

FDU at TREC-10: Filtering, QA, Web and Video Tasks

Lide Wu, Xuanjing Huang, Junyu Niu, Yikun Guo, Yingju Xia, Zhe Feng
Fudan University, Shanghai, China

This year Fudan University takes part in the TREC conference for the second time. We have participated
in four tracks of Filtering, Q&A, Web and Video.

For filtering, we participate in the sub-task of adaptive and batch filtering. Vector representation and
computation are heavily applied in filtering procedure. Four runs have been submitted, which includes one
T10SU and one T10F run for adpative filtering, as well as another one T10SU and one T10F run for batch
filtering.

We have tried many natural language processing techniques in our QA system, including statistical
sentence breaking, POS tagging, parsing, name entity tagging, chunking and semantic verification. Various
sources of world knowledge are also incorporated, such as WordNet and geographic information.

For web retrieval, relevant document set is first created by an extended Boolean retrieval engine, and then
reordered according to link information. Four runs with different combination of topic coverage and link
information are submitted.

On video track, We take part in both of the sub-tasks. In the task of shot boundary detection, we have
submitted two runs with different parameters. In the task of video retrieval, we have submitted the results of 17
topics among all the topics.

1. Filtering

Our research on filtering focuses on how to create the initial filtering profile and set the initial threshold,
and then modify them adaptively. In this section, detailed introduction to the training and adaptation module of
our adaptive runs is first presented. Then we introduced our batch runs briefly. Final part presents the
experiment results.

1.1 Adaptive filtering

Figure 1.1 shows the architecture of the training in adaptive filtering. At first, feature vectors are extracted
from positive and pseudo-positive document samples. The initial profile is the weighted sum of positive and
pseudo-positive feature vectors. Then we compute the similarity between the initial profile and all the training
documents to find the optimal initial threshold for every topic.

1.1.1 Feature selection
Since the total number of all words is very large and it costs much time in similarity computation, we

decide to select some important words from them. First, we carry out morphological analysis and stopword
removing. Then we compute the logarithm Mutual Information between remaining words and topics:

()
()





=
i

ji
ji wP

TwPTwMI |log),(log (1.1)

Where, wi is the ith word and Tj is the jth topic. Higher logarithm Mutual Information means wi and Tj are
more relevant. P(wi) and P(wi|Tj) are both estimated by maximal likelihood method.

For each topic, we select those words with logarithm Mutual Information higher than 3.0 and occurs more
than once in the relevant documents. Logarithm Mutual Information is not only used as the selection criterion,

but also as the weight of feature words.

Figure 1.1 Architecture of the training in adaptive filtering

1.1.2 Similarity Com

The similarity be

Where, pj is the
weight of the kth wor
of the kth word in the
average number of tok

1.1.3 Creating initia
Each topic profi

(relevant) documents
To make use o

considered as pseudo
different high-level ca
for the topics from R
feature vectors, we ge
set to those values tha

1.1.4 Adaptation of
For adaptive filte

filtering documents. F

s e
Positive sample
putation

tween the profile and trainin

),(
∑

== k
ji CospdSim θ

 profile of the jth topic and
d in di, is computed as such
 ith document , dl is the ave
ens in one document.

l profile and Setting initial
le is represented by a vecto
and feature vector from pse
f the hierarchy of categor
 relevant documents. Sin
tegories, we set different X
1 to R79, and 0.15 for R

t the initial profile. Once th
t can result in the largest va

threshold and topic profile
ring, we adopt an adaptatio
igure 1.2 shows the architec

Feature vectors

Initial P

Feature sel

Pseudo-positive sampl
g documents is computed by the cosine formula:

))((

*

22
∑∑

k
jk

k
ik

jkik

pd

pd
. (1.2)

 di is the vector representation of the ith document. dik, the
:)log(1 dlavdltfd ikik ∗+= , where tfik is the frequency
rage number of different tokens in one document, avdl is the

 threshold
r which is the weighted sum of feature vector from positive
udo relevant documents with the ratio of 1: X0.
ies, those documents of the same high-level category are
ce the number of low-level categories is different among
0 for different categories. In our experiment, X0 is set to 0.03
80~R84. After combining the positive and pseudo-positive
e initial profiles are acquired, the initial thresholds should be
lue of T10U or T10F.

 during filtering
n procedure to modify the initial profile and threshold while
ture for the adaptation:

rofile

Initial Threshold

Training documents

ection

Similarity Computing

Feature vectors

Figure 1.2 Architecture for the adaptation

(1) Adjustment of threshold
 We adjust the threshold once a positive document is retrieved. Let:
� t: denote the sequence number of document, since the documents are processed by temporal order, t also

can be considered as time.
� n(t): denote the number of documents processed up to t
� nR(t): denote the relevant documents retrieved up to t
� nN(t): denote the irrelevant documents retrieved up to t
� T(t): denote the threshold at time t
� S-(tk, tk+1): denote the average similarity of the document been rejected in (tk , tk+1) interval
� P(tk, tk+1): denote the precision of system in (tk , tk+1) interval, here

)()(
)()(),(

1

1
1

kk

kRkR
kk tntn

tntnttP −
−=

+

+
+

Intuitionally, we should increase the threshold if the precision is too low and lower the threshold if too
few documents are retrieved. So we can use S-(tk+1, tk) and P(tk+1, tk) to decide whether to increase or decrease
the threshold. When the precision is lower than expected, we should increase the threshold. Otherwise, we can
decrease the threshold. In particular, when the threshold is too higher than the similarity with the rejected
documents, the threshold should be decreased quickly. The above strategy of threshold adjusting can be written
as below:

If)(),(11 ++ ≤ kkk tEPttp then

Correct?

Threshold

N

Sim>Threshold

N

Y

Number of positive and

Negative documents

Similarity

Positive

documents

Profile
Document

Stream

Negative

Documents

Similarity

Computation

Similarity

Y

))(1()()()(11 kkkk tTttTtT −•+= ++ α

Else If S-(tk ,tk+1) < T(tk+1) * D then

)1(),()()(11 AttSAtTtT kkkk −•+•= +
−

+

 Else)())(1()(11 kkk tTttT ∗−= ++ β

Where)(ktα is the coefficient for increasing the threshold, and)(ktβ is the coefficient for decreasing

the threshold, both of them can be considered as the function of nR(t). In our experiment, we use the following

linear functions shown in equation 1.3.





>
≤−∗

=
µ
µµµα

α
)(0,
)(,))((

)(0

kR

kRkR
k tn

tntn
t ,





>
≤−∗

=
µ
µµµβ

β
)(,0
)(,))((

)(0

kR

kRkR
k tn

tntn
t (1.3)

Where 0α and 0β are the initial parameter. The parameter of µ indicates the maximum number of

positive documents should be used to adjust the threshold and modify the profile. Here we set 02.00 =α ,

1.00 =β and 300=µ .
The introduction of parameter D aims at increasing the recall. Since the actual number of relevant

documents of every topic cannot be observed, we can only acquire some indirect estimation. We believed when
the average similarity between the profile and those rejected documents are too small, the similarity threshold
should be decreased in order to enhance the recall. In our experiment, we set D = 0.1 and A = 0.8.

EP(tk) means the precision which we wish the system to reach. At first, we regarded this parameter as
constant and tried several different values, but the results are not very satisfactory. Since it is impractical to
require the system to reach the desired high precision at the beginning of filtering, we adopt a gradual-ascent
function. The function is showed in equation 1.4.





>
≤∗−+

= +
+ µ

µµ
)(0,
)(,)()(

)(100
1

kR

kRkRfinal
k tn

tntnPPP
tEP (1.4)

Where, P0 and Pfinal are the desired initial and final precision. In our experiment, P0 = 0.2 and Pfinal = 0.6.
(2) Adaptation of profile

Once a retrieved document has been judged relevant, it is added to the positive document set otherwise it
is added to the negative document set. During profile adaptation, feature vectors are extracted from positive
documents and negative documents. The new topic profile is the weighted sum of feature vector from positive
documents and negative documents with the ratio of 1:X1 (Here X1= -0.25). For effectiveness and efficiency
reason, we adjust the topic profile only after L(L = 5) positive documents have been retrieved.

1.2 Batch filtering

Since this year’s batch filtering task does not include batch-adaptive task, there should be no adaptation in
the batch-filtering sub-task. Therefore, the profile and threshold acquired from training should remain the same
during filtering.

There is only a slight difference in the initialization module of our batch and adaptive runs. Full relevance
judgments are provided in batch filtering. As a result, for batch run, the given relevant judgments are enough
for us to build the initial profile, so pseudo-relevant documents are not used in profile creation. In addition, we
adopt the stratified tenfold cross-validation method to avoid the phenomenon of overfitting.

1.3 Evaluation results

This year Fudan University has submitted four runs for adaptive and batch filtering. We submit no routing
runs. Table 1.1 summarizes our adaptive and batch filtering runs. Four evaluation criteria are calculated,
including T10SU, T10F, Set Precision and Set Recall. Underlined value means that the run is optimized for the
corresponding criterion. The last columns give the number of topics in which our runs perform better, equal
and worse than median ones according to the criteria for which our runs are optimized.

Comparison with median Task Run T10SU T10F Set

Precision

Set

Recall > = <

FDUT10AF1 0.215 0.404 0.505 0.330 64 5 15Adaptive

FDUT10AF4 0.213 0.414 0.493 0.363 71 4 10

FDUT10BF1 0.248 0.441 0.563 0.313 32 13 39Batch

FDUT10BF2 0.244 0.448 0.526 0.373 27 17 40

Table 1.1 Adaptive and batch filtering results

From this table we can find that our adaptive runs perform better than median for most of the topics,
while our batch runs do not perform as well. Although our batch runs performs better than adaptive runs, the
divergence is not very significant. It helps to show that adaptation plays a very important role in filtering.

2. Question Answering

It is the second time that we take part in the QA track. We tried many natural language processing
techniques, and incorporated many sources of world-knowledge. A novel question answering technique, known
as “syntactic constrained semantic verification”, has been put forward. In next section, we will describe the
architecture of our QA system, followed by a detailed discussion of the main components.

2.1 The Overview of QA system

Our system contains four major modules, namely question processing module, offline indexing module,
online searching and concept filtering module, as well as answer processing module. The online models are
represented in Figure 2.1.

Our indexing module creates full-text index for the document collection. However, it is quite different
from traditional indexing procedure in that it incorporates several NLP techniques not only to avoid errors due
to traditional stemming process, but also to increase both the precision and recall while retrieving proper name.

Question processing module tries to interpret the meaning of the input question by identifying answer
type (the kind of information the question requires) from the question type, and extracting keywords. Next, the
searching and filtering module use only non-replaceable keywords to retrieve relevant paragraph. After
obtaining the result paragraphs, we use a concept thesaurus to filter and rank those paragraphs according to the
number of occurring concepts, which are mainly derived from those replaceable keywords.

In the Answer Processing module, we use a dependency parser to analyze sentences in which the answer
may lie in. Finally, a novel semantic verification scheme is applied after a WordNet-based concept tagging and
a name entity tagging are completed.

DocumentsQuestion

g

gg

Answer

Type

Mapping

2.2 Document Indexing

Our document indexing module actually includes two separate indices, i.e. a morphological analysis
based full-text index and a proper name index. However, before we build these indexes, a sentence breaking
module is applied to get correct sentence boundaries. We use a free sentence breaking tool, based on maximum
entropy model, from Adwait Ratnaparkhi’s web site.

Figure 2.1 Overview of our QA system (online part)

Proper name indexing is carried out to accelerate t

tagging module depends heavily on a maximum entropy
with its part of speech tag (POS) for every word, it outp
sample sentence after NP chunking.

Figure 2.2 The output o

2.3 Question Processing

The goal for question processing module is to
question. The query and expected answer type are transf

2.3.1 Query Formation
First, considering synonyms, we define two kin

non-replaceable keywords. The replaceable keywords

Full-text Index

Name Entity Index

Answer(s)

g

[Ed Wilson] , [spokesman] for [the District] of [Colu

increased in [recent years] , but [there] have been [few re
Boolean Retrieval

with Feedback
g

Paragraph

Concept Filterin
g g
Paragraph Weightin
he online question proces
 model based NP chunker
uts NP chunks for the sent

f NP chunking toolkit

find the user’s informati
ormed from every origina

ds of keywords, i.e. th
are referred to those wor

g

mbia police] , said [street c

ports] of [assaults] near [the
Parsin
sing speed. O
. After readin
ence. Figure

on needs by
l natural lang

e replaceable
ds that could

rime] in [Wa

 Capitol groun
Concept

Tagging
Name Entity

Tagging
Syntactic Constrained

Semantic Verification
g
Question Processin
 Searching and Filterin
 Answer Processin
NP Chunkin
Keywords

Formation
Question Parsin
Answer Type

Identification
POS Taggin
ur proper name
g each sentence

 2.2 presents one

 examining the
uage question.

 keywords and
 be replaced by

shington] has

ds.]

other synonym without altering the information request of the question. Only the non-replaceable keywords are
transformed into query. The documents returned by search engine will consist of all the candidate segments.
Further, those candidates irrelevant to the question will be filtered out by replaceable keywords and their
synonyms.

POS tagging and NP chunking are carried out to segment each question into segments. After that, we
apply a HMM based Name Entity Identification tool to extract the non-replaceable keywords. It can recognize
six kinds entity name, including people’s name, place name, organization name, time, date and miscellaneous
number, from normal NP phrases.

The NP phrases identified by Name Entity Identification module are regarded as the non-replaceable
keywords and then submitted to the search engine, while other components are treated as the replaceable
keywords.

2.3.2 Answer Type Concept Identification
Another task for Question Processing module is to determine the desired answer type concepts. First, we

roughly classify 10 question types according to the question interrogatives, as shown in Figure 2.3. Next, 32
answer type concepts are introduced into our system, illustrated in figure 2.4. Among them, six are identified
by Name Entity Identification tool, i.e. DATE, LOCATION, MONEY_UNIT, ORGANIZATION,
PERCENTAGE and PERSON, while other concepts correspond to some synset in the WordNet noun
hierarchies.

Figure 2.3 Question types

What Who/whom Where

How why how much

When which Name

Figure 2.4 Answer type concepts

ACTIVITY COLOR LINEAR_AMOUNT PLANT

AMOUNT COUNTRY LOCATION PRODUCT

ANIMAL DATE MONEY PROVINCE

ARTIFACT DEF MONEY_UNIT STAR

BODYPART DISEASE ORGANIZATION TEMPERATURE

CAREER ELEMENT OTHER TIME

CD FOOD PERCENTAGE WEIGHT

CITY LANGUAGE PERSON WORD

2.4 Search and Filtering Module

We employ the Boolean retrieval engine to find candidate answer paragraphs. We modify the search query
to avoid returning too many and too few paragraphs. If too many paragraphs are retrieved, more keywords,
such as replaceable keywords, will be added to restrict the number of candidate paragraphs. Otherwise, some
of the key phrase will be removed.

After the paragraphs are retrieved, additional lexicon knowledge (Moby electronic thesaurus) is used to
filter out irrelevant ones and sort remaining paragraphs according to the number of the words which appear in
the question.

Moby electronic thesaurus contains about 1,000 concepts and each concept includes several words with
similar word meaning [Moby00]. First, the replaceable keywords for each question are matched against the

thesaurus to find one or more relevant concepts. Next, if the correspondent concept is found, the candidate
paragraphs will be examined to find out the number of the words under the same concept. These words will be
called extended query keywords (EQKs). Their number, which reflects the semantic closeness between a
question and every paragraph, will be used to sort the paragraphs.

2.5 Answer Processing Module

We put forward a new approach in the Answer Processing module, which is named as “syntax constrained
semantics verification”. The Answer Processing Module aims to determine and extract answers from the
candidate paragraphs retrieved by the Search and Filtering module. Figure 2.5 gives the framework of this
module.

Firstly, we determine the answer type of every noun word and noun phrase in candidate paragraphs by
Name Entity Tagging, which has been described before. The words whose answer types correspond to the
Question Type are marked candidate answer.

Then the candidate paragraphs are passed through a dependency parser, Minipar [Lin98], to get the parsing
tree. In this dependency tree, every node corresponds to a syntax category and every word in the candidate
paragraph resides in a node. The children of a node are those words that modify it. We try to find a path in the
parsing tree connecting EQKs and candidate answer. If there exist such path, we extract the words on the path
and the children of them in the parsing tree. Thus we get different word groups for each candidate answers.
Here we assume that these word groups are more semantically closer to the corresponding candidate answer
they extracted from than other words in the same sentence.

Now we have a word group for each candidate answer. We firstly extract the content words (noun, verb,
adjective and adverb words) from question to form another word group. Both word groups are considered to be
relative to the focus words in question and answers. Then we compute their semantic similarity using a
approach named extended vector space model. The result of this step is a similarity score which varies from
zero to one. This is the basic factor to determine the final answer.

Question

Candidate
Paragraphs

Parsing

Candidate
Answer Concept

Path
Finding

Candidate
Answer

Word Group

Question
Processing

Question
Notional
Words

Semantic
Similarity
Evaluating

Semantic
Lexicon Answer

Window
Extraction

Chosen
Answer

Answer
Window

Answer
Type
Tagger

Dependency
Parsing Tree

Name Entity
Identificat

ion
EQKs

 Figure 2.5 Syntax constrained semantic verification

For each candidate answer, a 50 byte-long section in the candidate paragraph, named answer-windows, is

then created. This answer-window is centralized by the candidate answer. We evaluate each answer-window
using the following three scores:
� Semantic similarity: This score has been computed using extended vector space model.
� Syntax pattern score: This score is based on the candidate answer sentence’s syntactic structures. It takes

several syntactic features into consideration, such as the length of the path in the parsing tree between the
answer keywords and candidate answer, POS of EQKs and candidate answer.

� Indicators score: Some phrases or words, such as ‘known as’, ‘called’, ‘named as’ and some syntax
features, such as appositive, strongly indicate a possible answer to specified questions such as ‘who’,
‘what’, ‘which’.
The final score is a linear combination of all of these scores, where the weight of every score depends on

the question feature.

2.6 Experiment results

This year we only take part in the main task of QA, and only submit one 50-byte run. Our results are not
satisfactory. Statistics over 492 questions shows the strict mean reciprocal rank of 0.137 and lenient mean
reciprocal rank of 0.145. Almost 80% of the questions return no correct response.

3. Web Retrieval

This year we attend the TREC-10 web subtask for the first time. We submit four runs for the web track.
We used different combination of information in the four runs: title only and content only (fdut10wtc01), title
with description and narrative information and content only (fdut10wac01), title only with link information
(fdut10wtl01) and all title, description, narrative with link information (fdut10wal01).

3.1 System Architecture

In order to get better performance on web information retrieval, we have modified most of our original
search engine, which is based on statistical model, and make a new search kernel that is based on extended
Boolean search. Moreover, we split the document set and indices into several parts to efficiently handle the
corpus of WT10g which contains 10G HTML documents.

Figure 3.1 shows the architecture of our web retrieval system. The first part in the left side is
preprocessing module which can turn HTML pages into plain text. The second module is a preparation part for
indexing, it combine all the small HTML documents in one directory of WT10g into a single file. The next step
is indexing. We use stopword removing and morphology analysis to select entries of the indexing lexicon.
What’s more, we do not create index for the whole WT10g corpus due to the huge size of the corpus. Instead,
the corpus is split into smaller parts, each of which is to be indexed independently. By this means, we can
control the indices more easily than simply creating a larger index of the whole corpus.

On the right side, the first step transfers the queries into several words, recognizes the phrase, and does
some query expansion. The second module searches the index with the algorithm below and builds the ranked
relevant document set. In the third step, link information is exploited to reorder the relevant documents.

3.2 Search Algorithm

The core algorithm is based on an extended Boolean retrieval engine called "short matching passages"
[Kleinberg98], which intends to find the shortest passage that matching certain words. The assumption is that the
shorter the passage is, the more possible that it will be relevant with the query. The following equation shows

the basic idea of this algorithm. The I(p,q) represents the intensity of a shortest passage from the pth to qth
word which contains certain keywords.








≥+









+−=
otherwise 1,

K1p-q if ,
1),(

a

pq
K

qpI (3.1)

Figure 3.1 Architecture of our web retrieval system

Cleaning of
HTML pages

Preparation
 of indexing

Indexing

Query
Formation

Reranking by
link information

Search

WT10g
corpus

Plain text

Document
collections

Indices

Lexicons

Queries

Internal
expression
of queries

Ranked
relevant

documents

Final result

Before searching, natural language topics are first changed into Boolean queries, then the retrieval engine
searches on all the individual indices simultaneously. Instead of the original equation in [Gordon98], we use our
own equation (3.2) to calculate the score of each document.

),(1*),()(
),(

iii
Dqipi

i qpwqpIDS ∑
∈

= (3.2)

Together with the length of short passage, we also consider the position of them (which is calculated in
w1 in the equation above) to calculate the score of the document.

3.3 Reordering with link information

In order to improve Retrieving result by link information, we have tested Kleinberg Algorithm of hubs
and authorities [Kleinberg98], co-citation and bibliographic coupling [Kraaij99]. After some experiments, we find

that co-citation and bibliographic coupling can lead to the batter result. However, our best result still shows
that link information cannot improve the search result.

The basic principle of co-citation is that if two documents (document A and B) cite the same documents,
then document A and B are similar to some degree. The basic principle of bibliographic coupling is that if
many documents cite both document A and B, then document A and document B are similar to some degree.

In our experiment, we use the formula of Wessel Kraaij [Kraaij99]:

)(#
)(

)()(

dinlinks
irelevancy

dInlinkrel dinlinksi∑ ∈= ,
)(#

)(
)()(

doutlinks
irelevancy

dOutlinkrel doutlinksi∑ ∈=

)(#
)(

)()(

dinlinks
iOutlinkrel

dCociterel dinlinksi∑ ∈= ,
)(#

)(
)()(

doutlinks
iInlinkrel

dlBibcouplre doutlinksi∑ ∈=

 Now, to the dth document, we have five scores: S(D), InlinkRel(d), OutlinkRel(d), CociteRel(d),
BibcoupleRel(d). We can use the following formula to calculate the news core:

NewScore(d)= 1α * S(D)+ 2α *InlinkRel(d)+ 3α *OutlinkRel(d)

+ 4α *CociteRel(d)+ 5α * Bibcouple(d) (3.3)

Where, 1α , 2α , 3α , 4α , 5α are five parameters.

3.4 Experiment Results
We submitted four runs, whose names are fdut10wtc01, fdut10wtl01, fdut10wac01, fdut10wal01. The final

result is shown in the following table.
Runs Type Average Precision R-Precision

Fdut10wtc01 Title-only/content-only 0.1661 0.2061

Fdut10wtl01 Title-only/content + link 0.1544 0.1939

Fdut10wac01 Title + Description + Narritive/content-only 0.1661 0.2061

Fdut10wal01 Title + Description + Narritive/content + link 0.1248 0.1607

Table 3.1 Results of web track

We used many different combinations of parameters to reordering the content-only result, and find finally

that 1α =1, 2α =0, 3α =0, 4α =1, 5α =0 can lead to the best result. But it still does not improve the

content-only score.

4. Video Track

On Video Track, we take part in both Shot Boundary Detection and Video Retrieval. In the task of Shot
Boundary Detection, we have submitted two runs with different parameters. One of them is precision-orientied,
and another is recall-orientied. In the task of Video Retrieval, we submitted the results of 17 topics out of 74.

4.1. Shot Segmentation

In our system, we use FFD (Frame-to-Frame Difference) [Hanjalic97] to detect the shot boundary. But we
redefined the difference between the nth frame and (n+k)th frame as Equation 4.1.

)()()(nYnDnZ kkk ×= (4.1)

Where,)(nDk describes the difference on the luminance and)(nYk describes the difference on the

Color Histogram. The definitions of)(nDk and)(nYk are as follows:

∑∑ −+=
i j

k njiIknjiICnD |),,(),,(|)(1 (4.2)

∑ +−=
i

k niHkniHCnY)),(),,(min(1)(2 (4.3)

Where,),,(njiI is the average luminance of block (i, j) in frame n, and each block has 8*8 pixels.

),(niH is the Color Histogram value of frame n on the ith bin.

We use)(1 nZ to detect the Cut Shot Boundary and)(nZk to detect the Gradual Shot Boundary. Cθ

and Gθ are thresholds for cut and gradual shot boundary. They will be discussed in next paragraph. If)(1 nZ

exceed the threshold Cθ , it may be caused by Cut Shot Boundary from frame n to frame n+1. We have also

trying to reduce the influence of flashlight by compare the frames of both sides. When flashlight comes, it can

be assumed that there will be more than one frame whose)(1 nZ is larger than Cθ , also, the frames before

and after the flashlight are similar. The Gradual shot boundary cannot be easily detected by the FFD of two

continuous frames. We use)(nZk (k=50) to magnify the frame-to-frame difference. But, it will cause more

false alerts by motion in shot. To reduce that, we use motion detection: a sequence of continuous frames whose

FFD is larger than Gθ will be labeled as Gradual Shot Boundary only if no efficient camera motion is

detected and the frames before and after the sequence are dissimilar.

During the Shot Boundary Detection, threshold Cθ and Gθ are selected automatically every 500

frames [Zhu00]. The selection is according to the histogram of)(1 nZ and)(nZk in 500 frames. The

histogram of)(1 nZ and)(nZk are calculated, and we find the first low point p. The value on p will be the

threshold.
Other parameters are adjusted manually based on the 42 training video clips. The results show that the

parameter selection is not sensitive in our method.

4.2. Video Retrieval

We submitted the results of 17 topics in video retrieval. Table 4.1 shows the type of these topics.

Topic Type General Known-Item Total Topic No.

People Searching 3 7 10 20,21,22,23,24,34,35,36,42,58

Object Serching 1 1 2 54,69

Video Text Searching 0 1 1 70

Camera Motion Searching 2 0 2 44,74

Shot Change Type Searching 1 0 1 65

Searching based on Document 0 1 1 62

Table 4.1 Submitted Topics

In Section 4.2.1, we will describe the architecture of our video retrieval system. Section 4.2.2 is the
detailed description about implementation.

4.2.1 System Architecture

Our Video Retrieval System includes two parts. One is the off-line Indexing Sub-system, and another is
on-line Searching Sub-system. Figure 4.1 describes the system architecture.

Figure 4.1 System architecture of video retrieval

4.2.2 Detailed Implementation

4.2.2.1 Qualitative Camera Motion Analysis

In our system, we analyze Camera Motion by the Motion Vectors obtained from MPEG stream. Each
motion is composed of Motion Amplitude and Motion Direction. The system tries to segment shots into
sub-shots automatically. We define sub-shot as some continuous frames in one shot with the similar camera
motion.
4.2.2.2 Face Detection

Our method is designed mainly for interviewee detection. It has features: (1) The face is quite large, (2)
the face has motion but the background is still. The method consists of three steps: Skin-Color based

Query Result Video Clips

Video
Library

Mpeg-I

Decoding
Video Stream Audio Stream

Indexing Phase

Human Face
Information

Shot Segmentation

Shot Boundary
Type Index

Camera
Motion

Analysis

Camera
Motion
Index

Video Text
Detection &
Recognition

Video Text
Information

Face

Detection

Speaker

Clustering

Automatic
Speech

Recognition

Topic
Detection

Topic Index

Document
Information

Transcript

Gender

Detection

Question Answer
Search

Question

Answering

Shot Boundary

Type Search
Camera Motion

Search

Video Text

Search
Video Topic

Search

Face

Recognition

People search

Speaker

Recognition

Video
Image Audio

Searching Phase

Segmentation, Motion Segmentation, and Shape Filtering.
In skin-color based segmentation, we use several skin-color filters in different color spaces and combine

them by AND operation. It is found that the result is better than the ones in any single color space. After that
we have several skin-color regions. Similarly, we can have several motion regions by motion segmentation. By
INTERSECTION operation, we have those regions which have both skin-color and motion. They are the
candidates of face. For these candidates we use shape filtering to remove those too small or irregular ones and
get the final results.
4.2.2.3 Face Recognition

In the training phase, we normalize all the training samples to 40*40 and make histogram equalization.
After that, we clustering some of these samples and transform the face images to column vectors. Then:

(1) Let mωωω ,,, 21 � be m training pattern classes, which correspond to m persons, respectively. Then

calculate the within-class scatter matrix wS of mωωω ,,, 21 � and the covariance matrix tS of all of samples.

(2) Calculate the zero subspace of the within-class matrix wS .

(3) Calculate the eigenfaces in subspace ()01−
wS .

Suppose () { }kw spanS ααα ,,,0 21
1

l=− , where kααα ,,, 21 � are the orthogonal unit vectors. Then, an
arbitrary vector ϕ in ()01−

wS can be represented as Equation 4.4:
 PZkk =++= αξαξϕ l11 (4.4)

where, ()kP ααα ,,, 21 l= , ()k
TZ ξξξ ,,, 21 l=

Define matrix 1tS as PSPS t
T

t =1 . Therefore, the calculating of eigenface in subspace ()01−
wS can

be transformed to the problem calculating the eigenvectors corresponding to the l largest eigenvalues of the
matrix 1tS . Suppose lβββ ,,, 21 l are the l orthogonal unit eigenvectors corresponding to the l largest
eigenvalues of the matrix 1tS . Then the required eigenfaces are lPPP βββ ,,, 21 l .

In recognition phase, we also normalize the Example Face and the Testing Face to 40*40 at first. Then we
make histogram equalization and transform them to column vectors 21, xx . Then the projection feature vectors
of two images on the eigenface space can be obtained as Equation 4.5:

() () ,,,,,,,, 2121211211 xPPPxPPP TT βββξβββξ �� == (4.5)

 Considering the distance 21 ξξ −=d , if δ≤d , then we think that the Testing Face and the Example

Face belong to same person. (δ is a threshold)
4.2.2.4 Video Text Detection and Recognition

There are three main parts in our Video Text Detection System: Text Block Detection, Text Enhancement
and Binarization. To reduce the processing time, the system processes only one frame in every ten. On each
processed frame, text block detection is first applied to get the position of each possible text line. This
detection is based on edge image. Since edges are not sensitive to intensity changes and edges are dense in text
line blocks, we calculate the gray scale edges in RGB space horizontally. The edge images are then binarized
and run length analysis is applied to find candidate text blocks.

We use SSD (Sum of Square Difference) based block matching to track the detected text lines. All tracked
text blocks are interpolated to a reasonable fixed size and then registered. At last, the tracked, interpolated and
registered text blocks are combined by an average operation to reduce the noise and suppress the complex
background.

An improved logical level technique (ILLT) is developed to binarize each candidate text block. This
method can deal with different intensities of characters (i.e. characters may be brighter or darker than
background) efficiently.

We have used commercial software: TextBridge Pro Millennium to recognize the binarized text block
image. At last, the recognized string of each text blocks will be split into words and those words that are too
short (less than 3) are removed in the filtering step.
4.2.2.5 Speaker Recognition and Speaker Clustering

During the Indexing Phase, Speaker Clustering can ensure the clustered shots that include human face are
from the same person. And during the Searching Phase, Speaker Recognition can ensure the audio contained in
the returned results is the same as the audio examples.
 We use Vector Quantization (VQ) and Gaussian Mixture Model (GMM) to characterize each speaker. In
these two methods, VQ worked faster than GMM while GMM performed better than VQ in some cases. In
addition, in order to remedy the disturbance of noise and other backgrounds, a global model was used to
modify the output of single speaker model.

Both VQ and GMM, especially after being integrated with global model, showed satisfactory detection
and clustering effect if the speeches have the similar backgrounds. But if there is strong music background in
the speech, the result will be worse.
4.2.2.6 Automatic Speech Recognition

We have used the Speech SDK of Microsoft as Automatic Speech Recognition (ASR) engine
[www.Microsoft.com/speech]. There’re different parameter sets for male and female speaker. One has to
choose a proper parameter set to get better performance. And the engine has capability of background
adaptation.

To increase the recall, we did not use gender detection. Instead, we use different parameter sets to
recognize the same piece and give the confidence and time alignment of every recognized word. We have tried
speaker change detection and audio classification. However, there is little improvement. The main reason is
that the background music is too strong. Nevertheless, it recognized most of the keywords correctly and we use
it for Topic Detection.

For the NIST video, we find that there are some errors in the human transcripts. We use ASR engine to
give the result with time alignment. Then the result is aligned with the human transcript by ASR evaluation
program. Finally, we get the rough time alignment between the audio and the human transcript. This time
alignment is used for Question Answering.
4.2.2.7 Gender Detection

In our system, Gender Detection is made by Gaussian Mixture Model (GMM). We select pieces of audio
that contains low background noise or music from the unused videos to train a Male Model and a Female
Model. The feature is 12-dimension LPC cepstrum. Each model consists of 128 mixtures. Because the “clean”
data of female is not enough, some male speakers are recognized as female. On the other hand, this error is
also caused by the background music.
4.2.2.8 Topic Detection and Question Answering

In order to make Topic Detection and Question Answering, we should have a document library at first. In
our system, the documents of videos are obtained in two ways. One is the manually created information.
Another is the transcript created by automatic speech recognition (ASR). After that, Topic Detection and
Question Answering module will run. These two modules come from Filtering and Question Answering, which
can be found in Section 1 and 2. The training data of Topic Detection comes from the unused videos.

4.3. Results

Our results of shot boundary detection and video retrieval are presented in the following tables. As for

shot boundary detection, our system acquires high performance on cut shot, while the results of gradual shot
are not very good. Our performance of know-item search and general search both seems satisfactory. The
reason may be attributed to the fact that we only submit the results of 10 know-item search topics and 7
general search topics.

Precision
Oriented

Insert
Rate

Delete
Rate

Precisi
on Recall Recall

Oriented
Insert
Rate

Delete
Rate Precision Recall

Cut 0.039 0.028 0.961 0.972 Cut 0.039 0.028 0.961 0.972

Gradual 0.322 0.415 0.737 0.584 Gradual 0.350 0.391 0.727 0.608

All 0.133 0.154 0.889 0.845 All 0.143 0.146 0.883 0.853

Table 4.2 Shot Boundary Detection Results

Submitted Topics Number : 7 Submitted Topics Number : 10

 KI = 0.333
RI = 0.333

KI = 0.333
RI = 0.666

KI = 0.666
RI = 0.333

KI = 0.666
RI = 0.666Mean Precision 0.640 Mean

Precision 0.543 0.539 0.434 0.430

Table 4.3 General Search

Results
Mean
Recall 0.678 0.636 0.528 0.486

 Table 4.4 Known-Item Search Results

ACKNOWLEDGMENTS
This research was partly supported by NSF of China under contracts of 69873011 and 69935010. We are

thankful to Lin Mei, Yuefei Guo, Weixiang Zhao Yi Zheng, Yaqian Zhou, Kaijiang Chen, Xiaoye Lu, Jie Xi,
He Ren, Li Lian, Wei Qian, Hua Wan and Tian Hu for their help in the implementation.

Reference

[Hanjalic97] Alan Hanjalic, Macro Ceccarelli, Reginald L.Lagendijk, Jan Biemand: Automation of Systems Enabling Search on

Stored Video Data.Proc.SPIE, Vol.3022 of Storage and Retrieval for Image and Video Database V, 1997

[Harabagiu99a] Sanda Harabagiu and Dan Moldovan. A Parallel System for Textual Inference. IEEE Transactions parallel and

distributed systems, vol.10, 1999

[Harabagiu99b] Sanda Harabagiu and Dan Moldovan. FALCON: Boosting Knowledge for Answer Engines. CSE, Southern

Methodist University, 1999

[Kleinberg98] Jon M. Kleinberg : Authoritative Sources in a Hyperlinked Environment, Proc. 9th ACM-SIAM Symposium on

Discrete Algorithms 1998

[Kraaij99] Wessel Kraaij, Thijs Westerveld: TNO/UT at TREC-9: How different are web documents, Proceeding of TREC-9.

[Lin98] Dekang Lin. A Dependency-based Method for Evaluating Broad-Coverage Parsers. Natural Language Engineering.

1998.

[Moby00] http://www.dcs.shef.ac.uk/research/ilash/Moby/

[Zhu00]Xingquan Zhu, Xiangyang Xue, Lide Wu: An Automatic Threshold Detection Method in Video Shot Segmentation, Vol.37

No.1, Chinese Journal of Computer Research and Development, 2000

[Gordon98] Gordon V.Cormack, Christopher R.Palmer, Michael Van Biesbrouck, Charles L.A. Clarke. Deriving Very Short

Queryies for High Precision and Recall (MultiText Experiments for TREC-7), Proceeding of TREC-7.

