different ways of manipulating the scores from the
vided example content which included anywhere fromsaiccessive rounds. We have used a choice of the following
single image to several video clips. For automatic conteagggregation functions for combining the scores:
based retrieval, the following approach was adopted: the
query content was analyzed using shot detection, key-frame Di(n) = Di—1(n) + Dy(n), 3)
selection, and feature extraction to produce a set of de-
scriptors of the query content. Then, the query descrl%'] .
tors were matched against the target descriptors. We con- Di(n) = min(Di—1(n), Dg(n)), )
sidered two approaches for automatic content-based matehereD,(n) gives the score of video shatfor the present
ing: (1) matching of descriptors of the query and target keguery, andD;_; (n) gives the combined score of video shot
frames, and (2) matching of descriptors for multiple framesfor the previous query, and;(n) gives the combined
(i-frames) from the query and target video, as shown in Figeore result for the current round. Eq. 3 simply takes the
ure 5. sum of the score of each target video shot for the current



Models Clusters Content

Content

Figure 6: The video content retrieval engine integrates methods for searching in an iterative process in which the user
successively applies content-based and model-based searches.

query plus the cumulative score of the previous querisgmantic class, the model-based search does not give a total
This has the effect of weighting the most recent quergnking of the target shots. That is, the model-based search
equally with the previous queries. Eq. 4 takes the minimuooth filters and ranks the target shots, which has implica-
of the current score and the previous scores for each tatgmts for its use in iterative searching.

video shot. This has the effect of ranking most highly the
target shots that best match any one of the query images.
Although, Eg. 3 and Eq. 4 are simple monotonic functions, Model
other combining functions that use arbitrary join predicates
are possible [NCS01].

For combining content-based and model-based retrieval, Model Model
we allow the above methods for combining results, how-
ever, we allow additionally a filtering method that computes
the intersection of the previous result list with the results
from the current query, as described next. Mode

3.2 Model-based retrieval Figure 7: Parallel model search allows the user to define

The model-based retrieval allows the user to retrieve the t4£19hting of multiple models.

get shots based on the semantic labels produced by the mod-

els. Each semantic label has an associated confidence scofehe models can be applied sequentially or in parallel as
The user can retrieve results for a model by issuing a quehown in Figure 7. In the case of parallel search, the user
for a particular semantic label. The target video shots atefines weighting of multiple models in a single query. In
then ranked by confidence score (higher score gives lowequential search, the user decides based on interim results
rank). Since the models do not assign labels to all of ttwaich models to apply. For example, a parallel model-based
target shots, only the ones that are positively classified tofearch is as follows: nature 0.5xoutdoorst-0.25 xwater-



0.25 = sky. An example sequential model-based search ismsere f(.) corresponds tmin, max, or avg. The distance
follows: outdoors— no faces— no water. scoresD;(n) are based on feature similarity (for CBR) and
label confidence (for models). For the model,(n) =
. . 1 - C,(n), whereC,(n) gives the confidence of the query
3.3 Video query pipeline label for video shot, andD;_;(n), andD;(n) are defined

The integrated search is carried out by the user successislyabove. The lossy filtering is accounted for in that some

applying the content-based and model-based search mtgfget shots* have confidence scofg, (n*) = —oo. EQ. 7
ods as shown in Figure 8. combines the label score of each target video shot for the

current query plus the cumulative label score of the previous
queries, whereas Eq. 6 takes only the latest score.

Model Cluster » CBR |— -

CBR

v

A4

3.4 Speech retrieval

Figure 8: Integration of content-based and model-basE compute the video retrieval results using speech index-
searching in the video query pipeline. ing for the TREC video retrieval, we used the textual state-

ment of information need associated with each topic with-

For example, a user looking for video shots showingoc’_x't any refinement or pruning of the text. The speech re-
beach scene can issue the following sequence of querieg'ﬁYal system works as follows: the system first loads the

the case that beach scenes have not been explicitly label#yerted index and precomputed weights of each of the non-
stop words. A single pass approach is used to compute arel-

1. Search for model = “outdoors”, evancy score with which each document is ranked against a
) query, where the relevancy score is given by the Okapi for-
2. Aggregate with model = “sky”, mula [RWSJ 95].

Each word in the query string is tokenized, tagged, mor-
ed and then scored using the Okapi formula above. The
total relevancy score for the query string is the combined
score of each of the query words. The scoring function takes
into account the number of times each query term occurs in
5. Aggregate with selected relevant image, video shot,the document normalized with respect to the length of the

document. This normalization removes bias that generally
6. Repeat. favor longer documents since longer documents are more
h(_aly to have more instances of any given word.

3. Aggregate with query image (possibly selected imagp(ﬂ
resembling desired video shot,

4. Aggregate with model = “water”,

The iterative searching allows the users to apply sequg
tially the content-based and model-based searches. Differ-
ent options can be used for scoring the results at each stgge Retrieval system
of the query and combining with the previous results. For
TREC video retrieval, a choice of the fOIlOWing diﬁ:erenWe have app“ed this type of iterative and integrated
approaches using different aggregation functions were pggntent-based and model-based searching procedure for
vided for combining the scores: computing the results for many of the TREC video retrieval
topics. Example topics for which this approach was used in-

1. Inclusive: each successive search operation issues new, . . - - - .
P tllde: “scenes with sailing boats on a beach,”, “scenes with

query against target database: views of canyons,” and “scenes showing astronaut driving
a lunar rover.” The video retrieval system is illustrated in
Do(n) = Dy(n), ®) Figure o Y

2. Iterative: each successive search operation issues

qguery against current results list and scores by n Benchmark
query: The TREC video retrieval benchmarkvas developed
Di(n) = Dq(n), (6) by NIST? to promote progress in content-based retrieval

) _ ~ (CBR) from digital video via open, metrics-based evalua-
3. Aggregative each successive search operation issygs The benchmark involves the following tasks:
guery against current results list and aggregates scores

from current results and new query results: e Shot boundary detection
Lhttp://www-nlpir.nist.gov/projects/t01v/revised.html
D;(n) = f(Di-1(n), Dyg(n)), ) 2http://trec.nist.gov/callo1.html
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4.2 Shot detection benchmark results

Fie EdR View Favorlisfipec 7 bulimedia Bromser (IBM T 3, Wiatson Rwrd-c-_nner) - Microsoft |nn=
Aa|aackv * v @34 S5earch S Favorites Fhedia 3 G WS

el - B SO IR N # PN Thg results of the shot boundary detection on the TREC

m video corpus is shown in Table 1. The system performed

- = > extremely well for shot detection giving very high precision
- ' and recall.
- _ Ins. Rate Del. Rate Precision Recall
) I O R R :m\;]lliﬂlllﬁ_ me DI TEER AR A nm!lﬂl!lllﬂ: Cuts 0039 0020 0961 0980
a Gradual| 0.589 0.284 0.626 0.715
All 0.223 0.106 0.831 0.893

Table 1: Shot boundary detection results for TREC video
shot detection.
__lumllﬂﬂjllln ponIIREERER | oo lﬂﬂlllﬂ .a nllﬂlll]ﬂ.

The results in Table 1 shows that the results for gradual
changes could be improved. We found that in many of the
cases, which were reported as errors, there was a detection
of a boundary but the reported duration was too short. In
i such a case, the ISIS-based evaluation algorithm [ISI99] re-
& jects the match, and considers it as both a deletion error and
ke el o I e = an insertion error. This is an undesired property of the eval-

) ) ) ) uation criteria. If, for example, the system would not find
Figure 9: Screen image of the video retrieval system. 5 poundary at all, the evaluation would conider it as just a
deletion, and rank the system better. In some other cases,
a cut was reported as a short dissolve, with similar conse-
guences.

Shot detection errors also resulted from the high noise
level in the compressed MPEG video. For example, a peri-
odic noisy pattern can be observed in Figure 3 at a period
of 15 frames (one GOP) due to the color coding errors in-

o Approximately 11 hours of video troduced by the MPEG encoding scheme. From our expe-
rience this noise level seemed somewhat high, but we have
e 74 query topics, which include statements of inform&0t quantified it.
tion needs in text and example content

.
A | g T O R IR

! |l
(o MR ERAEM | pos DN R o D

e Known item search
e General statements of information need.

The benchmark consists of the following:

. . 4.3 Retrieval benchmark results
e Ground truth assessments (provided by participants for

known-item queries) The results of the first retrieval experiment are shown in Ta-

ble 2, which evaluates the average number of hits over the

¢ Quantitative metrics for evaluating retrieval effective46 “general search” queries. The interactive content-based

ness (i.e., precisiows. recall). retrieval (CBR) method is compared an automatic speech
recognition (ASR) approach in which ASR was applied to

The benchmark focuses on content-based searchinghi@ audio, and text indexing was used for answering the

that the use of speech recognition and transcripts is @@lries. The results show a signficant increase in retrieval

emphasized. However, the queries themselves typically dfirality using the interactive CBR approach.
volve information at the semantic-level, i.e., “retrieve video

clips of Ronald Reagan speaking,” and opposed to “ré-Approach Hits/query
trieve video clips that have this color.” The two kinds of Automatic speech recognition (ASR) 1.9
queries, known-item and general information need, are distnteractive Content-based retrieval (CBR) 4.3

tinguished in that the number of matches for the known-
item queries is pre-determined, i.e., it is known that thefable 2: Video retrieval results (avg. hits/query ovér

are only two clips showing Ronald Reagan. On the othgeneral searches).

hand, for the general searches, the number of matches in

the corpus in not known, i.e., “video clips showing nature Specific examples comparing retrieval performance for
scenes.” interactive CBR and ASR approaches are given in Table 3.



In some cases, such as topics VT66 and VT47, the AFBH73]
approach gave better retrieval results. In these topics, the
relevant information was not easily captured by the visual
scenes. However, for other topics, such as VT55, VT49,
VT43, and VT42, the interactive CBR approach gave beti&LR77]
performance than the ASR approach.

Topic# | Description ASR | CBR
VT66 | Clips about water project| 9 3
VT47 | Clips that deal with floods 8 1
VT55 | Pictures of Hoover Dam 3 8
VT49 | Lecture showing graphic| 4 20
VT43 | Shots showing grasslands 0 8
VT42 | Shots of specific person 1 9

[1S199]

[NCS*01]

Table 3: Video retrieval results (hits/query) comparing in-
teractive CBR and ASR methods for specific queries.

We also compared the interactive CBR approach to non-
interactive (or automatic) CBR in which only a single it-

eration of searching was allowed. The results for two BYKHROO]

the topics given in Table 4 show a significant increase in
retrieval performance using the interactive CBR approach.

Topic | Description Automatic | Interactive
# CBR CBR

VT54 | Glen Canyon Dam 3 12

VT15 | Shots of corn fields 1 5

[NLS*02]

Table 4: Video retrieval results (hits/query) comparing au-
tomatic and interactive CBR methods for specific queries.

5 Summary

[Po099]

In this paper, we described a system for automatic and inter-
active content-based retrieval that integrates features, mod-
els, and semantics. The system extracts feature descriptors
from shots, which allows content-based retrieval, and cldBS01]
sifies the shots using models for different events, scenes,
and objects. The retrieval system allows the integration

of content-based and model-based retrieval in an iterative
search process. We developed also an approach based on
speech indexing to provide a comparison with the content-

based/model-based approach. We described the resultiR¥fSI"95]

applying these methods to the TREC video retrieval bench-

mark.
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