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Abstract

The database group at University of Twente participates in TREC-8 using the Mir-
ror DBMS, a prototype database system especially designed for multimedia and web
retrieval. From a database perspective, the purpose has been to check whether we
can get sufficient performance, and to prepare for the very large corpus track in which
we plan to participate next year. From an IR perspective, the experiments have been
designed to learn more about the effect of the global statistics on the ranking.

1 Introduction

The Mirror DBMS [dV99] combines content management and data management in a single
system. The main advantage of such integration is the facility to combine IR with traditional
data retrieval. Furthermore, IR researchers can experiment more easily with new retrieval
models, using and combining various sources of information. This is an important benefit
for advanced IR research; web retrieval, speech retrieval, and cross-language retrieval, each
require the use of several representations of content, which is hard to handle in the traditional
file-based approach, and becomes too slow in traditional database systems.

In the Mirror DBMS, the IR retrieval model is completely integrated in the database archi-
tecture, emphasizing efficient set-oriented query processing. The support for information
retrieval in our system is presented in detail in [dV98] and [dVW99]. It supports other types
of media as well, which has been demonstrated in the image retrieval system prototype de-
scribed in [dVvDBA99]. The main goal of our participation in TREC is to test if our system
can handle larger data sets without too many problems. Also, we wanted to find out the
effect of global statistics on the ranking.

This paper is organized as follows. Sections 2 and 3 review the design of the Mirror DBMS

and its support for IR, and discuss its use for TREC processing. Section 4 explains the
experimental setup and interprets our results. Section 5 discusses our experience with using
the Mirror DBMS for TREC, followed by conclusions.

2 Design

A complete overview and motivation of all aspects of the design of the Mirror DBMS is pre-
sented in [dV99]. Although following a traditional three-schema architecture, it uses different
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Figure 1: The multi-model DBMS architecture next to the extended relational and E-ADT
DBMS architectures (from left to right).

data models at different levels: we therefore classify its design as multi-model DBMS ar-
chitecture. The crucial architectural difference from other extensible database systems is
that query processing at the logical layer uses only operators that are provided by the physi-
cal layer (see also Figure 1), and, domain-specific query processing (such as an IR extension)
is defined at the logical level primarily. This choice enforces a system-wide physical data
model and algebra spanning all extensions. Of course, the physical algebra can also be ex-
tended if necessary, i.e. when logical operations cannot be expressed efficiently in the physical
algebra. The strict separation between the logical and physical levels allows using algebraic
query optimization techniques, a key property of relational database management systems
but hardly ever used in non-business application areas like content management.

The multi-model architecture provides the query processor with transparancy through the
layers. Put informally, query evaluation can ‘look down’ from the original request through all
layers of the architecture. This should enable set-oriented query evaluation for almost every
request, and allow maximal exploitation of parallelization and pipelining. In contrast, the
black-box ADTs of ‘object-relational’ database systems restrict the DBMS in the possible
manipulations of the query plans. This makes it more complicated to distribute and paral-
lelize the query plans, or change the buffer strategy for iterative query processing as proposed
in [JFS98]. Another alternative, the enhanced ADTs proposed by Seshadri [Ses98], provides
little opportunity for optimizations that cross the bounderies between different extensions.
Figure 1 compares these three architectures schematically.

3 Implementation

The prototype implementation of the Mirror DBMS uses Moa at the logical level, and Monet
at the physical level. Monet is a parallel main-memory database system under development
at the CWI in Amsterdam [BK95, BMK99], that is targeted as a backend system for various
(query-intensive) application domains, such as GIS and data mining.1 Moa is an object
algebra studied in the database group at University of Twente, that is extensible with domain-
specific structures. The Moa tools transform expressions in this algebra into sequences of
operations in MIL, an algebra for the binary relational data model supported by Monet.

For the support of IR, we extended Moa with new structures at the logical level to handle
document representation, ranking, and the computation of co-occurrence statistics. In com-

1Monet is used succesfully on a commercial basis by Data Distilleries, a start-up specializing in data
mining applications.
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dj ti tfij
1 a 2
1 c 3
2 a 1
2 b 2
2 e 2

intermediate results

qdj qti qtfij qntfij
1 a 2 0.796578
2 a 1 0.621442
2 b 2 0.900426

document collection

Table 1: Representation of content in BATs

bination with Moa’s kernel support for collections and tuples, these structures can model a
wide variety of IR retrieval models: the current prototype supports the well-known Okapi
ranking scheme, InQuery’s inference network retrieval model, as well as the linguistically
motivated retrieval model (LMM, presented in Section 4.3). To illustrate, the following Moa

expression ranks a collection of documents:

map[sum(THIS)](
map[getBL(THIS, query, stats)]( docs )

);

The first map operation computes term probabilities for the query terms occurring in the
document, using the global statistics specified in structure stats. The subsequent map com-
bines these probabilities using a sum operation. Although this particular expression may not
seem very interesting, the IR ranking operators can be combined with other operators such
as select, resulting in a powerful query language.

The representation of the logical IR structures at the physical level is termed the flattened
representation of the content. It consists of three binary tables (BATs), storing the fre-
quency tf (ti, dj) of term ti in document dj , for each term ti occurring in document dj . Table 1
illustrates this for a collection {d1, d2} with documents d1 = [a, c, c, a, c] and d2 = [a, e, b, b, e].
Computing the probability of relevance of the objects for query q = [a, b] proceeds as follows.
First, a table with the query terms is joined with the document terms in ti (the result is
called qti). Next, (using additional joins) the document identifiers and the term frequencies
are looked up (qdj and qtfij).2 Finally, the retrieval status values are computed with some
variant of the popular tf · idf ranking formula. To support these computations, Monet’s
physical algebra has to be extended with new operators, either in C or C++, or as a MIL
procedure. The latter is preferrable for easy experimentation; for example, the following
MIL procedure computes the term probabilities given normalized term frequency and inverse
document frequency using the LMM model:

PROC bel( nidfi, ntfij ) := {
RETURN log( 1.0 + nidfi * ntfij * C );

}

An evaluation run processes 50 topics in batch, but the client interfaces of the Mirror DBMS

2Note that these joins are executed very efficiently, because the Moa structures make sure that the BATs
remain synchronized all the time.
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have been designed for interactive sessions with an end-user. Also, transferring the data from
Monet to the Moa client has not been implemented optimally. Furthermore, optimizations
such as using materialized views are not performed in the current Moa rewriter. These minor
flaws would have inferred an unfair performance penalty to the evaluation of the architecture,
and made logging the results rather cumbersome. Therefore, as a (temporary) solution, the
MIL program generated by the Moa rewriter has been manually edited to loop over the 50
topics, log the computed ranking for each topic, and use two additional tables, one with
precomputed normalized inverse document frequencies (a materialized view), and one with
the document-specific constants for normalizing the term frequencies.

4 Experimental setup and results

Collection fusion is the process of merging the results of retrieval runs on seperate, au-
tonomous document collections into an effective combined result [VGJL95]. We have focused
on this problem because large collections will be fragmented (horizontally) in several parti-
tions, each managed by a separate server. Maintaining the exact global statistics induces an
extra overhead, that may not be necessary if the fragments are sufficiently large.

Collection fusion is a trivial task for exact matching retrieval systems like systems using
Boolean retrieval, but more complicated if a ranked retrieval system is used. In a number
of publications on collection fusion it is argued that simply comparing similarity measures
accross subcollections leads to unsatisfactory results because of differences in the collection-
dependent frequency counts [Bau97, CLC95, VF95, VGJL95]. One of the objectives of the
TREC-8 evaluation described in this paper is to question this hypothesis. We feel that simi-
larity measures across subcollections might in fact be comparable, but show worse evaluation
results because of the evaluation setup.

4.1 Evaluation using the TREC collection

Relevance assessments on the TREC test collections are assembled by the pooling method: a
pool of possibly relevant documents is created by taking the a sample of documents retrieved
by each participating system. This pool is then shown to the human assessors [VH99a].
The sampling method used in TREC takes the top 100 of the retrieved documents of each
participating system.

Since the start of TREC in 1992, the test collections have been used in numerous evaluations
outside the official TREC. For these evaluations, all documents that were not in the top 100
of any of the official participating systems are assumed to be not relevant. But, evaluations
that did not contribute to the TREC pool probably have unjudged documents in the top 100
making these evaluations less reliable than the official TREC evaluation. This is especially
true for new, previously unexplored approaches to retrieval. If a systems finds relevant
documents that no system was able to find before, then these documents will probably not
be judged in an old TREC collection. The only way to check the relevance of these documents
is by official TREC participation.
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4.2 Conditions for naive collection fusion

Let us define ’naive’ collection fusion as the process of merging the search results on the
subcollections based on the document similarities. The first condition for naive collection
fusion is that each subcollection uses the same retrieval model or weighting algorithm for
retrieval. Secondly, we assume that each subcollection uses the same indexing vocabulary
[Bau97]. A third condition is that subcollections are sufficiently large to allow for the reliable
local estimation of document frequencies. If the subcollections are too small, ineffective
retrieval on the subcollections will affect the merged result.

An evaluation of Callan et al. [CLC95] under these conditions for TREC topics 51-150
showed that naive merging was significantly worse than ranking based on globally estimated
document frequencies, causing losses from 10-20% in average precision. But, the results
of naive merging reported by Callan et al. [CLC95] were not part of an official TREC
participation. It is likely that their merged run has a worse coverage of judgements, because
the TREC-2 and 3 pools were (almost) only created by systems that use a central index for
retrieval. Maybe, their merged run was as good as the central index run after all. To check
this hypothesis, we decided to put up a retrieval run using naive merging for judging.

4.3 Some theoretical back-up for naive merging

The Mirror DBMS uses the linguistically motivated probabilistic model of information retrieval
[Hie99, HK99]. The model builds a simple statistical language model for each document in
the collection. The probability that a query T1, T2, · · · , Tn of length n is generated by the
language model of the document with identifier D is defined by the following equation:

P (T1 = t1,· · ·, Tn= tn|D=d) =
n∏
i=1

(α1
df(ti)∑
t df(t)

+ α2
tf (ti, d)∑
t tf (t, d)

) (1)

Equation 1 can be rewritten to a vector product formula by first dividing it by
∏n
i=1(α1df(ti)/

∑
t df(t))

[Hie99]. This will not affect the ranking within a subcollection, but it will affect the final
ranking after merging the search results of the seperate subcollections, because we divided
by collection specific document frequencies. It can be shown that the ranking of the vector
product formula in table 2 approximates the ranking defined by the conditional probability
P (D|T1, T2, · · · , Tn) of a document being relevant given a query.

vector product formula: similarity(Q,D) =
l∑

k=1

wqk · wdk

query term weight: wqk = tf (tk, q)

document term weight: wdk = log(1 +
tf (tk, d)

df(tk)
∑
t tf (t, d)

·
α2

∑
t df(t)
α1

)

Table 2: tf · idf term weighting algorithm

From Bayes’ rule we know that dividing equation 1 by P (T1, T2, · · · , Tn) and multiplying it by
P(D) results in P (D|T1, T2, · · · , Tn). For a large collection and a query that has a small num-
ber of hits, tf (t, d)=0 for most terms t and documents d. Therefore,

∏n
i=1(α1df(ti)/

∑
t df(t))

approximates the marginal probability P (T1, T2, · · · , Tn) and the ranking defined by table 2
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approximates the ranking defined by P (D|T1, T2, · · · , Tn). The a-priori probability P (D=d)
of a document d being relevant can be included by adding the logarithm of equation 2 to the
similarities of table 2 as a final step.

P (D = d) =
∑
t tf (t, d)∑

t

∑
d tf (t, d)

(2)

We hypothesise that, if the approximation is not too far off, the result after merging is not
significantly worse than what would have been possible with a central index.

4.4 Official results

Table 3 lists the official TREC runs. Global runs denote runs using the global collection
statistics. Local runs denote the naive collection fusion runs, using local collection statistics
on the four TREC subcollections: Federal Register, Foreign Broadcast Information Services,
Los Angelas Times and Financial Times.

run name description avg. prec.

UT800 global run 0.260
UT803 global run; LCA 0.176
UT803b global run; LCA from F.Times and LA Times 0.260
UT810 local run (judged) 0.043
UT813 local run; LCA from local 0.145

Table 3: official results

Unfortunately, our submitted official runs have been degraded by two bugs, that affected in
particular the naive merging run that was judged by NIST. By our own mistake, the global
runs have used the wrong (local) normalizing constant for the idf ;3 an error in Monet’s join
implementation resulted in random answers for three of the four local runs. After fixing
these bugs, the results of the global run UT800 improved from 0.260 to 0.275 and the results
of the local run UT810 improved from 0.043 to 0.260. Table 4 lists the results on the four
subcollections. Except for the Federal Register, which has hits for only 19 topics anyway, the
average precision on the subcollections do not differ much at all. Unofficial runs, with these
bugs fixed, are indicated in this paper by a ‘u’ postfix (so ‘UT500u’ is the fixed ‘UT500’ run).

run name Fed.Reg. FBIS LATimes F.Times merged

UT800u (global) 0.326 0.317 0.279 0.356 0.275
UT810u (local) 0.351 0.319 0.276 0.356 0.260
topics w. hits 19 43 45 49 50

Table 4: average precision per subcollection after bug-fix

The merged local run is about 6% worse than the global run. This might be a significant
difference according to some significance test, like e.g. the t-test [Hul93]; but, if so, it is still
not valid to draw the conclusion that the global approach is indeed better than the naive
merging approach. This conclusion would only be valid if both evaluations were done under
identical, controlled, conditions; which they are not, because both runs were not judged
by NIST and we do not control the other systems that contributed to the pool. Almost
all systems that contributed to the TREC-8 pool were systems using the global approach.

3Strange enough, this mistake improves average precision slightly on the TREC-6 topics.
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Therefore, the pool favours central index approaches over distributed index approaches if it
is used to evaluate runs that did not contribute to the pool. This can be shown by looking at
the percentage of documents that are judged for different cut-off levels of the fixed UT800u
and UT810u runs. The percentage of documents in a run that are judged, will be called the
judged fraction.

run name P at 10 P at 30 P at 100 P at R avg. P

UT800u (global) 0.496 0.378 0.234 0.319 0.275
UT810u (local) 0.436 0.343 0.222 0.310 0.260

run name J at 10 J at 30 J at 100 J at R

UT800u (global) 1.000 1.000 0.996 0.987
UT810u (local) 0.984 0.978 0.952 0.947

Table 5: merged results after bug-fix: a) precision; b) judged fraction

Table 5a and b show the precision and the judged fraction of the global and the local run at
different cut-off levels. There is a major difference between the judged fractions of the global
run and the local run. The global run misses 0.4% of the documents in its top 100. The local
run misses 4.8% of the documents in the top 100, some of them are even missing in the top
10.

4.5 Local context analysis

Based on its success on InQuery at previous TREC conferences, we expected a significant
improvement by using topics expanded with LCA [XC96]. Also, investigating the expansion
terms, LCA seemed to do a good job. For example, on topic 311 (which is about industrial
espionage), it finds terms like ‘spy’, ‘intelligence’, and ‘counterintelligence’, and from the
financial times sub-collection it even identifies ‘Opel’, ‘Volkswagen’, and ‘Lopez’ as relevant
terms. But, instead of improving the effectiveness of retrieval, the measured performance
turned out to have degraded. Some tweaking of the parameters, reducing the weights of ex-
pansion terms and using fewer of them (N=30), the performance improved upon the baseline,
but only slightly; on the runs submitted for TREC-8, it has degraded performance.

A possible explanation for these disappointing results is that the algorithm has been applied
to documents instead of passages (as done in [XC96]), and the TREC collection itself was
used to find expansion terms instead of another, larger collection. One result was that the
varying length of documents had a large impact on the expansion terms chosen, which is
undesirable. Another explanation is that LMM weighting provides such a high baseline, that
it is very hard to improve upon. A comparison between the (impressive) baseline results of
LMM on TREC-6 favours the latter explanation: because the performance of the Mirror DBMS

with LMM weighting scheme, without LCA, was almost as good as InQuery’s performance
after using LCA. With the tweaked LCA, LMM weighting performed better on all reported
precision and recall points, except for the precision at twenty retrieved documents, at which
InQuery performed slightly better. On the TREC-8 topics it did not contribute positively to
the results.
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5 Discussion

Although more of anecdotal than scientific value, the story of our participation in TREC-8
with the Mirror DBMS illustrates the suitability of this architecture for experimental IR. Eight
days before the deadline, it still seemed impossible to participate with this year’s TREC, as
Monet kept crashing while indexing the data; until, the seventh day, the new release suddenly
made things work! We decided to try our luck and see how far we could get in a week; and
we should admit, it has been a crazy week. It meant running the topics on TREC-6 first, to
compare the results with the runs performed before; as well as changing the ranking formula
to integrate document length normalization. In the weekend, we implemented the use of
co-occurrence statistics (which has turned out to be not so useful as expected). So, in one
week we managed to index the data, perform various experiments for calibration, run the
best experiments on TREC-8, and submit five runs, just before the final deadline.

5.1 Efficiency

The machine on which the experiments have been performed is a Sun Ultra 4 with 1 Gb of
main-memory, running SunOS 5.6. The machine is not a dedicated server, but shared with
some other research groups as a ‘compute server’. Monet effectively claims one processor
completely while indexing the collection, or processing the fifty topics on each of the sub-
collections. The division of the complete collection in five sub-collections (as it comes on
different compact discs) is maintained. The topics are first run in each sub-collection, and
the intermediate results are merged. Depending on the size of the sub-collection, estimating
the top 1000 ranking takes between 20 seconds and two minutes per topic. How to further
improve this execution performance is discussed below.

Preparation of the five sub-collections takes about six hours in total. Computing the table
with document-specific term frequencies is performed using Monet’s module for crosstables.
But, using the grouping operation for all documents at once allocates all available memory,
and eventually crashes the DBMS because it cannot get more, if it is run on the complete set
of documents of any but the smallest sub-collection.4 Therefore, the indexing scripts run on
fragments of the sub-collections at a time, and frequently write intermediate results to disk,
obviously slowing down the process more than necessary.

5.2 The road ahead

The execution performance of the Mirror DBMS on TREC is clearly better than a naive
(nested-loop) implementation in any imperative programming language, but, the obtained
efficiency is not fast enough to beat the better stand-alone IR systems that also participate
in TREC. But, compared to the techniques used in systems like InQuery (see [Bro95]), the
current mapping between the logical and physical level is too straightforward: it does not
use inverted files, has not fragmented the terms using their document frequency, and it ranks
all documents even if only the beliefs for the top 1000 are used. Also, Monet should make it
relatively easy to take advantage of parallelism in modern SMP workstations.

The merits of some possible improvements can only be evaluated experimentally. For ex-
4Notice that such problems are not necessarily solved by using commercial systems; Sarawagi et al. report

similar memory problems with DB2 when using normal SQL queries for mining for associations hidden in
large data sets [STA98].
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ample, it is not so clear beforehand whether inverted files are really the way to go. Query
processing with inverted files requires merging the inverted lists before beliefs can be com-
puted, which is hard to perform without trashing the memory caches frequently; which has
been shown a significant performance bottleneck on modern system architectures (see e.g.
[BMK99] for experiments demonstrating this for Monet).

Without experiments, much improvement can be expected from fragmentation of the docu-
ment representation BATs based on the document frequency, in combination with the ‘un-
safe’ techniques for ranking reported in [Bro95]. Some preliminary experiments indicate a 100
times improvement with only a small loss in precision. Such (domain-specific) optimization
techniques are easy to integrate in the mapping from Moa structures to MIL, thanks to the
declarative nature of the algebraic approach. A similar argument applies to extending the
Mirror DBMS with the buffer management techniques discussed in [JFS98]. In MIL, buffer
management is equivalent to directing Monet to load and unload its tables. By integrating
such directives in the generated MIL programs, it is expected that these improvements can
also be added without many complications.

6 Conclusions

Without any additional algorithms, LMM ranking produces reasonably good results. Unfor-
tunately, due to the bug in our experiments, we cannot yet give conclusive answers about the
difference between using local or global statistics; but, we may conclude that the difference
is rather small. Our current use of co-occurrence statistics has not improved our results, but
further research is necessary in this area.

Despite of the flaws in the current implementation, we believe that the Mirror DBMS has
proven to be a useful platform for IR experiments on the TREC data. The true benefits of
its design will only be exploited when the system is developed further, and the indexing task
is more challenging. Next year, the Mirror DBMS should be ready to participate in the large
WEB track.
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