
INQUERY and TREC-8

James Allany, Jamie Callan�, Fang-Fang Fengy, and Daniella Maliny

yCenter for Intelligent Information Retrieval

Department of Computer Science

University of Massachusetts

Amherst, Massachusetts USA

�Language Technologies Institute

School of Computer Science

Carnegie Mellon University

Pittsburgh, Pennsylvania USA

This year the Center for Intelligent Information Retrieval (CIIR) at the University of Massachusetts partic-
ipated in seven of the tracks: ad-hoc, �ltering, spoken document retrieval, small web, large web, question
and answer, and the query tracks. We spent signi�cant time working on the �ltering track, resulting in
substantial performance improvement over TREC-7. For all of the other tracks, we used essentially the same
system as used in previous years.

In the next section, we describe some of the basic processing that was applied across most of the tracks.
We then describe the details for each of the tracks and in some cases present some modest analysis of the
e�ectiveness of our results.

1 Tools and Techniques

Although UMass used a wide range of tools, from Unix shell scripts, to PC spreadsheets, four major tools
and techniques were applied across almost all tracks: the Inquery search engine, the InRoute �ltering engine,
query processing, and a a query expansion technique known as LCA. This section provides a brief overview
of each of those so that the discussion does not have to repeated for each track.

1.1 Inquery

All tracks other than the �ltering track used Inquery[Callan et al., 1992] as the search engine, sometimes for
training, and always for generating the �nal ranked lists for the test. We used Inquery V3.2, an in-house
development version of the Inquery system made available by the CIIR (V3.1). The di�erences between the
two are not consequential for this study.

The current belief function used by Inquery to calculate the belief in term t within document d is:

wt;d = 0:4 + 0:6�
tft;d

tft;d + 0:5 + 1:5
length(d)
avg len

�
log N+0:5

nt

logN + 1

where nt is the number of documents containing term t, N is the number of documents in the collection,
\avg len" is the average length (in words) of documents in the collection, length(d) is the length (in words)
of document d, and tft;d is the number of times term t occurs in document d.

�The work reported was carried out while Jamie Callan was at the University of Massachusetts.
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1.2 InRoute

The InRoute �ltering system is based on the same Bayesian inference network model as InQuery. It is
designed to operate eÆciently in high-volume �ltering environments, where incoming documents must be
processed rapidly, one at a time. It uses the same document indexing techniques, query language, and scoring
algorithms as InQuery. Corpus statistics for the document stream are estimated using an archival corpus or
are learned as documents stream by. InRoute also incrementally learns improved pro�les [Allan, 1996] and
improved thresholds [Callan, 1998], as relevance judgments become available for documents that have been
disseminated.

InRoute was used only in the �ltering track.

1.3 Query Processing

The processing of queries|i.e., the transformation from TREC topic to InQuery query|was handled very
similarly to the way it was managed for TREC-7, though there were some small changes. It includes three
steps:

1. Basic Query Processing removes stop words and phrases (e.g., \relevant documents will include"),
and stop structures|i.e., that are sentences discussing criteria of non-relevance in the narratives.
For removing the stop structures the processor simply segments each sentence �rst then removes the
sentences that contain the stop structure (e.g., \Documents discussing ... are not relevant"), but keep
those clause which stands on the negative part of the removed sentence (such as in \... not relevant,
unless ...", where the \unless" clause is not be removed).

2. Query Formalizing identi�es noun phrases (as in TREC-6 and 7), and proper names. The proper names
were transformed to use the ordered proximity-one operator (e.g., #passage25(#1(Golden Triangle),
which requires that the two words occur immediately adjacent in the text in that order; the passage
operator a�ects the weighting of the feature. For noun phrases we not only used the phrase operator but
also duplicated the single terms used by the phrase (e.g., #passage25(#phrase(tropical storms)),

tropical, storms). Note that for proper names, the single term duplication was not done.

The query formalizing also identi�es compound words, like wildlife and airport, that are formalized
with the synonym operator (e.g., #syn(#1(air port) airport)). While the query is fomalized, if
there is any word concerned with foreign countries, like international, world, or Europe, a token
#foreigncountry will be added to the query. If there is a term concern with the United States,
then a token #usa will be added. If both #foreigncountry and #usa are found in a query, all such
tokens are removed.

Finally a query is formed with the weighted sum operator (#wsum) with a weight for each term. For
those terms occurring in the title and description �elds the weight 1.0 is used, while 0.3 is used for
those terms occurring in the narrative �eld. That is, we trust the title and the description more than
the narrative.

3. Query Expansion adds 50 LCA concepts to each query. These 50 concepts are collected from top 30
passages (the passage database are built with TREC volumns 1 through 5). This is the same process
that we used in TREC-7, but we did not use \�lter-required" on the title words this year. LCA is
described next.

1.4 Local Context Analysis (LCA)

In SIGIR '96, the CIIR presented a query expansion technique that worked more reliably than previous
\pseudo relevance feedback" methods.[Xu and Croft, 1996] That technique, Local Context Analysis (LCA),
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locates expansion terms in top-ranked passages, uses phrases as well as terms for expansion features, and
weights the features in a way intended to boost the expected value of features that regularly occur near the
query terms.

LCA has several parameters that a�ect its results. The �rst is the choice of LCA database: the collection
from which the top ranked passages are extracted. This database could be the test collection itself, but is
often another (perhaps larger) collection that it is hoped will broaden the set of likely expansion terms. In
the discussion below, if the LCA database is not the test collection itself, we identify what collection was
used.

LCA's other two parameters are the number of top passages used for expansion, and the number of expansion
features added to the query. The LCA features were put into a query construct that allows a weighted average
of the features. Assuming n features, f1 through fn, they are combined as:

#wsum( 1.0 1:0 f1
...

...
1� (i� 1) � 0:9=s fi

...
...

1� (n� 1)0:9=s fn )

Here, s is scaling factor that is usually equal to n. The weighted average of expansion features is combined
with the original query as follows:

#wsum( 1.0 1.0 original-query wlca lca-wsum )

where wlca is the weight that the LCA features are given compared to the original query. Note that the
�nal query is a weighted combination of the original query and the expansion features. As will be discussed
below, in the SDR track the combination was unintentionally done di�erently, slightly shifting the balance
between the original query and the expansion concepts.

2 Ad-hoc Track

Other than minor changes to the query processing, we did not investigate any ideas in the ad-hoc track this
year. We submitted four runs, each of which used the complete set of query processing techniques outlined
in Section 1.3. The runs and their average precision were:

INQ601 title only 0.2325
INQ602 description only 0.2492
INQ603 title plus description 0.2659
INQ604 title, description, and narrative 0.2809

INQ603 (comparatively, our best run) is below the average for 13 topics of the 50 topics. We have not
analyzed those runs in any additional detail.

3 Filtering Track

Our goals for the Filtering track were to test the InRoute �ltering system and a new threshold learning
algorithm. We felt that performance in TREC-7 was quite poor for three reasons:

3



1. disseminating too many non-relevant documents early on;

2. not monitoring query performance during the run; and,

3. using a threshold learning method that could only raise thresholds.

We account for each of these in TREC-8 resulting in substantial performance improvement. We dealt with
them as follows:

� The �rst problem was that too many documents were disseminated at an early stage. Wishing to mimic
closely a real world situation where we cannot know an appropriate threshold initially, we tried to learn
thresholds quickly from the �rst retrieved documents. This proved too diÆcult. We were not able to
�nd a reasonably e�ective threshold without retrieving (and taking the hit for) a sizeable number of
documents, most of which would turn out to be non-relevant. As a solution, we ran each query on
a retrospective database and chose an initial threshold on the basis of these alternative document
scores. This turned out to be highly e�ective. This technique was adopted from CLARIT's TREC-7
submission.[Zhai et al., 1998]

� Our second problem was that we had not implemented any sort of performance monitoring mechanism
to watch queries during the course of the run and \shut o�" queries for which performance was far
below the target precision. This year, we simply stopped retrieving documents for queries retrieving
more than N non-relevant documents and MIN or fewer relevant documents. MIN was somewhat
arbitrarily set to 2. Any less than that would not have been reasonable given the threshold learning
method we chose (described below). Because of the e�ectiveness of our initial thresholds, we were able
to set N to a fairly small number; N was also the parameter we varied between submissions. We set
N = 9 and N = 15 for our oÆcial submission for LF1 and LF2 respectively. These values were chosen
on the basis of test runs using AP data and TREC-7 queries. A more elegant solution would have been
to chose N and MIN based on some function of the target precision as embodied in utility metric being
used for evaluation. Unfortunately, we did not have time before the submission deadline to discover
what this function should be.

� In our previous threshold learning method, thresholds could only go up and never down during the
course of a run. This meant that the threshold learning was insensitive to new trends in scores. It
also increased the importance of the initial phases of learning. We needed to retrieve many documents
at the beginning of the run in order to get a good start. This year we opted for a threshold learning
method that could adjust thresholds both up and down. In doing so, we gave up both modifying the
queries on the basis of retrieved documents and dynamically adjusting term idfs.

Our method this year was to set thresholds to the lowest document score, in a list of scores sorted highest to
lowest, at which precision was equal to or greater than the target precision. We collected document scores
and after each new arrival, sorted the scores and computed precision at each point. We then chose the
�rst precision point to equal or exceed the target precision. Since this process would be futile if none of
the documents retrieved were relevant, we used our initial thresholds until at least MIN (two) documents
had been retrieved. Document scores of initial documents would have vary little in common with document
scores of subsequent documents if the queries and/or idfs had changed during the course of the run. In the
interest of threshold sensitivity, we chose not to modify our queries or adjust idfs. Our indexing process did
not make use of the controlled-language �eld in the FT database.

3.1 Queries for �ltering

We used the title, description and narrative parts of the topic processed the queries using all three of the
query processing steps described for our ad-hoc runs. However, #usa and #foreigncountry tokens were
never used, regardless of whether the query suggested they should be.
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FT92 FT93 FT94 FT92-94
INQ610 LF1 35 39 42 32
INQ611 LF2 36 30 33 25
INQ612 LF2 38 36 38 32
INQ613 LF1 34 31 34 28

Table 1: Number of queries at or above the median for �ltering

FT92 FT93 FT94 FT92-94
INQ610 LF1 258 29 30 350
INQ611 LF2 88 -14 24 74
INQ612 LF2 125 29 9 139
INQ613 LF1 127 -186 -129 -155

Table 2: Sum of our scores minus sum of median scores for �ltering

3.2 Filtering Results

The CIIR submitted four runs, two for evaluation using the LF1 utility metric and two for evaluation using
the LF2 utility metric. As discussed above, we varied the number N , of non-relevant retrieved documents
we allowed the system to retrieve before shutting o� the query. We allowed that number to be greater in
our primary run for LF2 than LF1 since LF2 is the more lenient of the two metrics. In the end, the smaller
value for N outperformed the larger value for both metrics. The runs are as follows:

INQ610 N = 9 LF1 primary run
INQ611 N = 15 LF2 primary run
INQ612 N = 9 LF2 secondary run
INQ613 N = 15 LF1 secondary run

Tables 1 and 2 show the performance of this run compared to the median.

4 Spoken Document Retrieval Track

We applied the full query processing technique and ran the resulting queries. Note that unlike in past years,
we did the LCA query expansion on an external collection rather than on the SDR collection itself. We
participated only in the \quasi-SDR" version of the track.

5 Small Web Track

For the two gigabyte Web track, our results were reasonable. Of the 50 topics, 42 were better than the
median and only 7 worse. Three of our scores were the maximum score for that query. The run, INQ620
used the same query set as Ad-hoc INQ603, i.e, the title and description portions of the topic, with the same
query processing. We did not take advantage of link structure in any way. The average precision of the run
was 0.3327 with precision at 10 documents of 0.5040 and at 20 of 0.4130.
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6 Large Web Track

We submitted one run to the Large Web Track. That run, INQ650, achieved a modi�ed average precision
of 0.3927. Its precision at 10 documents retrieved was 0.4960 and at twenty documents, it was 0.5000.

7 Question and Answer Track

Our work in the Q&A track is in loose combination with SheÆeld University. We used straightforward IR
techniques to isolate passages of text that were highly likely to contain the answer to the questions. We
submitted those passages as our \answers" and also handed them to SheÆeld to do some further processing.
At this point, we do not have comparitive information to show the impact of their work.

We used Inquery's best passage operator to try to locate the answer for a particular question in the 5 top
retrieved documents. Inquery's best passage operator is exible with respect to the size of the best passage
the user is looking for. This setting is in word count rather than bytes. We set the best passage size to 10
words for the 50-byte runs and 50 words for the 250-byte passage runs. We then post-processed the answer
to pull out something of the correct size. If a word was split by the 50- or 250-byte boundary, we did not
include the partial word in our \answer."

CIIR submitted four runs, two for the 50-byte limit and two for the 250-byte limit. The di�erence between
these runs was whether or not we used LCA expansion on the questions (i.e., whether step 3 of the query
processing in Section 1.3 was applied). We found that LCA expansion improved performance. Overall we
did quite well:

Runid > med � med < med Our Average % Di�erence
average of median

INQ634 - 50 bytes, with expan-
sion

43 185 20 0.18737 0.11970 +57.1%

INQ635 - 250 bytes, with expan-
sion

58 172 33 0.37828 0.28081 +34.7%

INQ638 - 50 bytes, no expansion 29 176 29 0.12556 0.12485� +0.5%
INQ639 - 250 bytes, no expansion 45 165 40 0.33283 0.28081 +18.5%

(�)The average of the median is di�erent between these two 50 byte runs apparently because NIST carried
the second evaluation out to two rather than just one signi�cant digit.)

8 Query track

The CIIR contributed a large set of queries to the Query track. They were generated as part of a class
assignment for a database class in the Fall of 1998.
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