
Structuring and expanding queries in the

probabilistic model

OGAWA Yasushi MANO Hiroko NARITA Masumi

HONMA Sakiko

Software Research Center, RICOH Co., Ltd.

1-1-17 Koishikawa, Bunkyo-ku, Tokyo 112-0002, JAPAN

fyogawa,mano,narita,honmag@src.ricoh.co.jp

1 Introduction

This is our �rst participation in TREC and �ve runs were submitted for the ad-hoc main
task. Our system is based on our Japanese text retrieval system [4], to which English tok-
enizer/stemmer has been added to process English text. Our indexing system stores term
positions, thus providing proximity-based search, in which the user can specify the distance
between query terms.

What our system does is outlined as follows:

1. Query construction

The query constructor accepts each topic, extracts words in each of the appropriate
�elds and constructs a query to be supplied to the ranking system.

2. Initial retrieval

The constucted query is fed into the ranking system, which then assigns term weights
to query terms, scores each document and turns up a set of top-ranking documents
assumed to be relevant to the topic (pseudo-relevant documents).

3. Query expansion

Based on the feedback from the pseudo-relevant documents, the query expander collects
and ranks the words in the pseudo-relevant documents and the words ranked the highest
are added to the original query, with the words already in the query re-assigned new
term weights.

4. Final retrieval

The ranking system performs �nal retrieval using the modi�ed query.

In what follows, we explain what is done in each of the steps in more detail.

2 Query construction

We have employed automatic query processing to construct single-word and phrasal search
terms. Our query processing involves a series of steps to identify the important concepts in
each topic. In what follows, we describe in some detail how single and phrasal search terms
are created by linguistic methods and represented as a structured query.

1



2.1 Stemming and morphological expansion of query terms

Natural language text in each topic is processed by our English tokenizer and stemmer to
output stemmed word tokens. We have developed a new stemmer which con
ates morpho-
logically related words in two steps: the �rst step stems terms for document indexing and
query processing and the second performs morphological expansion of query terms. To avoid
degradation of performance by overstemming, our stemmer only stems an in
ected form to
its base form and a sequence of derivational su�xes to the initial su�x. 1 For example, "hu-
manization" and "humanized" are stemmed to "humanize," but not "humanize" to "human."
When constructing queries, each search term is stemmed and expanded with its morphologi-
cal variants; "humanize" is possibly expanded with "human," "humanity," "humanise," and
so on.

Although a run with stemmed queries without morphological expansion showed rather
consistent improvements over a run without stemming, expansion of query terms produced
inconsistent results. Some queries bene�ted a lot; others were damaged a lot. We found
that both bene�ts and damages resulted from derivational variants. To the contrary, spelling
variants rarely had ill e�ects although they improved only a few queries. Avoiding risks,
we decided to expand terms only with spelling variants for our submitted runs. Thus, a
stemmed term "humanize" is expanded to #SYN(humanize,humanise) with a synonym op-
erator #SYN.

2.2 Single term selection

From the terms extracted by the stemmer, the query constructor selects single-word search
terms for the query by eliminating very common and irrelevant words, i.e., stopwords. We
have used two kinds of stopword lists, the Fox's [1] word list for the <title> �eld and its
augmented word list we created for the <desc> �eld. To augment the Fox's word list, some
dozens of unimportant words were manually added to the original list after examination of
the <desc> �elds from TREC-3 to TREC-7.

For example, the words \identify," \document," and \discuss" in \Identify documents
that discuss clothing sweatshops" were added to the Fox's word list because these words
provide no information about the information need.

2.3 Phrasal term selection

Syntactic phrases are recognized in the natural language text by applying the syntactic
chunker LT CHUNK developed at the Edinburgh Language Technology Group. This chunker
uses the part-of-speech information provided by the tagger LT POS and identi�es boundaries
of simple noun phrases which do not include prepositional or clausal post-modi�ers.

Each noun phrase is tokenized/stemmed and then stripped of all stopwords. As a result,
the phrases consisting of two or more single words are extracted for use in search terms.

For phrases consisting of three or more single words, we have given a special treatment
because we have experimentally found out that these multi-word phrases are less likely to
match documents in the collection. First, all pairs of single words are derived from the
target phrase. For example, the noun phrase \industrial waste disposal" is decomposed to
derive three possible word pairs such as \industrial waste," \waste disposal," and \industrial
disposal." Second, the word pairs which never occur in sequence in the TREC test collections
are discarded. In the above example, the last word pair \industrial disposal" is discarded by
this processing.

1Our decision to what extent we should stem a word is partly based on [3] and [2].

2



Further, we handle hyphenated words as phrasal terms by specifying that the constituent
words be found adjacent in a document.

2.4 Query representation

Single and phrasal search terms are combined into a query using syntax of our query language.
As mentioned above, term variants by morphological expansion are expressed with a synonym
operator #SYN. Phrasal terms are treated as arguments to a proximity operator #WINDOW
and two forms of representation are provided with di�erent window sizes and constraints on
word order.

We have also introduced a scoring operator #SCALE to phrasal term representation to
adjust its term weight because our preliminary experiments suggest that a phrasal term
should be given a lower term weight than a single term. After a series of experiments on
weight adjustment, we have �xed two di�erent combinations of weight scales, respectively,
for phrasal terms from the <title> �eld only and those from the <title> and <desc> �elds.

To sum, our sample queries are expressed as follows:

A query from the <title> field only:

#OR(industrial,waste,disposal,

#SCALE[0.1](#WINDOW[1,1,o](industrial,waste)),

#SCALE[0](#WINDOW[2,500,u](industrial,waste)))

A query from the <title> and <desc> fields:

#OR(killer,bee,attack,human,#SYN(africanize,africanise),

#SCALE[0.4](#WINDOW[1,1,o](killer,bee)),

#SCALE[0.25](#WINDOW[2,500,u](killer,bee)))

where #WINDOW[1,1,o] speci�es that the two words be found adjacent in a document while
#WINDOW[2,500,u] speci�es that the two words not be found adjacent but occur within
a window of 500 words with no constraint on word order. Note also that single terms are
merged with phrasal terms using a logical operator #OR.

3 Initial retrieval

For each query constructed by the query constructor, the ranking system ranks the documents
in the target document collection and retrieves top-ranking documents. To rank documents,
the system uses term weighting and document scoring formulae similar to Okapi's but with
some modi�cations, mostly in term weighting.

In the probabilistic model [5], each term in the query is assigned a term weight to represent
the appropriateness of the term as a discriminator in the collection. Terms are weighted
according to

wt = log
p

1� p
� log

q

1� q
(1)

where p is the probability that a document contains the term, given that it is relevant and q
is the probability that a document contains the term, given that it is not relevant.

In Okapi [6], the probabilities p and q are given by

p =
p0

p0 + (1� p0)
N�n
N

(2)

3



q =
n

N
(3)

where N is the number of documents in the collection, n is the number of the documents
in which the term occurs and p0 is the estimate of the probability that the term occurs in a
relevant document when no document contains the term. From (1), (2) and (3), we have

wt = log
p0

1� p0
+ log

N

N � n
� log

n

N � n
: (4)

By replacing log p0
1�p0

with k4, we have

wt = k4 + log
N

n

where �1 < k4 <1 since 0 � p0 � 1.
Now, with this weighting formula, k4 is less than zero when p0 is estimated as smaller

than 0.5, which is usually a reasonable estimate. However, as has been pointed out, with the
value of k4 negative, the term weight could result in a negative value depending on the value
of n, the consequence of which would be degenerate retrieval.

To solve this problem, we have changed the way how the probability p is estimated. That
is, in our modi�ed formula, p is estimated as

p = p0 + (1� p0)
n

N
: (5)

From (1), (5) and (3), we have

wt = log

�
p0

1� p0
� N

N � n
+

n

N � n

�
� log

n

N � n
(6)

and if we let k04 be
p0

1�p0
, we have

wt = log

�
k04 �

N

n
+ 1

�
:

Note that with our formula, the value of k04 never gets negative regardless of the value
of p0, thus ensuring that the term weights are always positive. By keeping the term weights
positive, the quality of retrieval is maintained even in the worst case.

With each term weighted according to the above formula, the ranking score for each
document is calculated using a formula very similar to Okapi's.

sd;q =
X
t2q

wt

k4 + logN
� ft;d

k1((1� b) + b dt
dave

) + ft;d

where ft;d is the within-document frequency of the term, dt is the document length dave is
the average document length, k1 and b are parameters, just as in Okapi's.

4 Query expansion

After initial retrieval, the query expander collects single terms in the pseudo-relevant docu-
ments and ranks them according to its Term Selection Value (TSV) while reweighting query
terms, using formulae adopted from Okapi's and modi�ed in three ways as described below.
The top-ranking single terms are then added to the original query with their respective term
weights. The single terms and phrasal terms origianlly included in the query are also given
re-assigned term weights, multiplied with a bonus factor.

4



4.1 Term weighting 1

The �rst of the modi�cations in the TSV formula involves a change in term weighting after
initial retrieval, from Okapi's to the one that re
ects the modi�cation in term weighting
during initial retrieval mentioned above.

In Okapi, term weights are re-assigned after initial retrieval, when feedback from retrieved
documents becomes available. The new term weights are calculated as a weighted average
of the term weight estimated without any relevance feedback and the term weight estimated
solely from relevance feedback. That is, if we put the term weight estimated without feedback,
which was assigned for initial retrieval, as

wt = log
p

1� p
� log

q

1� q
= wp � wq ;

the new term weight after relevance feedback would be

wt = Cp � wp + (1� Cp) � w0

p � Cq � wq � (1� Cq) � w0

q (7)

where w0

p and w0

q are term weight components based on relevance feedback and Cp and Cq

are coe�cients. Speci�cally, with

wp = log
p0

1� p0
+ log

N

N � n
= k4 + log

N

N � n
; wq = log

n

N � n
(8)

from (4), the term weight after feedback in Okapi is calculated as

wt =
k5

k5 +
p
R
(k4 + log

N

N � n
) +

p
R

k5 +
p
R
log

r + 0:5

R� r + 0:5

� k6

k6 +
p
S
log

n

N � n
�

p
S

k6 +
p
S
log

s+ 0:5

S � s+ 0:5

where R is the number of relevant documents, r is the number of relevant documents con-
taining the term, S is the number of non-relevant documents, s is the number of non-relevant
documents containing the term, and k5 and k6 are parameters.

In our system, we followed the same principle as Okapi's, adopting (7). However, as
described earlier, since we changed initial wp from (8) to

wp = log

�
p0

1� p0
� N

N � n
+

n

N � n

�
= log

�
k04 �

N

N � n
+

n

N � n

�

as shown in (6), term weighting after feedback was changed accordingly, resulting in the
formula

wt =
k5

k5 +
p
R
log

�
k04

N

N � n
+

n

N � n

�
+

p
R

k5 +
p
R
log

r + 0:5

R� r + 0:5

� k6

k6 +
p
S
log

n

N � n
�

p
S

k6 +
p
S
log

s+ 0:5

S � s+ 0:5
:

4.2 Term weighting 2

The above term weighting formula underwent further modi�cation when we noticed some
incidents of words that are too common to be useful in a query appearing in the expansion

5



terms selected using the formula. To keep these words from being included in expansion, the
term weighting formula was changed to re
ect the document frequency of the term in the
coe�cient part of the formula as

wt =
k5

k5 +
q

R
R+n�r

log

�
k04

N

N � n
+

n

N � n

�
+

q
R

R+n�r

k5 +
q

R
R+n�r

log
r + 0:5

R� r + 0:5

� k6

k6 +
q

S
S+n�s

log
n

N � n
�

q
S

S+n�s

k6 +
q

S
S+n�s

log
s+ 0:5

S � s+ 0:5
;

thus reducing the relative weight of terms appearing in both the pseudo-relevant documents
and the whole document collection. (In the experiments, S was set to 0.)

4.3 Term Selection Value

We also looked at the whole TSV formula of Okapi's [7]

TSV = (r=R � � � s=S) � wt

where � is a parameter. From our observation on the terms selected with this formula,
however, we felt that it would be better to eliminate those terms too speci�c to serve as
expansion terms, such as a telephone number, that were included in the selection. To that
end, the Okapi's TSV formula was modi�ed to re
ect the within-document frequency as

TSV =

 X
d2R

ft;d

k1((1� b) + b dt
dave

) + ft;d
=R � � �

X
d2S

ft;d

k1((1� b) + b dt
dave

) + ft;d
=S

!
� wt

where � is a parameter, which would lower the TSV of those terms that occur only once
or twice in a document, in comparison with the terms that occur more often per document.
(We also requred r to be larger than 1 for a term to be considered. Also, S was set to 0 in
the experiment as in term weighting.)

With these modi�cations, our expansion method is more likely to select terms neither
too common throughout the collection nor too rare to be appicable to the whole collection,
without resorting to such cut-o� measures as a stopword list or a �lter to exclude, for instance,
words containing digits.

5 Final retrieval

The expanded-and-reweighted query is sent to the ranking system and documents are re-
trieved as �nal result. Document ranking is done just as in initial retrieval, except that the
term weights are supplied by the query.

6 Results

We produced eight runs using di�erent combinations of the following conditions of the queries:

� Queries using only <title> and queries using <title> and <desc>

6



� Queries using no phrasal search terms and queries using phrasal search terms

� Queries using no expansion and queries using expansion

We tuned up the formulae using mainly queries generated from the TREC-7 topics. For
runs with expansion, title-only queries were mostly used for the tuneup. Parameters we chose
for each of the eight runs are listed in Table 1 { 3. Note that in Table 1 and Table 2, we
chose di�erent sets of parameter values for the same retrieval parameters. This is because, for
retrieval in a run with no query expansion, we wanted parameter values that would maximize
average precision, whereas for initial retrieval for a run with query expansion, we looked for
parameter values that would maximize precision at ten retrieved documents.

Table 1: Parameters for runs without expansion
no phrases phrases

title only title+desc title only title+desc
k1 0.75 1.00 0.50 0.75
b 0.25 0.25 0.25 0.25
k04 0.20 0.20 0.05 0.05
Scale for #WINDOW[1,1,o] { { 0.10 0.40
Scale for #WINDOW[2,500,u] { { 0.00 0.25

Table 2: Parameters for runs with expansion (initial retrieval)
no phrases phrases

title only title+desc title only title+desc
k1 0.50 1.00 0.75 1.00
b 0.25 0.25 0.25 0.25
k04 0.50 0.10 0.20 0.20
Scale for #WINDOW[1,1,o] { { 0.10 0.25
Scale for #WINDOW[2,500,u] { { 0.10 0.10

Table 3: Parameters for runs with expansion (�nal retrieval)
no phrases phrases

title only title+desc title only title+desc
Number of documents used for expansion 10 10 10 10
k1 0.75 1.00 0.75 0.75
b 0.25 0.25 0.25 0.25
k04 0.20 0.20 0.10 0.05
k5 0.25 0.25 0.25 0.25
Scale for #WINDOW[1,1,o] { { 0.40 0.40
Scale for #WINDOW[2,500,u] { { 0.25 0.25
Maximum number of terms to be added 25 30 25 30
Minimum number of terms to be added 10 10 10 10
Minimum r for term to qualify 2 2 2 2
Bonus factor for query terms 3.5 4.0 3.5 4.0

7



The experimental runs using the above parameters resulted in the following average pre-
cision measurements (Table 4). The table clearly shows improvement in performance when
phrasal search terms are used and when queries are expanded, especially for queries using
both <title> and <desc>.

Table 4: Average precision for TREC-7 topics
title only title + desc

no phrases/no expansion 0.2033 0.2127
phrases/no expansion 0.2120 0.2373
no phrases/expansion 0.2513 0.2571
phrases/expansion 0.2584 0.2838

Using the same parameters as above, the results for the TREC-8 topics are shown in
Table 5.

Table 5: Average precision for TREC-8 topics
title only title + desc

no phrases/no expansion 0.2560 0.2363
phrases/no expansion 0.2572 0.2633
no phrases/expansion 0.2647 0.2426
phrases/expansion 0.2689 0.2748

In TREC-8 runs, the e�ect of expansion was not as great as in TREC-7 runs as far as
the above results are concerned. This may be because the parameter values we experimented
with were not optimal. In fact, by re-adjusting the parameters, especially the bonus factor for
query terms, we saw improvement in the average precision { for example, 0.2800 for title-only
queries with no phrases.

References

[1] C. Fox. A stop list for general text. ACM SIGIR Forum, Vol. 24, No. 2, pp. 19{35, 1991.

[2] D.A. Hull. Stemming algorithms: A case study for detailed evaluation. Journal of the

American Society for Information Science, Vol. 47, No. 1, pp. 70{84, 1996.

[3] R. Krovetz. Viewing morphology as an inference process. In Proc. of 16th ACM SIGIR

Conf., pp. 191{203, 1993.

[4] Y. Ogawa and T. Matsuda. An e�cient document retrieval method using n-gram indexing
(in Japanese). Transactions of IEICE, Vol. J82-D-I, No. 1, pp. 121{129, 1999.

[5] S.E. Robertson and K. Sparck Jones. Relevance weighting of search terms. Jounal of the
American Society for Information Science, Vol. 27, pp. 129{146, 1976.

[6] S.E. Robertson and S. Walker. On relevance weights with little relevance information. In
Proc. of 20th ACM SIGIR Conf., pp. 16{24, 1997.

[7] S. Walker et al. Okapi at trec-6: Automated ad hoc, vlc, routing, �ltering and qsdr. In
Proc. of 6th Text REtrieval Conf. NIST, 1996.

8


