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1. Introduction: Question Answering

IR techniques have proven quite successful at locating within large collections of documents
those relevant to a user’s query.  Often, however, the user wants not whole documents but brief
answers to specific questions: How old is the President?  Who was the second person on the
moon?  When was the storming of the Bastille?  Recently, a number of research projects have
investigated the computational techniques needed for effective performance at this level of
granularity, focusing just on questions that can be answered in a few words taken as a passage
directly from a single text (leaving aside, for the moment, the answering of longer, more complex
answers, such as stories about events, descriptions of objects, compare&contrast discussions,
arguments of opinion, etc.).

The systems being built in these projects exhibit a fairly standard structure: all create a query
from the user’s question, perform IR with the query to locate (segments of) documents likely to
contain an answer, and then pinpoint the most likely answer passage within the candidate
documents.  The most common difference of approach lies in the pinpointing.  A ‘pure IR’
approach would segment each document in the collection into a series of mini-documents,
retrieve the segments that best match the query, and return them as answer.  The challenge here
would be to make segments so small as to be just answer-sized but still large enough to be
indexable.  A ‘pure NLP’ approach would be to match the parse and/or semantic interpretation of
the question against the parse and/or semantic interpretation of each sentence in the candidate
answer-containing documents, and return the best match(es).  The challenge here would be to
perform parsing, interpretation, and matching fast enough to be practical, given the large volumes
of text to be handled.

Answering short questions thus becomes a problem of finding the best combination of word-level
(IR) and syntactic/semantic-level (NLP) techniques, the former to produce as short a set of likely
candidate segments as possible and the latter to pinpoint the answer(s) as accurately as possible.

Because language allows paraphrasing and inference, however, working out the details is not
entirely straightforward.  In this paper we describe the Webclopedia, a system that uses a
classification of QA types to facilitate coverage, uses a robust syntactic-semantic parser to
perform the analysis, and contains a matcher that combines word- and parse-tree-level
information to identify answer passages.  Section 2 outlines the Webclopedia approach and
architecture; Section 3 describes document retrieval and processing, Section 4 describes the QA
Typology, Section 5 the parsing, and Section 6 the matching.



2. Webclopedia

Webclopedia’s architecture, shown in Figure 1, follows the pattern outlined in Section 1:

Parsing of question: The CONTEX parser (see Section 5) is used to parse and analyze the
question, assisted by BBN's IdentiFinder (Bikel et al., 1999).

Question analysis: To form a query, single- and multi-word units (content words) are extracted
from the parsed query.  WordNet synsets are used for query expansion.  See Section 3.

IR: The IR engine MG (Witten et al. 1994) is used to return and rank the top 1000 documents.

Segmentation: To decrease the amount of text to be processed, the documents are broken into
semantically coherent segments.  Two text segmenters were tried—TexTiling (Hearst, 94), C99
(Choi, 00); the first is used.

Ranking of segments: For each segment, each sentence is scored using a formula that rewards
word and phrase overlap with the question and expanded query words.  The segments are ranked.

Parsing of segments: CONTEX also parses each sentence of the top-ranked 100 segments.

Pinpointing: For each sentence, three steps of matching are performed (see Section 6); two
compare the parses of the question and the sentence; the third moves a fixed-length window over
each sentence and computes a goodness score based on the words and phrases contained in it.

Ranking of answers: The candidate answers’ scores are compared and the winning answer(s) are
output.

Figure 1. Webclopedia architecture.
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3. Information Retrieval and Document Ranking

Analyzing the Question to Create a Query

We parse input questions using CONTEX (Section 5) to obtain a semantic representation of the
questions.  For example, we determine that the question "Who is Johnny Mathis’ high school
track coach?" is asking for the name of person.  The question analysis module identifies noun
phrases, nouns, verb phrases, verbs, adjective phrases, and adjectives embedded in the question.
These phrases/words are assigned significance scores according to the frequency of their type in
our question corpus (a collection of 27,000+ questions and answers), secondarily by their length,
and finally by their significance scores, derived from word frequencies in the question corpus.

We remain indebted to BBN for the use of IdentiFinder (Bikel et al., 1999), which isolates proper
names in a text and classifies them as person, organization, or location.

Expanding Queries

In order to boost recall we use WordNet 1.6 (Fellbaum 1998) to expand query terms and place all
the expanded terms into a Boolean expression.  For example, "high school" is expanded to:

 "(high&school)|(senior&high&school)|(senior&high)|high|highschool"

It is obvious that such brute force expansion has undesirable effects.  The expanded "high school"
query contains "high".  This will make "high school" relatively less significant, since "high" is a
very common word.  We did not try to fix this problem in this year’s TREC evaluation, but are
planning to improve the expansion procedure next year.

Retrieving Documents

We use MG (Witten et al. 1994) as our search engine. Although MG is capable of performing
ranked query, we only use its Boolean query capability.  For the entire TREC9 test corpus, the
size of the inverse index file is about 200 MB and the size of the compressed text database is
about 884 MB.  The stemming option is turned on.   Queries are sent to the MG database, and the
retrieved documents are ranked according to their ranking from query analysis.  For example:

Johnny&mathis&((high&school)|(senior&high&school)|(senior&high)|high|highschool)

will be sent to the database first.  If the number of documents returned is less than a pre-specified
threshold then we retain this set of documents as the basis for further processing.  The threshold is
set to 5,000 in our TREC9 evaluation.  If nothing is returned then we relax the query by taking
the next query term in our query rank list.  In this case, it is "high school track coach".  If more
than 5,000 documents are returned we drop the query expansion and use the original query terms
instead.  For this example, the query will be "Johnny&mathis&high&school&track&coach".

In some cases, it is impossible to get the number of returned documents down to 5,000.  For
example, the question "What is the meaning of life?" will return an enormous amount of
documents since all the words in the query are very common.  We plan to address this problem by
adding proximity and order constraints to the query process.

Ranking Documents

If the total numbers of documents returned by MG is N, we would like to rank the documents to
maximize answer recall and precision in the topmost K << N, in order to minimize the parsing



and subsequent processing. In this phase we set K=1,000. Our document ranker uses the
following scoring method:
• Each question word gets a score of 2
• Each synonym gets a score of 1
• Other words get a score of 0

Normally common words are ignored unless they are part of a phrase in question word order, in
which case they get a score of 2 along with other words in the phrase. Based on these scores, the
total score for a document is:

Document score = sum of word scores / number of different words

Segmenting Documents

Splitting each document into topical segments to be input to the matcher is based on the
assumption that important contextual information for pinpointing answers tends to occur within a
local context.  This is mostly true for the setup of TREC9 Q&A.  Furthermore, CONTEX does
not use information outside sentence boundaries.  This step helps the system focus on smaller
regions of text where answers are most likely to be found.

We tried two text segmenters, TextTiling (Hearst 1994) and C99 (Choi 2000).  They perform at
almost the same level, though TextTiling is faster.

Ranking Segments

The resulting segments are re-ranked using the same ranker described earlier.  This time, only the
topmost 100 segments are passed to the parser (and then to the matcher for answer pinpointing).

Retrieval Results
We evaluated our IR front end in 6 separate experiments using the 238 training questions
obtained from NIST.  The resulting answer distributions within the top 1,000 segments are shown
in Table 1.

N < = 5 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 5 0 0 1 0 0 0

Test0=38 1 2 1 5 2 2 2 3 2 5 2 7 2 8 2 8 2 9 2 9 3 0 3 6 3 6

% 19% 23% 34% 36% 39% 42% 44% 44% 45% 45% 47% 56% 56%

Test1=52 2 7 3 1 3 8 3 9 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 8 4 8

% 42% 48% 59% 61% 64% 64% 64% 64% 64% 64% 64% 75% 75%

Test2=64 2 3 2 9 3 8 4 1 4 3 4 6 4 7 4 7 4 7 4 8 4 8 5 6 5 6

% 36% 45% 59% 64% 67% 72% 73% 73% 73% 75% 75% 88% 88%

Test3=52 1 7 2 1 2 4 2 7 2 9 3 0 3 1 3 2 3 2 3 2 3 2 4 4 4 6

% 33% 40% 46% 52% 56% 58% 60% 62% 62% 62% 62% 85% 89%

Test4=55 3 4 3 9 4 6 4 8 4 8 5 0 5 0 5 0 5 0 5 1 5 1 5 4 5 4

% 62% 71% 84% 87% 87% 91% 91% 91% 91% 93% 93% 98% 98%

Test5=54 2 5 3 0 3 4 3 8 4 0 4 1 4 2 4 3 4 3 4 5 4 5 5 1 5 1

% 46% 56% 63% 70% 74% 76% 78% 80% 80% 83% 83% 94% 94%

Overall 138 165 202 216 226 235 239 241 242 246 247 289 291

% 44% 52% 64% 69% 72% 75% 76% 77% 77% 78% 78% 92% 92%

Table 1. Percentage of topmost N segments containing an answer after retrieval and ranking.



It is interesting to see that the system gets about 52% of answer segments within the top 10 and
reaches only 78% within the top 100.  And even in the top 1000 segments, 8% of the answers are
missing.  This indicates that further improvement of the IR front end is critical.

4. The QA Typology

There are many ways to ask the same thing.  Likewise, there are many ways of delivering the
same answer.  Such variations form a sort of semantic equivalence class of both questions and
answers; speaking approximately, any form of the question can be answered by any form of the
answer.  Since the user may employ any version of his or her question, and the source documents
may contain any version(s) of the answer, an efficient system should group together equivalent
question types and answer types.  Any specific question can then be indexed into its type, from
which all equivalent forms of the answer can be ascertained.  These QA equivalence types can
help with both query expansion (for IR) and answer pinpointing (for NLP).

However, the equivalence is fuzzy; even slight variations introduce exceptions: who invented the
gas laser? can be answered by both Ali Javan and a scientist at MIT, while what is the name of
the person who invented the gas laser? requires the former only.  This inexactness suggests that
the QA types be organized in an inheritance hierarchy, allowing the answer requirements
satisfying more general questions to be overridden by more specific ones ‘lower down’.

Previous work in automated question answering has often categorized questions by question word
alone or by a mixture of question word and the semantic class of the answer (Srihari and Li,
2000; Moldovan et al., 2000).  To ensure full coverage of all forms of simple question and
answer, we have been developing a QA Typology as a taxonomy of QA types, becoming
increasingly specific as one moves from root downward.  Instead of focusing on question word or
semantic type of the answer, our classes attempt to represent the user’s intention, including for
example the classes Why-Famous (for Who was Christopher Columbus? but not Who discovered
America?, which is a Proper-Person QA type) and Abbreviation-Expansion (for What does

NAACL stand for?).

Figure 2. Portion of Webclopedia QA Typology.
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To create the QA Typology, we analyzed 17,384 questions and their answers (downloaded from
answers.com); see (Gerber, 2001).  The Typology contains 94 nodes, of which 47 are leaf nodes;
a section of it appears in Figure 2.

Each Typology node has been annotated with examples and typical patterns of expression of both
Question and Answer, as indicated in Figure 3 for Proper-Person.

Question examples Question templates
Who was Johnny Mathis' high school track coach? who be <entity>'s <role>
Who was Lincoln's Secretary of State?
Who was President of Turkmenistan in 1994? who be <role> of <entity>
Who is the composer of Eugene Onegin?
Who is the CEO of General Electric?

Actual answers Answer templates
Lou Vasquez, track coach of…and Johnny Mathis <person>, <role> of  <entity>
Signed Saparmurad Turkmenbachy [Niyazov], <person> <role-title*> of <entity>
        president of Turkmenistan
...Turkmenistan’s President Saparmurad Niyazov… <entity>’s <role> <person>
...in Tchaikovsky's Eugene Onegin... <person>'s <entity>
Mr. Jack Welch, GE chairman... <role-title> <person> ... <entity> <role>
...Chairman John Welch said ...GE's <subject>|<psv object> of related role-verb

Figure 3. Portion of QA Typology node annotations for Proper-Person.

5. Parsing

Some answers returned by a youthful Webclopedia showed the need to ensure that the answer
found is of the right kind semantically:

Q: Where are zebras most likely found? — A: in the dictionary

Q: Where do lobsters like to live? — A: on the table / at the same rate as regular lobsters

and in the right range numerically:

Q: How many people live in Chile? — A: nine

We use CONTEX, a parser that is trained on a corpus to return both syntactic and semantic
information, to help.

CONTEX is a deterministic machine-learning based grammar learner/parser that was originally
built for MT (Hermjakob, 1997; Hermjakob and Mooney, 1997), where a smaller version of
CONTEX (lexically restricted English) reached a labeled precision rate of 89.8% when trained on
256 sentences. Over the past few years it has been extended over the past years to handle
deployment on new languages, including Japanese and Korean (Hermjakob, 2000). The Japanese
version of the parser, trained on 4096 sentences and tested on lexically unrestricted sentences,
achieves 91.4% labeled precision and 91.1% labeled recall for parse trees with a word level
granularity, and a bunsetsu level dependency accuracy rate of 84.5%.  For English, CONTEX
parses of unseen sentences measured 87.6% labeled precision and 88.4% labeled recall, after
being trained on 2048 sentences from the Penn Treebank in March 2000.  The robustness and the



fact that the parser produces a complete parse tree for every test sentence, makes it very useful for
Webclopedia.

CONTEX works as follows.  As with statistical systems, the grammar learning system also
induces its rules from training data; however, it makes better use of linguistic knowledge and
other knowledge resources. When presented with a set of parse trees, the learning system
automatically derives the sequence of Shift-Reduce parsing operations required to produce each
tree.  To determine which specific action to take at any point, it considers features of the left and
right contexts of the current word.  These features include words, parts of speech, lexical and
semantic features, etc.  In cases of ambiguity, it asks the trainer to identify which feature(s) to pay
attention to.  Viewing ambiguity as a decision making problem, the system builds a variant of a
decision tree to handle the ambiguity in future, using the feature(s) within the context as well as
background knowledge in the form of lexicons, ontologies, and any results from topic detection,
etc.  The appropriate features are indicated manually, by the trainer, if he or she decides they are
needed.  The decision structure however differs from a traditional grammar in two ways: (1) it is
more, in the sense that it does not only provide a space of possible analyses, but in fact selects
what it believes is the best analysis, and (2) it has a very operational character in that it directly
drives the shift-reduce parser.  The grammar as represented by the decision structure therefore has
a somewhat different character from the traditional static grammar resource.

Manual guidance allows CONTEX to require far fewer treebanked sentences for training.
CONTEX derives much of its strength from the integration of different types of background
knowledge, even if those knowledge resources are incomplete.  In this way it is a good example
of the hybridization of statistical and symbolic techniques.  Machine learning algorithms
automatically select the most relevant features that best support specific run time parse decisions.
This approach employs human and machine each to best advantage: linguists are good at parsing
individual sentences, but less good at keeping all the complexity and generalization of a full
grammar under control, while machines are excellent at managing and generalizing large sets of
individual data points.  The result is a rapid traversal of the learning space toward a robust, wide-
coverage grammar and parser.

Webclopedia required four extensions to CONTEX.

First, the grammar had to be extended to handle questions.  This was achieved by adding approx.
250 manually parsed questions to the Penn Treebank, on which the system’s English grammar
has been trained.  Of these questions, 100 were obtained from NIST’s TREC-8 QA corpus and
150 from elsewhere.

Second, the semantic type ontology in CONTEX was extended, both to include QA types and to
include many more Objects from our ontology SENSUS.  It now contains about 10,000 nodes.

Third, the results of BBN's IndentiFinder locating proper names had to be taken into account.

Fourth, the parse tree output had to be augmented to carry question-related information.  The
semantic type of the desired answer, as determined by CONTEX, we call the Qtarget.  CONTEX
returns a ranked list of Qtargets, in order of specificity, drawn from its ontology.  For example,
the expression

(((c-date) (c-temp-loc-with-year)) ((eq c-temp-loc)))

indicates that the system should try to match a specific date or specific year (both first choice)
over a more general temporal expression like "after the war".)

Beside the Qtargets that refer to concepts in CONTEX’s concept ontology (see first example in
Figure 4), Qtargets can also refer to part of speech labels (see first example), to constituent roles
or slots of parse trees (see second and third examples), and to more abstract nodes in the QA



Typology (see later examples). For questions with the Qtargets Q-WHY-FAMOUS, Q-WHY-
FAMOUS-PERSON, Q-SYNONYM, and others, the parse tree also provides a slot Qargs that
contains additional information helpful for matching (see final examples).

Semantic ontology types (I-EN-CITY) and part of speech labels (S-PROPER-NAME):
What is the capital of Uganda?
QTARGET: (((I-EN-CITY S-PROPER-NAME)) ((EQ I-EN-PROPER-PLACE)))

  Parse tree roles:
Why can't ostriches fly? QTARGET: (((ROLE REASON)))
Name a film in which Jude Law acted. QTARGET: (((SLOT TITLE-P TRUE)))

  QA Typology nodes:
What are the Black Hills known for? Q-WHY-FAMOUS
Who was Whitcomb Judson? Q-WHY-FAMOUS-PERSON
What is Occam's Razor? Q-DEFINITION
A corgi is a kind of what? Q-DEFINITION
What is another name for nearsightedness? Q-SYNONYM
Aspartame is also called what? Q-SYNONYM
Should you exercise when you're sick? Q-YES-NO-QUESTION
True or false: Chaucer was an actual person. Q-TRUE-FALSE-QUESTION

  Qargs for additional information:
Who was Betsy Ross?   QTARGET: (((Q-WHY-FAMOUS-PERSON)))   QARGS: (("Betsy Ross"))
How is "Pacific Bell" abbreviated?  QTARGET: (((Q-ABBREVIATION))) QARGS: (("Pacific Bell"))

What are geckos?     QTARGET: (((Q-DEFINITION)))   QARGS: (("geckos" "gecko") ("animal"))

Figure 4. QA-related information, returned in the parse tree of the question.

6. Answer Matching

Given the instantiated QA patterns, the Qtargets and Qargs lists, and the potential answer-bearing
text segments (also parsed by CONTEX), the Matcher module performs three attempts to
pinpoint the answer:
• match QA patterns,
• match Qtargets and Qargs,
• (if all else fails) move a word-level window across the (unparsed) text, scoring each position.

The window scoring function is as follows:

Score = (500 / (500+w))*(1 / r) * Σ[(ΣI1.5*e*u*b*q)1.5]

Factors:
• w: window width (modulated by gaps of various lengths: "white house" ≠"white car and

house")
• r: rank of Qtarget in list returned by CONTEX
• I: window word information content (inverse log freq)
• q: # different question words, and specific rewards (bonus q=3.0)
• e: penalty for question word expansion using WordNet synsets (e=0.8)
• b: boosting for main verb match, target words, proper names, etc. (b=2.0)
• u: (value 0 or 1) indicates whether a word has been "subsumed" by the Qtarget model and

should not contribute (again) to the score.  For example, "In what year did Columbus
discover America?" the subsumed-words are {what, year}.



Unless required, we will not try to develop a more sophisticated scoring function, preferring to
focus on the modules that employ information 'deeper' than the word level.

7. Experiments and Results

We entered the TREC-9 short form QA track, and received an overall Mean Reciprocal Rank
score of 0.318, which put Webclopedia in essentially tied second place with two others.  (The
winning system far outperformed all the others.)

A sample analysis of the relative performance of the three modules appears in Table 2.  It is clear
that the QA patterns made only a small contribution, and that the Qtarget made by far the largest
contribution.  Interestingly, the word-level window match lay somewhere in between.

Date IR hits QA pattern Qtarget Window Total

6/17 78.1 05.5 26.2 10.4 30.3

Table 2. Correct answers attributable to each module.

We are pleased with the performance of Qtargets.  They indicate the value of trying to locate the
desired semantic type from the meaning of the question.  Together with the parse structure, they
also help with pinpointing the answer closely: our average answer window length was approx. 25
bytes.

We are not however satisfied with the manually built QA patterns.  First, it is too difficult and
takes too long to build them by hand (the 500 we have were assembled by simply combining
approx. 25 question patterns with 25 answer patterns).  Second, the patterns are not robust in the
face of small variations of phrasing.  We aim instead to build the QA patterns automatically.
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