
Fast Automatic Passage Ranking�

(MultiText Experiments for TREC-8)

G. V. Cormack� C. L. A. Clarke� C. R. Palmer+ D. I. E. Kisman�

� Department of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
+ School of Computer Science, Carnegie Mellon University, Pittsburgh

1 Introduction

TREC-8 represents the �fth year that the MultiText project has participated in TREC [2,
1, 4, 5].

The MultiText project develops and prototypes scalable technologies for parallel infor-
mation retrieval systems implemented on networks of workstations. Research issues are
addressed in the context of this parallel architecture. Issues of concern to the MultiText
Project include data distribution, load balancing, fast update, fault tolerance, document
structure, relevance ranking, and user interaction.

The MultiText system incorporates a unique technique for arbitrary passage retrieval.
Since our initial participation in TREC-4 our TREC work has explored variants of this
technique.

For TREC-8 we focused our e�orts on the Web track. In addition, we submitted runs
for the Adhoc task (title and title+description) and a run for the Question Answering task.

2 Arbitrary Passage Retrieval

All our experiments are based on similar passage retrieval techniques. Passages identi�ed by
this technique are used in di�erent ways in di�erent experiments. Versions of the technique
have been described elsewhere [4, 3]. This section provides a brief, up-to-date description of
the technique as used in our TREC-8 experiments.

Each document D in a database is treated as an ordered sequence of terms

D = d1 d2 d3:::dm;

�Email regarding this article may be sent to mt@plg.uwaterloo.ca. The MultiText project is funded by

Communications and Information Technology Ontario.

1



and a query is treated a set of terms

Q = fq1; q2; q3; :::g:

An extent (u; v), with 1 � u � v � m is used to represent the subsequence of D beginning
at position u and ending at position v

du du+1 du+2:::dv:

An extent (u; v) satis�es a term set T � Q if the subsequence of D de�ned by the extent
contains all the terms from T . That is,

j ft j t 2 T and t 2 fdu du+1 :::dvgg j = jT j:

An extent (u; v) is a cover for T if (u; v) satis�es T and the subsequence corresponding to
(u; v) contains no subsequence that also satis�es T . That is, there does not exist an extent
(u0; v0) with either u < u0 � v0 � v or u � u0 � v0 < v that satis�es T .

We generalize the notion of a cover as follows: An extent (u; v) n-satis�es a term set
T � Q if the subsequence of D de�ned by the extent contains exactly n terms from T . That
is,

j ft j t 2 T and t 2 fdu du+1 :::dvgg j = n:

An extent (u; v) is an n-cover for T if (u; v) n-satis�es T and the subsequence corresponding
to (u; v) contains no subsequence that also n-satis�es T .

The MultiText System uses a fast algorithm to compute n-covers over all documents
in a collection [3]. Passages are assigned scores based on their lengths and on the weights
assigned to the query terms contained within them. A term t is assigned an IDF-like weight

wt = log(N=ft);

where ft is the number of times that t appears in the database and N is the total number of
term positions in the database (or equivalently, N is the sum of the lengths of all the doc-
uments in the database). A standard IDF weight is not used since in-document frequencies
are not stored in the MultiText index.

The weight assigned to a set of terms T � Q is the sum of the weights assigned to each
term in T

W (T ) =
X
t2T

wt:

A score is assigned to an extent based on its length

I(p; q) =

(
K

q�p+1
if q � p+ 1 � K

1 if q � p+ 1 � K
(1)

where K is a cuto� parameter set to values between 1 and 16. If an extent (u; v) is a n-cover
for the term set T then it can be assigned a score combining the length of the extent and
the weight of the terms contained within it

C(T; u; v) = W (T 0) + jT 0j log(I(u; v)) (2)

where T 0 � T is the set of terms from T contained in term sequence associated with (u; v).

2



Method S-stem? Fast Adhoc Small Web Large Web
1 yes 0.2143 (0.3410)1 0.3066 (0.3620)2

2 yes 0.2233 (0.3550) 0.3203 (0.3800) 0.4783 (0.5650)3

2 no 0.2126 (0.3390) 0.3029 (0.3640) 0.4869 (0.5720)4

2� no 0.2233 (0.3550) 0.3203 (0.3800) 0.4704 (0.5580)5

�max. 3 terms 1uwmt8a0 2uwmt8w0 3uwmt8lw0
4uwmt8lw1
5uwmt8lw2

Figure 1: Average Precision (Precision @20) for Web Track and Fast Adhoc Runs.

3 Web Track and Fast Adhoc

The main objective of our Web Track participation was to achieve very fast high-precision
retrieval, particularly on the 100 GB Large Web Track Corpus. The general approach is to
derive automatically a tiered query - a sequence of successively weaker sets of search terms,
which are applied in order until a suÆcient number of distinct documents are retrieved to
satisfy the task requirements (1000 documents for Adhoc and Small Web; 20 documents for
Large Web).

For eÆcient retrieval we chose to use very small sets of search terms - three or fewer in
most cases, and never more than �ve. For the Adhoc and Small Web tasks we used the title
words; for the Large Web task we used only words from the query with stopwords eliminated.
EÆciency (and, serindipitously, precision) is improved when passages are restricted to a
maximum length (128 words) and the set of search terms rarely coincide within a passage.

Thus we avoid typical sources of ineÆciency for retrieval methods based on a large num-
ber of weighted terms: we use only a small set of terms in the �rst place, and we consider
only those passages in which exactly these terms co-occur. In contrast, traditional implemen-
tations based on weighted terms involve computing the score of every document or passage
that contains any of the terms.

In TREC 7, we demonstrated that very good precision and eÆciency can be achieved
with manually selected sets of terms. Poorer precision resulted when the sets of terms were
selected automatically. For TREC 8, our objective was to improve the precision of automatic
term selection in tiered queries.

The oÆcal runs for the Adhoc and Small Web tasks were due at NIST several weeks before
those for the Large Web task. During this interval, we re�ned our approach to automatic
tiering. For this reason, our oÆcial fast Adhoc and Small Web runs use the same method
(Method 1) while the Large Web run uses a di�erent method (Method 2).

We later applied Method 2 to the Adhoc and Small Web tasks, using NIST's qrels which
were published after the oÆcial runs were judged. Although these runs are at a disadvantage
relative to oÆcial runs, Method 2 achieved better precision in all tasks. Average precision
and precision @20 for these runs are summarized in Figure 1.

3



3.1 Tiering Methods

Both tiering methods approximate the ranking formula C(T; u; v) given above as formula 2.
A direct computation of C(T; u; v) was rejected for eÆciency reasons: such a computation
would require that all passages containing any subset of the terms be evaluated. Instead we
�x the set of terms in each tier, and compute I(p; q) for each interval of length 128 or less
which contains exactly these terms.

Each tier uses as a set of terms T 0, a subset of T , the initial terms. These subsets are
ordered so that those likely to contribute to a high value of the ranking formula C(T; u; v)
are considered �rst. Method 1 and Method 2 di�er in the ordering of tiers.

We note that formula 2 approximates the (logarithm of the) probability that the terms
of T 0 coincide within a passage of length v � u+ 1, assuming that the term occurrences are
uniformly distributed in the corpus.

Method 1 uses instead the actual number of occurrences of passages containing the terms
in T 0. That is, Method 1 is a two-pass method: the query is evaluated for all T 0 � T . For
each T 0, we compute N(T 0), the number of passages of length 128 or less that contain all the
terms of T 0. Tiers are weighted by the formula log2 (N=N(T 0)). Tiers are ordered by weight,
with tiers having similar weights combined by disjunction. More speci�cally, the �rst tier is
the one with the highest weight (it will necessarily have T 0 = T ) and it is combined with
all others whose weight is not more than 1 less. The next tier is chosen and combined with
subsequent tiers whose weight is within 1, and so on. Within tiers, documents are ranked by
formula 1 with K = 4. Because it requires two passes and examines all passages containing
all combinations of the query terms, Method 1 is not suitable for very fast retrieval from
large corpora. For this reason, we developed Method 2 for the Large Web task.

Method 2 approximates a priori the number of passages containing the terms of T 0,
assuming the terms are uniformly distributed. This approximation is e�ected by substituting
in formula 2 representative values of u and v such that u� v + 1 = 128; that is, the longest
acceptable passage containing the terms of T 0. As with Method 1, we use K = 4 in formula 1,
and combine tiers whose weights di�er by less than 1.

For the Large Web task, we used three variants of Method 2: uwmt8lw0 takes as T the
set of query words, unstemmed with stopwords removed; uwmt8lw1 takes as T only the
three lowest-frequency 3 words from the query; uwmt8lw2 uses the set of query words, with
S-stemming applied to those having plural suÆxes. For example the query term \goats"
would be expanded to f"goat","goats"g but the term "cow" would be left unexpanded. This
method of S-stemming was also applied to the Adhoc and Small Web runs.

Method 2, with and without S-stemming, was applied to the Adhoc and Small Web
tasks, yielding the results in Figure 1. The methods used in each row are identical. It was
not feasible to apply Method 1 to the Large Web task - no complete set of judgements is
available with which to evaluate precision. The methods of uwmt8lw0 and uwmt8lw2 yield
identical results when applied to the other two tasks, as there are at most three terms in the
title �eld, from which we drew T.

We note that Method 2 outperforms Method 1 in all runs. S-stemming, on the other
hand, improves performance on Adhoc and Small Web, while degrading performance on
Large Web.

4



3.2 Large Web Performance

The Large Web runs were accomplished on two P2-350 computers; the exact con�guration
was demonstrated at the SIGIR 99 and TREC 8 conferences. Each system runs four copies
of a single-threaded search engine, thus achieving CPU/IO overlap and overlap in access
among the four disk drives. Each tier is sent to all engines, and all engines respond with
the requested number of documents. These are merged by score to produce the combined
result. Our choice of two machines was arbitrary: we wanted to build a portable version
that we could demonstrate and the index and data �t easily on two machines. Had we used
more computers we could have achieved much faster processing times; we have observed
in previous experiments that distributing the data yields a linear improvement in query
speed. Eventually, constant communication and query setup costs dominate retrieval time;
we estimate these costs to be at least an order of magnitude less than the times reported
here.

Execution times for the three Large Web runs are as follows: uwmt8lw0: 0.841 sec/query;
uwmt8lw1: 0.735 sec/query; uwmt8lw2: 1.010 sec/query. These times were bettered only by
AT&T (0.516 seconds/query; 0.354 P@20) and Fujitsu (0.54 sec/query; 0.507 P@20). The
only conclusion that can be drawn is that these times are of the same order, although they
are achieved on very di�erent hardware platforms.

uwmt8lw0 and uwmt8lw2 achieved the best average precision and precision @20 of all
runs. uwmt8lw1 was edged out by a run from Microsoft/City University (1.62 sec/query;
0.561 P@20).

Hawking et al[6] give full comparative results for the Web Tracks.

4 Other Experiments

4.1 Other Adhoc Experiments

One of our Adhoc runs (uwmt8a0) was a repeat of our Small Web Track run using the same
ranking method. This run was discussed in Section 3.

For our two other Adhoc runs, our passage retrieval technique was used for query expan-
sion via local feedback. For ranking we used a variant of the Okapi formula [7] | speci�cally
BM25 with b = 0:6, k1 = 1:5, k2 = 0 and k3 = 1. One of these runs (uwmt8a1) was based
on the topic titles only; the other run (uwmt8a2) was based on the title and description.

For each query Q we generated all n-covers for the query for all values of n between 1
and the size of the query jQj. Each n-cover was scored using equation 2 and the passages
associated with the best 100 n-covers were used for local feedback.

The local feedback processes discarded those n-covers whose length exceeded a threshold
value of 256 words and expanded passages whose length was less than 32 words symmetrically
to 32 words. In addition, a term was only considered for local feedback if it appeared in at
least two di�erent passages. Since passages may overlap, and the same term position may
be part of two di�erent passages, terms were also required to appear in at least two distinct
positions. Stopwords were also eliminated from consideration.

5



before expansion after expansion
title-only average precision 0.2401 0.2673 (+11.3%)1

precision@5 0.5040 0.5560 (+10.3%)1

title+desc average precision 0.2637 0.2671 (+1.2%)2

precision@5 0.5520 0.5280 (�4.3%)2

1uwmt8a1
2uwmt8a2

Figure 2: E�ects of query expansion.

A score was computed for each term as the sum of the scores of the passages in which it
was contained. The top 30 terms were used in the �nal query.

Figure 2 shows the results of query expansion. We were disappointed in the e�ects
of query expansion. Preliminary experiments with the TREC-7 queries led us to expect
improvements of 20% or better. Five other groups achieved a better average precision on
their oÆcial title-only runs. However, uwmt8a1 achieved the best precision@5 of all title-only
runs.

4.2 Question Answering

We submitted a single run (uwmt8qa1) to the Question Answering track. Each question was
treated as a query and run using the passage retrieval technique described in Section 4.1.
The top �ve passages were �ltered to remove tags and to reduce whitespace, truncated to
250 bytes, and submitted as the \answers".

The run achieved a mean reciprocal rank of 0:471, the sixth highest of the 41 runs.

References

[1] Charles L. A. Clarke and Gordon V. Cormack. Interactive substring retriveal. In Fifth
Text REtrieval Conference (TREC-4), pages 295{304, Gaithersburg, Maryland, Novem-
ber 1996.

[2] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J. Burkowski. Shortest substring
ranking. In Fourth Text REtrieval Conference (TREC-4), pages 295{304, Gaithersburg,
Maryland, November 1995.

[3] Charles L. A. Clarke, Gordon V. Cormack, and Elizabeth A. Tudhope. Relevance ranking
for one to three term queries. In Fifth RIAO Conference, pages 388{400, Montreal, June
1997. A version of this paper will appear in Information Processing and Management,
2000.

[4] Gordon V. Cormack, Charles L. A. Clarke, Christopher R. Palmer, and Samual S. L.
To. Passage-based re�nement. In Sixth Text REtrieval Conference (TREC-6), pages

6



303{319, Gaithersburg, Maryland, November 1997. A version of this paper will appear
in Information Processing and Management, 2000.

[5] Gordon V. Cormack, Christopher R. Palmer, Michael Van Biesbrouck, and Charles L. A.
Clarke. Deriving very short queries for high precision and recall. In Seventh Text RE-
trieval Conference (TREC-7), pages 121{132, Gaithersburg, Maryland, November 1998.

[6] David Hawking, Ellen Voorhees, Nick Craswell, and Peter Bailey. Overview of the TREC-
8 Web Track. In Eighth Text REtrieval Conference (TREC-7), Gaithersburg, Maryland,
November 1999.

[7] S. E. Robertson, S. Walker, and M. Beaulieu. Okapi at TREC-7. In Seventh Text
REtrieval Conference (TREC-7), pages 253{264, Gaithersburg, Maryland, November
1998.

7


