
 FDU at TREC-9: CLIR, Filtering and QA tasks

Lide Wu, Xuan-jing Huang, Yikun Guo, Bingwei Liu, Yuejie Zhang
Fudan University, Shanghai, China

This year Fudan University takes part in the TREC-9 conference for the first time. We have
participated in three tracks of CLIR, Filtering and QA.

We have submitted four runs for CLIR track. Bilingual knowledge source and statistical-based
search engine are integrated in our CLIR system. We varied our strategy somewhat between runs: long
query (both title and description field of the queries involved) with pseudo relevance feedback
(FDUT9XL1), long query with no feedback (FDUT9XL2), median query (just description field of
queries involved) with feedback (FDUT9XL3) and, the last, mono long query with feedback
(FDUT9XL4).

For filtering, we participate in the sub-task of adaptive filtering and batch filtering. Vector
representation and computation are heavily applied in filtering procedure. 11 runs of various
combination of topic and evaluation measure have been submitted: 4 OHSU runs, 1 MeSH run and 2
MSH-SAMPLE runs for adaptive filtering, and 2 OHSU runs, 1 MeSH run and 1 MSH-SAMPLE run
for batch filtering.

Our QA system consists of three components: Question Analyzer, Candidate Window Searcher
and Answer Extractor. We submitted two runs in the 50-byte category and two runs in the 250-byte
category. The runs of "FDUT9QL1" and "FDUT9QS1" are extracted from the top 100 candidate
windows. The other two runs of "FDUT9QL2" and "FDUT9QS1" are extracted from the top 24
candidate windows.

1. Cross-Language IR

We focused our attention on Chinese document indexing and query translation. All query
processing was fully automatic and both long and short query translation are covered.

Our overall strategy to CLIR task is to translate English query into Chinese word list, since we feel
it is not feasible to build a document translation system in such a short period, while it is much more
reasonable to disambiguate word sense in context of long query by statistical approach, such as POS and
knowledge. Once queries have been translated, we use IR techniques, which is a variant of MIT’s
approach[1] and probabilistic methods to obtain relevant document list. The whole corpus has been
indexed with Chinese NLP techniques developed by our group in recent years [2]. Finally, we also
explore the weight of words in both of the title and description fields.

The system infrastructure is illustrated in figure 1.1. Description of each part is followed.

Figure 1.1 System architecture for CLIR

 English Machine Translation Translated Chinese Result
 Query Processing Chinese Query IR System List

 Knowledge
 Source Indexer

Chinese
Corpus

1.1 Indexer

We explored two different indexing methods for our CLIR task, one is word-based Chinese
indexing module, and the other is n-gram based indexing module. Because Chinese is different from
English in that there are no extra spaces between Chinese words, we must first segment Chinese
character sequence into words or n-grams in order to index documents.

1.1.1 Chinese word segmentation module

Figure 1.2 illustrates the architecture of our word segmentation sub-system. Given a document, it is
first divided into a sequence of sentences (sub-sentences) by punctuation such as full stop, comma, etc.
Each sentence then passes through the sentence segmentor and is segmented into a sequence of words.
Finally, a text-level post-processor will act on the word sequence and generate the final segmentation
result.
• Dictionary

Two kinds of dictionaries are used during the segmentation process. One is the static dictionary,
which records Chinese lexical words and is unchangeable. The other is the OOD (out-of-dictionary
words) cache, which records the newly found OOD and changes dynamically.
• Sentence segmentor

The input sentence is first segmented by both static and dynamic dictionary. Ambiguous strings are
handled at the same time. We use a pattern-matching module to recognize those OODs with fixed
structure pattern, such as money, date, time, percentage and digit.

Figure 1.2 Architecture of our word segmentation sub-system

Ambiguity
resolution

Named
Entity

Arbitrator

Segment by
dictionary

Chinese
Person

Name
Finder

Other
Named

Entity
Finder

Chinese
Place
Name

Finder

Transliterate
Finder

Rule-based
Pattern

Matching

n-gram
finder

sentence

word

Text
Divider

Document

Sentence
Segmentor

Document
Post-processor

sentence
sequence

word
sequence

word
sequence

OOD
Cache

static
dictionary

sequence

The recognition module of person’s name, place, organization and transliteration is more complex.
Contextual and structural information both play important roles in identifying these kinds of OODs. The
former can provide external evidence for deciding word boundary and predicting the category of OOD.
The latter can provide internal evidence for suggesting and validating the appearance of certain OOD.
For example, in Chinese, family surnames are stereotypical. We've made lots of statistical analysis on
various categories of OOD and built correspondent identification modules for each. Each module works
independently. A named entity arbitrator will take effect when two or more kinds of name entities
conflict with each other and select the most probable one.

Beside these OOD types mentioned above, there are still many other kinds of OODs. We can also
recognize some OODs according to its string frequency and internal characters’ mutual information.
• Document post-processor

During the sentence-by-sentence segmentation, some OODs will not be recognized until they occur
several times. Therefore, the OOD cache changes continuously until the whole document passes
through the sentence segmentor. After that, a document post-processor based on the final content of the
cache is necessary to detect missed or mistakenly segmented words before.

1.1.2 n-Gram based Tokenization

We also implement n-Gram based tokenization process, which does not need sophisticated
segmentation method. The document is simply cut into sequence of bigrams. We want to know whether
the effectiveness of IR based on n-gram is comparable, inferior or superior to that based on word
segmentation.

1.1.3 Word Indexing

Every document in the corpus is cut into no more than 64K segment to make indexing procedure
more robust and normalize the document length. After being segmented, text id, term frequency,
document frequency and term position are stored for the task. No stop word is removed from the invert
file, since the corpus is rather small.

In order to optimize the disk space and I/O in retrieval time, we have also implemented invert file
compression. The file was then decrease to about one half of its original size.

1.2 Query Translation

The essence of cross-language information retrieval is to use queries in one language to retrieval
documents from a pool of documents written in other languages. This may be achieved by using query
translation, document translation, or by using both query and document translation.
 Here, we adopt query translation as the dominant strategy, use English query to be translated object,
and utilize English-Chinese bilingual dictionary as the important knowledge resource to acquire correct
translations. So by using our Chinese Information Retrieval system, the complete English-Chinese
CLIR process can be implemented successfully.

1.2.1 Knowledge Source Construction

The knowledge source used in English-Chinese-oriented CLIR system mainly includes dictionary
knowledge and Chinese Synonym Dictionary. In addition, stopword list and word morphological
resumption list are also utilized in our system. In fact, dictionary is a carrier of knowledge expression
and storage, which involves almost all information about vocabulary, namely static information.
(1) English-Chinese Bilingual Dictionary

This dictionary is mainly used in translation processing in word level and phrase level. And it
consists of three kinds of dictionary component as follows:
l Basic Dictionary--A basic knowledge source independent of particular field, which records basic

linguistic vocabulary;
l Technical Terminology Dictionary —Recording terminology knowledge in a particular technical

field, which is mainly referred to Hong Kong commercial terminology knowledge and
incorporated in the basic dictionary;

l Idiom Dictionary--Recording familiar fixed matching phenomena, such as idiom and phrase.
l The whole bilingual dictionary involves almost 50,000 lexical entries. And each entry is

established as the following data structure:

English Lexical Part-of-Speech Subcategory Concept Matching Semantic Class Chinese Lexical
Information Information Information Number Information Code Information

Two examples of particular entry representation form in dictionary are listed as the following:

*happiness || n || ng || 0 || M ;[U]; || bbaaa || (felicity) ||||

*handle || v || vt || 5 || Wv3;T1]; || CBBC || (processing) ||||

(2) Chinese Synonym Dictionary ()
Actually, this dictionary is a thesaurus, which involves nearly 70,000 entries. All entries are

arranged according to specified semantic relations. It is mainly used in expanding translation that has
passed through translation processing, namely query expansion.

While the stopword list is used in tagging the stopwords in English query, and the English
morphological resumption list which describes all irregular varieties about vocabulary is used in
morphological resumption of words with irregular variety forms.

1.2.2 Translation algorithm

The basic framework of English-Chinese-oriented translation algorithm is mainly divided into three
parts, as shown in Figure 1.3.

Figure 1.3 Basic framework of English-Chinese-oriented query translation algorithm

 English-Chinese Chinese
 Bilingual Dictionary Synonym Dictionary

 Knowledge Source

 Segmentation Stopword Tagging Word Level

 English Punctuation Morphological Query Chinese
 Query Processing Resumption Expansion Query

 Capital-to-Lower Part-of-Speech
 Conversation Tagging Phrase Level

 Preprocessing Pre-analysis Translation Processing

• Preprocessing -- including sentence segmentation, punctuation tagging and capital-to-lower letter
conversation for English query;

• Pre-analysis -- including stop words tagging, word morphological resumption and POS tagging
processes;
Considering that translation processing is related with some stopwords, the stopwords must be

tagged by stopword list. Because there are some words with variety forms in English query, translation
knowledge cannot be induced correctly. So by using English-Chinese bilingual dictionary,
morphological resumption lists for irregular variety and heuristics for regular variety, we get words’
original form from the process called "morphological resumption". To analyze word part-of-speech, we
develop a HMM-based (Hidden Markov Mode) Part-of-Speech Tagger.
l Translation processing -- including translation processes in two levels: word level and phrase level.

Word level translation: By using the basic vocabulary part of English-Chinese bilingual
dictionary, this process mostly implements translation word by word. For word disambiguation, a word
may correspond with several kinds of different sense. Word sense is related with particular word, and

cannot be given without particular linguistics environment. The condition of linguistics environment
may be syntactic and semantic parameters. When selecting a particular word, the difference mark of
word should be chosen. This difference mark represents a certain syntactic and semantic feature, and
identifies the sense of word uniquely, namely Concept Code. The concept code together with lexical
entry can decide a certain word sense to accomplish word sense disambiguation. For machine
translation, word disambiguation should be a very important problem. But in our CLIR system, in some
degree, word disambiguation has not taken some obvious affect to retrieval efficiency. At the same time,
in order to provide more query information to retrieval system, by using "Chinese Synonym Dictionary",
expansion operation is done for translation knowledge through translation processing. According
various synonymous relations described in the dictionary above, all synonyms corresponding with
translation knowledge is listed, namely completing query expansion process. Thus, more affluent query
information can be provided to retrieval system. So the retrieval efficiency is increased greatly, and the
retrieval performance is improved.

Phrase level translation: This process is implemented based on the idiom dictionary part of
English-Chinese bilingual dictionary. The recognition of near distance phrase and far distance phrase is
an important problem. Here, by adopting Greedy Algorithm, the recognition and translation processing
of near distance phrase is mainly completed, shown as the following:
l Acquiring phrase set which have some query word as the head word of the idiom from English-

Chinese bilingual dictionary;
l Identifying the phrases which have the same word as head word and the same number of word as

the phrase in the above set;
l Comparing each one of the identified phrases and every member in the correspondent phrase set

and finding out the matched phrase with the maximum length.

1.3 Experiment

Our search engine scores document by maximum likelihood ratio, put forward by Spoken Language
Systems Group in MIT [1]. In our retrieval experiment, we use the TREC-5 Chinese task as the
"training" data set for tuning and optimizing our retrieval model. Finally, our best run has achieved the
mAP (mean average precision) of 0.3869, which is about the same as the best result at that time.

 After that, we submit four runs for CLIR official evaluation this year. Figure 1.4 is the official
precision and recall curve and the mAP score of our 4 CLIR runs. The first three of them are automatic
query translation run, using our word segmentation approach for indexing, while the monolingual run
we submit uses n-gram based segmentation. Although the results are not as good that of training results,
the run of "fdut9xl2" still can achieve the mAP of near 0.30.

Figure 1.4 official Prec and Recall Curve and mAP score on TREC-9 CLIR Task

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

fdut9xl1(mAP=0.2513)

fdut9xl2(mAP=0.2906)

fdut9xl3(mAP=0.2076)

fdut9xl4(mAP=0.1894)

We have outstanding performance for automatic query translation run: most of the queries

outperform the average in the run "fdut9xl1". However, the monolingual run is not as good as we
expected. We speculate that it may be due to our sophisticated segmentation method, which could
correctly segment the names of people, place and organization etc. In other word, indexer based on word
segmentation performs much better than indexer based on n-gram.

2. Filtering

For filtering, we participate in the sub-task of adaptive filtering and batch filtering. Our research
focuses on how to create the initial filtering profile and threshold and then modify them adaptively.

Our batch runs share the same adaptation module with adaptive runs. Therefore, our batch runs are
actually batch adaptive runs.

There is only a slight difference in the initialization (in other word, training) module of our batch
and adaptive runs. Full relevance judgement is provided in batch filtering, while only a small proportion
of relevance judgement is provided in adaptive filtering. As a result, for batch run, we can obtain a set of
"Negative" documents, which are those irrelevant documents with high similarity to the filtering profile,
and then make use of such documents. For adaptive run, we try to discover more pseudo-relevant
documents based on the topic and limited relevance judgement in order to optimize the initial profile.

Following is the detailed introduction to our training and adaptation module of our adaptive and
batch task.

2.1 Training of adaptive filtering

Figure 2.1 shows the architecture of the training in adaptive filtering. At first, topics are changed
into topic vectors, while feature vectors are extracted from positive and pseudo-positive document
samples. The initial profile is the weighted sum of topic and feature vectors. Then we compute the
similarity between the initial profile and all training documents to find the optimal initial threshold for
every topic.

Figure 2.1 Architecture of the training in adaptive filtering

2.1.1 Topic processing

Topic is being processed as such: Firstly, every word in the topic is labeled with one of four
attributes: title words; description words; negative words (words which behinds the word "without");
domain dependent stopwords such as "document" and "describe". Each kind of attribute is assigned with
a coefficient. If one word occurs several times in the topic and different attributes are labeled, the
maximum coefficient is chosen for it. Different coefficients are chosen for OHSU and MeSH topics.

As we know, for OHSU topic, title is the description of patient, and description is the information
request. Both are important. However, for MeSH topic, title is MeSH concept name and description is
the definition of the concept. We have found the description part is not as important as the title. For
example, the description of the concept of "abdomen" is that "the portion of the body that lies between

Positive samples

Feature vectors

Topics

Topic Vectors

Initial Profile

Initial Threshold

Training documents

Pseudo-positive
samples

Topic processing
Feature selection

Similarity Computing

Pseudo Feedback

the thorax and the pelvis". If we expand the initial query with such word as "thorax" or "pelvis". the
performance will even be hurt.

In our experiment, the coefficients of OHSU topics are set to 1, 1, -1 and 0 respectively, while those
of MeSH topics are 1, 0, 0 and 0 respectively.

The weight of each topic word is set to be the product of its coefficient multiplied with Smart's ltc
weight: ltc=log(N/n)[3], where N is the total number of documents and n is the number of documents in
which the word occurs. We adopt ltc weight because the simplicity in computing. We have also tried
other weighting formulas with relevant information and do find they can lead to better performance
when only topic information is utilized in profile creation. However, once topic vector is combined with
feature vectors from the training documents to form the initial profile, more complicated weight
algorithm no longer ensures better performance.

2.1.2 Feature selection

Since the total number of all words is very large and then it cost more time in similarity
computation, we decide to select some important words from them. First, we use Porter's stemmer to get
the root form of every word. Then we remove the stopwords and low frequent words (occur no more
than 6 times in the training document sets). Then we compute the logarithm Mutual Information
between remaining words and topics:

()
()

=

i

ji
ji wP

TwP
TwMI

|
log),(log (2.1)

Where, wi is the ith word and Tj is the jth topic. Higher logarithm Mutual Information means wi and
Tj are more relevant. P(wi) is estimated by maximal likelihood method. Since the total number of
relevant documents is very small, ()ji TwP | is estimated by Turing-Good method.

For each topic, we select those words with logarithm Mutual Information higher than 3.0 and
occurs more than once in the relevant documents. Thus the average feature number of each topic is
around 100. Logarithm Mutual Information is not only used as the selection criterion, but also as the
weight of feature words.

2.1.3 Creating initial profile

Each topic profile is represented by a vector which is the weighted sum of topic vector, feature
vector from positive (relevant) documents and feature vector from pseudo relevant documents with the
coefficient of A, B and C.

We add a procedure of pseudo feedback to acquire more relevant documents for training. Those
documents that have highest similarity and don't occur in the positive documents are regard to be
relevant.

The initial profile is created by two-phase method. First we get the pseudo relevant documents;
then we get the initial profile and re-compute the optimal initial threshold.

During the first phase, A, B and C are set to be 0.4:1.0:0. We set C to 0 because we have no
similarity score at this time. Then some documents are selected as pseudo positive documents. As for
how many documents should be appended, we adopt two methods. The first method choose the N
highest similar documents which don't occur in the positive documents; while the second method
choose those documents whose similarity is higher than a fixed scale (α) of the highest similar positive
document. These two method lead to similar results. Here we set α = 0.45, or N=10.

During the second phase, A, B and C are set to be 0.25:1.0:0.25. The parameter of A becomes
smaller because now we have so much positive document that topic vector becomes relatively less
important. Therefore, we have got the initial profile.

2.1.4 Similarity Computation

The similarity between the profile and training documents is computed by the cosine formula:

))((

*
),(

22 ∑∑
∑

==

k
jk

k
ik

k
jkik

ji
pd

pd
CospdSim θ . (2.2)

Where, pj is the profile vector of the jth topic and di is the vector representation of the ith document.
dik, the weight of the kth word in di, is computed as such: ikik tfd log1 += , where tfik is the term

frequency of the kth word in the ith document.
Documents are first removed of the redundant tag information and then stemmed. Only the

document identifier, tile and abstract are reserved, while MeSH headings and other fields are all
removed.

2.1.5 Setting initial threshold

Once the threshold is set, those documents with similarity greater than the threshold are regarded to
be relevant and those documents with similarity smaller than the threshold are regarded to be irrelevant.
Then we can compute the evaluation criteria such as T9U and T9P under different threshold. Thus the
initial threshold are set to be the threshold which can result in the largest T9U or T9P.

2.2 Training of batch filtering

Training of batch filtering is quite similar to adaptive filtering. The only difference is that feature
vectors are now extracted from positive and negative (irrelevant but with high similarity) document
samples. Each topic profile is represented by a vector which is the weighted sum of topic vector, feature
vector from positive documents and feature vector from negative documents with the coefficient of A, B
and C.

Initial threshold is also set in a two-phase method. At the first phase, A, B and C are set to be
0.25:1.0:0. For each vector profile, we calculate its similarity with every training document and then set
the temporary similarity threshold. After that, negative documents are selected to be those irrelevant
documents with similarity higher than the temporary threshold and could lead to wrong judgement.
During the second phase, A, B and C are set to be 0.25:1.0:-0.25.

2.3 Adaptation

For adaptive and batch filtering we adopt the same adaptation procedure. Figure 2.2 shows the
architecture for the adaptation. For each document in the stream, its similarity with the specific topic
profile is computed. If the similarity is greater than the threshold, it is assumed to be relevant. Then we
search the "qrel" file to see whether it is really relevant and do some adaptation accordingly.

Figure 2.2 Architecture for the adaptation

Positive
documents

Feature
VectorsTopic vectors

Profile Threshold

Document
Stream

Negative
Documents

Feature selection

Similarity
Computation

Sim>Threshold
Correct?

True

FalseThreshold
adaptation

2.3.1 Adaptation of threshold-T9P

Thresholds are adjusted after β documents have been processed (for this experiment, β =8000).
For different evaluation measure of T9P and T9U, the adaptation is also different.

In order for the optimization of T9P, the purpose of threshold adaptation is to make sure that about
50 documents are retrieved during 4 years. Therefore M documents should be retrieved in the β -
document interval. For each topic, we define:

Cor: # of documents correctly retrieved in the interval
Rtv: # of documents retrieved in the interval
Cor1: # of documents correctly retrieved heretofore
Rtv1: # of documents retrieved heretofore
M1: # of documents should be retrieved heretofore
T: Similarity threshold
Algorithm:
If Cor<Rtv*0.20 && Rtv>max(M,4) , then T*=1.2

(If the precision is too slow, the threshold should be increased quickly)
If Rtv>M && Rtv1>M1, then T*=1.1

(If documents are retrieved more than required, the threshold should be increased)
If Rtv<M && Rtv1<M1, then T*=0.9

(If documents are retrieved less than required, the threshold should be lowered)
We have supposed that we can retrieve fewer documents at first and then retrieved more documents

after profiles are updated. However, such experiment cannot lead to better results.

2.3.2 Adaptation of threshold-T9U

In order for the optimization of T9U, the purpose of threshold adaptation is to make sure that
documents should be retrieved with high accuracy. But if the precision is too high, thresholds should
also be decreased to retrieval more documents and then get larger T9U.

Algorithm:
If Cor<Rtv*0.10 && Rtv>max(M,4) , then T*=1.2

(If the precision is too slow, the threshold should be increased quickly)
If Rtv-1>M && Cor+1>Rtv*0.33, then T*=1.1

(If enough documents have been retrieved and precision is too low, the threshold should be
increased)

If Rtv<M && Cor-1>Rtv*0.25 or Cor-1>Rtv*0.33 or Cor=0, then T*=0.9
(If documents are retrieved less than required with moderate precision, or precision is too

high, or no document is retrieved, the threshold should be lowered)
In addition, if two irrelevant documents are retrieved continuously, T*=1.1.
Here, M represents the number of documents should be retrieved in the β -document interval.

However, adaptive filtering systems cannot take into account the percentage that are relevant over the
entire test set for a particular query in building their retrieval rules. Under such condition, M is estimated
from the training corpus while relevant and pseudo relevant documents are taken into account. Although
M is actually variable among different topics, we just use the average value for the convenience for
computation.

2.3.3 Adaptation of topic profile

Once a retrieved document has been judged to be relevant, it is added to the positive document set
for further adaptation, otherwise it is added to the negative document set. During profile adaptation,
feature vectors are extract from positive documents and negative documents. The new topic profile is
the weighted sum of topic vector, feature vector from positive documents and feature vector from
negative documents. Thus not only the weight of features but also the feature words can be adjusted.
The coefficient of A, B and C are still 0.25, 1.0, and -0.25.

 Since relevant document is too scarce, we adjust the topic profile only after β *4 documents have

been processed. In fact, after processing β document, adaptation is triggered. Among 4 successive
adaptation, the first 3 are threshold adaptation and the last one is profile adaptation. We don't adjust
threshold and profile simultaneously because the threshold is optimized for the original profile.

2.4 Evaluation results

This year Fudan University has submitted 11 runs for adaptive filtering and batch filtering. We
submit no routing runs. Table 2.1~2.3 summarize our adaptive and batch filtering runs.

Table 2.1 shows the results of OHSU topics. The "score" column is the score of each run under
different evaluation measure. Micro recall and precision are calculated globally for all the topics, while
macro recall and precision are averaged across all the topics[4]. The last columns give the number of
topics in which our runs perform better, equal and worse than median ones. And the numbers inside the
parentheses shows the number of topics in which our runs perform best.

Recall Precision Comparison with medianTask Measure Run Score

Micro Macro Micro Macro >(Best) = <
T9U FDUT9AF2 9.6 0.212 0.181 0.473 0.319 51(7) 6 6

FDUT9AF1 0.264 0.277 0.300 0.283 0.271 37(6) 9 17
FDUT9AF3 0.265 0.276 0.301 0.286 0.273 39(5) 8 16

Adaptive
T9P

FDUT9AF4 0.249 0.263 0.285 0.278 0.259 34(9) 2 27
T9U FDUT9BF1 13.6 0.276 0.245 0.492 0.390 37(20) 11 15Batch
T9P FDUT9BF2 0.317 0.331 0.379 0.326 0.322 45(21) 7 11

Table 2.1 Adaptive and batch filtering for OHSU topics

Table 2.2 and 2.3 show the results of MeSH and MeSH sample topics. Our MeSH and sample runs
don’t perform as good as OHSU runs.

Comparison with medianTask Measure Run Score
>(Best) = <

T9P FDUT9AF6 0.356 134(134) 148 218Adaptive
T9U FDUT9AF7 29.3 120(85) 72 308
T9P FDUT9BF3 0.430 169(61) 151 180Batch
T9P FDUT9BF4 0.440 215(101) 138 147

Table 2.2 Adaptive and batch filtering for MeSH sample topics

Comparison with medianTask Run T9P
>(Best) = <

Adaptive FDUT9AF5 0.351 1297(1297) 1072 2535
Batch FDUT9BF3 0.418 2297(2297) 0 2607

Table 2.3 Adaptive and batch filtering for MeSH topics

3. Question Answering

Question Answering is an interesting challenge for NLP researchers because it requires a
combination of many traditional NLP techniques, such as tokenization, parsing, named entity
identification and retrieval.

The next section introduces Fudan TREC-9 question answering system. It is followed by the
detailed discussion of three main components. Followed are the evaluation results. Finally we will
discuss the future prospects of our system.

3.1 Overview of Fudan Question Answering System

Similar to other systems[5], our system consists of three components: Question analyzer,
Candidate Window Searcher and Answer extractor. The architecture is illustrated by Figure 3.1.

Figure 3.1: Architecture of the Fudan QA Systems

Initially, with a question parser and semantic mapping chart, we process the given questions and
extract useful information: answer type, question focus and the syntax pattern of question.
Furthermore, the Question Analyzer generates a set of query terms.

Each document retrieved by our ranked Boolean search engine is divided into segments of about
4k-byte. Each candidate segment is assigned with a score according to its similarity to the query
generated by question analyzer.

The top-ranked segments are then passed to the Answer Extractor. A named entity finder based on
HMM model[6] and a syntax parser based on chart algorithm are involved in this procedure. The
extraction and ranking of the final answer are based on some empirical feature matching.

3.2 The Question Analyzer

The Question Analyzer attempts to excavate all available information inside the given question and
generate a query for search engine.

In order to extract the real answer from the tremendous collection of documents, it’s very important
to know what the question is asking for. Fortunately, quite a few questions request certain type of
answer. For example, for the question "Who invented the paper clip?”, a person name is needed. We
can either judge the question’s answer type directly by its interrogative (who, where, when), or by
semantic mapping of other words in question (e.g. how much, what city, which year, etc.). The
semantic class of the answer type is listed in table 3.1. Cooperating with the named entity finder, it
does much help to locate and score answer in our QA system.

 Answer Type Question Type Example

 PERSON who/what-who/ which-who Hugo Young

 LOCATION where/what-where/ which-where China

 ORG who/what-who/ which-who Phoenix Suns

 MONEY how much/ how many money Pounds 12m

 PERCENTAGE how much/ what-percentage 0.10%

 DATE when/what-date/ which-date 10 Feb 1994

 TIME what time 6:33 a.m.

 DURATION how long 9 1/2-month

 LENGTH how long 147 feet

 SIZE how large 1.5 million acres

 NUMBER how many 562

Table 3.1: Answer types of question

query

Preprocessor Parser
Question
Analyzer

Candidate
Window
Searcher

Answer
Extractor

 answer type
 question focus
 syntax pattern

ranked candidate
windows

Document

Question

Answer(s)

Name
Entity
Finder

Inverted
List

Not all questions can provide obvious clue of their goals. Some questions, which start from what
and which, are ambiguous and scarcely say anything about specific answer type. We solve it by
defining a concept named question focus.

Question focus can be interpreted as the most important part of question, which distinguishes the
question from others at the most. It may be a word or a sequence of words. Low frequency word and
proper noun/phrase is commonly chosen as question focus. For example, in the question "What culture
developed the idea of potlatch?", the question focus is potlatch. Question focus makes it easier to filter
the irrelevant document and locate the exact answer.

The syntax pattern of question is generated by question parser. The purpose of parsing is to predict
the possible syntax structure of answer sentence. Take the question "What is a caldera?" for an
example, the possible answer sentence may be like "Caldera is ... ", "Caldera, ... " or "... known as
Caldera.".

Finally, the question analyzer produces a set of query term and sends them to the search engine.
Each term of the query comprises three fields:

a. Query Term, word or phrase extracted from the question.
b. Term Rank, calculated by the term’s syntax role in question and the word frequency.
c. Search Mode, the suitable searching method for this query term.

3.3 Candidate Window Searcher

Among the large document collection, we try to find some segments of information that may be
relevant to the question in order to restrict the scope for further processing. In this phase, we search the
entire corpus for the query and generate N best candidate windows, from which we will extract answer
to each question.

Our search engine makes use of the Boolean retrieval model, which is modified to suit for the QA
task. Firstly, we define four kinds of search modes, named "Single Word Search", "Common NP
Search", "Proper NP Search" and "Quoted Part Search" respectively.

Single Word Search is used to search the query term, which has only one word. It aims at finding all
the occurrences of the word in the corpus.

Common NP Search is just like operator "OR" in Boolean Information Retrieval in that the words
being searched need not co-occur with each other. It is often used to search people’s name, which often
occurs partially in the corpus.

Proper NP Search is somewhat like operator "OR" in Boolean Information Retrieval, except it
discards sentences that only contain familiar query words that can be found in dictionary. Therefore, the
remaining sentences just contain OOD query words, such as named entity. For example, for the query
term "Star Trek", the search engine will only retrieve sentences that contain the word "Trek". And the
sentence contains both of the words "Star Trek" will be ranked higher than that contains "Trek" only. It
makes intuitive sense that the word "Star" occurs too often in the corpus to depict the information need.

Quoted Part Search performs just like operator "EXACT MATCH" in Boolean Information
Retrieval. It is used to search quoted name, such as name of films or books. It not only requires query
words to co-occur, but the order of query words to be matched exactly in the corpus as well.

Then, we create N-best window ranked by their window scores.
For every matched sentence among the corpus, we scan forward and backward within the same

articles to get a candidate window with the size of no more than 4k bytes. That is, we try to locate all
4k-byte windows containing one or more matched sentences. However, these matched sentences are
included in only one of those candidate windows, no overlap is allowed.

The windows are scored by the formula given below:

∑
=

+=
k

1t

t
qs

i

i

t

t
i w*)

sc

msc

c

mc*2
(WS (3.1)

Where, tmc is the number of terms in each query that locate in the window, while tc is the total

number of terms in each query. imsc is the number of total matched sentences in the window, while isc

is the total number of sentences containing in the window. The former factor indicates the coverage of

the query terms for the candidate window, whereas the latter favors candidate window with more

occurrences of query terms. k is the number of query term for the question. i
qsw is the weight of the ith

query term. We assign weights to each query term according to its search mode and rank.
Sort all the windows by its score and select top N best window for further processing. In our

experiments, we use 2k windows for every question at most.

3.4 Answer Extractor

The Answer Extractor identifies and extracts answers from the candidate windows. Each candidate
window first passes through a named entity finder, which identifies names of person, location and
organization, monetary units, dates, time, etc. By use of the answer type and question focus, all possible
answers are located within the candidate window. For each possible answer, a 250-byte-long section in
the candidate window named answer-window is then created. We evaluate each answer-window using
the following four scores:
1) Matched_queries-score: Compute a match-score for each query term and sum them all. The

match-score of query term is determined by its search mode, the match degree and the distance to
answer-window of each match situation in the candidate window.

2) Query_coverage-score: Assign a coefficient to each matched query term in the answer window and
cumulate them.

3) Syntax_pattern-score: If certain sentence in answer-window satisfies any predictive syntax pattern
of the question, a correspondent score will be assigned to it.

4) Consistent_question_part-score: If certain part of question is found consistent in the answer-
window, a score determined by the number of words in that part will be computed. It’s a useful
feature especially for back-formulation questions or coincident back-formulation situation.

The final score for a given answer-window is computed as:
final-score = k1 * matched_queries-score +

k2 * query_coverage-score +
k3 * syntax_pattern-score +
k4 * consistent_question_part-score

where, the weight vector (k1 ,k2 ,k3 ,k4) depends on the question feature, table 3.2 shows our empirical
weight vector values:

Question feature (k1,k2 ,k3,k4)

 Num of query term=1 (8,8,16,4)

 Num of low-freq word=0 (8,4,16,12)

 Otherwise (8,8,8,8)

Table3.2. Weight vector for final-score of answer-window

3.5 Evaluation

In this section, we describe the performance of our system. The system is evaluated by the Mean
Reciprocal Answer Rank (MRAR):

∑
=

=
n

i
irank

n
MRAR

1

)/1(
1

. (3.2)

We submitted two runs in the 50-byte category and two runs in the 250-byte category. The first two
runs are generated by using the top 100 candidate windows. The next two runs are by processing only
top 24 candidate windows. The strict evaluation results are presented in Table 3.3.

The accuracy (measured by the percentage of questions correct) of our system fluctuates on
various answer type. It is pleasant on questions demanding for PERSON (58%) and LOCATION
(55%), but disappointing on DATE (35%) and NUMBER (25%). It is mainly because we
concentrated on training the statistical model and worked little on rule-based identification, which
is relatively simple but more useful on number-relevant named entity.

Run Category
Number / Percentage
of questions correct

MRAR

FDUT9QS1 50-byte (1) 200 / 29% 0.192

FDUT9QL1 250-byte (1) 313 / 46% 0.339

FDUT9QS2 50-byte (2) 187 / 27% 0.195

FDUT9QL2 250-byte (2) 288 / 42% 0.319

Table3.3. Performance in TREC-9

On the training corpus of TREC-8, our system did best while using top 24 candidate windows.
But in TREC-9, the 250-byte run using top 100 candidate windows (FDUT9QL1) does better than
that of top 24 one (FDUT9QL2). We presume it is caused by the variation on question style. The
question of TREC-9 is shorter than that of TREC-8 on average. And some new question structure
is too unfamiliar for us.

4. Discussion and Future Work

It is our first time to take part in TREC. Attending TREC-9 provides us further understanding of
NLP technology. We have accumulated such knowledge resources as bilingual dictionary and Chinese
synonym dictionary. We have also designed several NLP tools during this period, such as named entity
finder, query translator, parser and search engine.

Although moderate performance has been achieved in our three systems, we still have a lot of things
to do in the future. First, we need to enrich our knowledge resources, especially in English. We need to
acquire knowledge from different domains and employ a comprehensive machine dictionary (e.g.
WORDNET or HowNet) for semantic analysis. Currently, our three systems are developed almost
independently. Next time, we will try to implement techniques developed for one system to another. For
example, feature selection of filtering system can also play important role in the search engine. And
relevance feedback in search engine is quite similar to adaptation in filtering.

Finally, we hope to apply the ideas and notions learned from TREC to corresponding tasks of our
native language.

ACKNOWLEDGMENTS

This research was partly supported by NSF of China under contracts of 69873011 and 69935010,
and 863 High Technology Project of China under contract of 863-306-ZD-02-02-4. We are thankful to
Yaqian Zhou, Kaijiang Chen, Li Lian and Wei Qian for their help in the implementation of corpus and
topic processing, syntactic parser and HMM based English named entity finder.

Reference

1. Kenney Ng. A maximum likelihood ratio information retrieval model. In Proceedings of the 8th Text Retrieval
Conference TREC-8,1999

2. Wu Li-de, et. al, Large Scale Chinese Text Processing, Fudan University Press, 1997
3. C. Buckley, G. Salton, J. Allan, Automatic Retrieval With Locality Information Using SMART, Proceedings of the

1st Text REtrieval Conference (TREC-1), NIST Special Publication 500-207, 1992
4. Fabrizio Sebastiani, Machine Learning in Automated Text Categorization, Technical Report B4-31, Istituto di

Elaborazione dell'Informazione, Consiglio Nazionale delle Ricerche, Pisa, IT, 1999
5. Dan Moldovan, Sanda Harabagiu, et. al, LASSO: A Tool for Surfing the Answer Net. In Proceedings of the Eighth

Text Retrieval Conference, 1999
6. D.M. Bikel, S. Miller, R. Schwartz and R. Weischedel, Nymble: a High-Performance Learning Name-finder.

Proceedings of the Fifth Conference on Applied Natural Language Processing, Association for Computational
Linguistics, pp. 194-201, 1997

