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1. Summary
This report describes the adhoc experiments performed by the GE/Rutgers/SICS/SU/Conexor team in
the context of TREC-8. The research efforts went in four directions:
1. As in previous years, we performed a full linguistic analysis of the entire corpus, and used the re-

sults of the analysis to provide index terms on a higher level of abstraction than can be provided by
stems alone.

2. We made use of two different query expansion techniques, one automatic and one manual, both de-
veloped for TREC-8.

3. The various analysis models were combined using a stream model architecture, where each stream
represents an alternative text indexing method, and the stream's various overlapping knowledge was
merged using a new merging algorithm derived from first principles.

4. The entire text was analyzed for various stylistic items.
Due to the distributed approach, this years’ research efforts partly canceled out each other. New ex-
periments in every step of the process did not result in an overwhelming overall result. We are able to
determine that the manual query expansion technique developed at General Electric performed very
well.

2. Background
The work reported here was part of the Natural Language Information Retrieval project (NLIR) (Perez-
Carballo, Strzalkowski, 1999; Strzalkowski et al., 1998 and 1997; Strzalkowski, 1995). One of the
thrusts of this project has been to demonstrate that robust NLP techniques can help to derive better rep-
resentation of text documents for indexing and search purposes than any simple word and string-based
methods commonly used in statistical full-text retrieval. This was based on the premise that linguistic
processing can uncover certain critical semantic aspects of document content, something that simple
word counting cannot do, thus leading to a more accurate representation. In earlier experiments we
demonstrated that NLP could be done efficiently on a very large scale, and that it could have a signifi-
cant impact on the performance of the IR systems we were using then. At the same time, it became clear



that exploiting the full potential of linguistic processing is harder than originally anticipated. In par-
ticular, simple linguistically motivated indexing (LMI) techniques turned out to be no more effective
than well-executed statistical approaches , at least for English , while more advanced NLP techniques,
such as concept extraction, remained too expensive for large-scale applications (Sparck-Jones, 1999).

Given this state of affairs, we went on to investigate specific conditions under which LMI could be
more beneficial. For example, we have noticed that the amount of improvement in recall and precision
which we could attribute to NLP, appeared to be related to the type and length of the initial search re-
quest. Longer, more detailed topic statements responded well to LMI, while terse one-sentence search
directives showed little improvement. This is not particularly surprising considering that the shorter
queries either contain a handful of highly discriminating terms or are deliberately vague. We adopted
the topic expansion approach in which the original topic is expanded using passages selected from sam-
ple retrieved documents. The intent was to expand the initial search specifications in order to cover
their various angles, aspects and contexts. Based on the observations that NLP is more effective with
highly descriptive queries, we designed an expansion method in which passages from related, though
not necessarily relevant documents were imported into the user queries. This method produced a fairly
dramatic improvement in the performance of several different statistical search engines that we tested
boosting the average precision by anywhere from 40% to as much as 130%. Therefore, we concluded
that topic expansion appears to lead to a genuine, sustainable advance in IR effectiveness. Moreover,
we showed in TREC-7 that this process can be automated while maintaining at least some of perform-
ance gains. Thus far we have used only very simple linguistic tools (i.e., those suitable for high-volume
IR applications) to assist automatic expansion, but we see this area as ripe for more advanced process-
ing techniques, including entity and event extraction, co-reference and cross-reference techniques, etc.

3. Processing scheme
InQuery was used as the indexing and retrieval engine. This year, the linguistic processing of TREC
data, both text and queries, was performed in Helsinki using the newly developed Functional Depend-
ency Grammar (FDG) text processing toolkit. The processed text was sent via ftp to Rutgers and SICS
for indexing.

For some of the manual submissions, the topics were processed at General Electric using the interactive
Query Expansion Tool for manual query expansion; for the automatic submissions, queries were ex-
panded at Rutgers using a passage retrieval algorithm. The expanded topics were processed in Helsinki
to obtain matching search terms for the linguistic indices, and sent back to Rutgers for retrieval.

The results from the various processing and retrieval streams were merged to obtain a final rank order
using a merging algorithm developed for this years’ TREC at Stockholm university and SICS.

4. Streams
The stream model (see Fig. 1) has been described in previous TREC papers and in (Perez-Carballo,
Strzalkowski, 1999). Each "stream" uses its own index which is created using a different indexing tech-
nique (some of them involving linguistic processing). The results obtained from all the streams are
combined using merging algorithms. In past TRECs we were able to obtain significant improvements in
performance over the baseline single word indexing stream. The experiments for TREC-8 did not yield
similar improvements. This year, in spite of improved analysis machinery, the linguistic streams per-
formed far less well than earlier years and we were not able to combine them usefully with the standard



retrieval streams. There are several possible explanations, but the main reason appears to be the several
simultaneous changes in our approach. We changed the character of the streams, reworked the merging
algorithm, and as a result we have not been able to make use of previous years' experience in matching
query processing with text processing and combining results appropriately in time for this report. We
are continuing the experiments that we expect to publish elsewhere.

4.1 Linguistic Streams
Some of the linguistic streams we used were created using Helsinki's Functional Dependency Grammar
(FDG) which includes the EngCG-2 tagger and dependency syntax which links phrase heads to their
modifiers and verbs to their complements and adjuncts. FDG was applied to the whole corpus, with the
output passed to the stream extractor.

We tried to merge the results obtained from linguistic streams with the stems stream, as we have done
other years, but were unable to obtain good results (i.e. improve the performance of the stem stream).
Because of lack of disk space we could not use the same automatic expansion algorithm on the linguis-
tic streams so we cannot draw any conclusions yet about linguistic streams or the merging algorithms.

In one experiment we used the InQuery #phrase (see below) operator in order to add phrases from one
of the linguistic streams to the query generated using manually chosen summaries. This seemed to actu-
ally decrease the performance of that run.

In order to have a baseline to be used with the linguistic streams we added InQuery's #phrase operator
to words that appeared close to each other in the topics. No linguistic processing was used at all. This
was done automatically. Some of the “phrases” obtained did not seem to make any sense and no human
would have added them. Surprisingly, the queries that used that device performed better than the lin-

Figure 1. Stream Model organization
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guistic streams and in some cases better than the pure stems (some of our “official” runs, reported be-
low, use this technique). We are now performing further experiments and tests. More definitive results
and analysis will be presented in the final form of this paper.

InQuery's #phrase operator (quoting from the InQuery manual):

 Phrase Operator: #phrase(T1 ... Tn)

 Terms within this operator are evaluated to determine if they occur
together frequently in the collection. If they do, the operator is
treated as an ordered distance operator of 3 (#od3). If the arguments
are not found to co-occur in the database, the phrase operator is
turned into a SUM operator. In ambiguous cases the phrase becomes the
MAX of the SUM and the OD3 operators.

5. Merging the streams
In previous years, the merging algorithm for TREC was tuned through trial and error, and we always
managed to find relative weighting that improved the score. This process is of course unsatisfactory and
we tried to capture some dependencies that would help to automatically estimate the merging function.
For the past two TRECs we added a rank dependent non-linear weighting scheme in which a docu-
ment’s final rank in the merged ranked list is a function of average precision of component streams, as
well as of the rank of the document rank in the various streams. This change had a positive effect on
merging precision, but it still required supervised training in order to optimize the parameters.

This year, we decided to use a more principled approach. We performed a set of merging experiments
using some streams that we judged the most promising based on early experiments. For lack of time and
processing space, and trivial file transfer problems, we restricted the experiments to the following four
streams, postponing the inclusion of much of the linguistic and stylistic experiments made during the
course of the project:
1. run.7.proc.PH.t3d1n1.35: automatic expansion, proximity phrases, words from title are repeated 3

times, runs on stem stream.
2. run.7.ph.t3d1n1.35: before expansion the terms from the ph stream are added to the topics using the

#phrase operator in case it is a phrase, automatic expansion, words from title are repeated 3 times,
runs on stem stream.

3. run.7.proc.P.t3d1n1.35: automatic expansion, words from title are repeated 3 times, runs on stem
stream.

4. run.7.thr.t3d1n1: words from title are repeated 3 times, runs on the thr stream.

Training several different classifiers and combining the predictions of these into a single prediction is a
common method for creating an accurate classifier from a set of training data (Breiman, 1996; Drucker,
et al, 1994; Wolpert, 1992). A number of researchers have demonstrated that such combined classifiers
in general are more accurate than any of the constituent classifiers (Dietterich, 1997; Breiman, 1996;
Merz, 1999; Quinlan, 1996; Wolpert, 1992; Zhang, Mesirov & Waltz, 1992). Bartell, Cottrell and
Belew (1994) have shown similar results in the document retrieval domain: using different retrieval al-
gorithms and then combining them may significantly improve retrieval performance.

The streams in our model capture different aspects of the documents' content. When merging the
streams, the aim is to produce a final result that is more accurate, i.e., has a higher average precision,



than the output of any of the individual streams. The final result should therefore be a richer set of
documents. Obtaining this result is, however, not trivial.

As detailed above we compose a mixture of different indexing approaches, term extracting, weighting
strategies, and different search engines we use into indexing streams. Each stream represents an alter-
native text indexing method; some require complex linguistic processing, while others are based on
simple quantitative techniques. The results obtained from the different streams are lists of documents
ranked in order of relevance: the higher the rank of a retrieved document, the more relevant it is pre-
sumed to be (in comparison to the other retrieved documents). The ordering is based on the relevance
score - a figure produced by the stream, reflecting the document's accuracy as judged by the system. The
streams perform in parallel and the results from the different streams should be merged to produce one
final result. As the streams capture different aspects of the documents' content, the final result should be
a richer set of documents. The aim of the merging is to produce a final result that is more accurate than
the output of any of the individual classifiers. Obtaining such a result is, however, not trivial.

A merging algorithm called SEQUEL (Asker & Maclin, 1997) was implemented for the task. The ra-
tionale behind SEQUEL is to find the most confident classifier down to a certain threshold. It requires
that the lists are sorted by - in this case - relevance score. The confidence is calculated by finding the
classifier with the highest proportion correct classifications (i.e., relevant documents) at the top, down
to the first non-relevant one. The threshold will be the lowest relevance score within this interval. The
items covered by the span are removed from all classifiers. At a certain value the best performing clas-
sifier is considered the default classifier, i.e., it is used as the single classifier.

The algorithm was trained on 40 out of 50 queries – setting aside 10 queries for testing – from the
TREC-7 materials, using the TREC-7 data and relevance judgments. All non-judged documents were
removed, leaving only the judged documents for consideration. Two different implementations of the
algorithm were made: one where all queries were sorted by the judgment of the system; and one where
the program examined the confidence for each query at the time, taking the average as the result.

Although the algorithm performed well, the combined classifier did not beat the best individual classi-
fier. This could possibly be because of the algorithm not being very “forgiving”: immediately upon
finding an irrelevant document the stream is discarded. SEQUEL also tended to work with “chunks” of
documents, covering too many at the time. This could be due to the fact that the relevance scores given
by the retrieval systems range over a quite limited span. (An implementation that normalized the rank-
ing scores to fall between 1 and 0 was also made, but the improvement was not significant.)
The algorithm tended to favor the best performing classifier (it being the most confident stream) and
discard the additional information that the weaker streams may contribute with. Neither does the
method take a possible overlap of retrieved documents in different streams into account. The algorithm
was implemented to consider the top 1000 for each question and classifier. This means that for the ma-
jority of the documents, we only had judgments from one or two streams. It would be more appealing to
apply a method where every document could take advantage of the fact that we use several different re-
trieval methods.

6. Automatic expansion algorithm description.
Using the automatic expansion algorithm described in this section we obtained a 37% improvement of
average precision over a baseline where no expansion was used.



6.1 Algorithm:
1. The topics sent by NIST were processed to eliminate some words and phrases such as: “a relevant

document”.
2. The title text was repeated 3 times, the description 2 times. Our intent was to give different weights

to the different fields.
3. Processed topics were submitted to InQuery in order to retrieve the top 20 documents.
4. For each one of the D documents with highest document score larger than threshold T, extract all

passages of size larger than S. Let the passage score be the sum of all unique occurrences of a query
term (either word of phrase) in that passage.

5. Choose the P passages with highest passage score and add them to the original query. Notice that
given two passages A and B, the score of B may be higher than A (and thus B may be chosen over
A) even though A may belong to a document that has a higher score than B's document.

The values used for the parameters described above were: D = 5; T = .432; S = 50; P = 12

7. Ad-Hoc submissions
We submitted 4 runs for the ad-hoc track.

query id Relevant
documents
retrieved out
of 4728

Average
precision

Precision at
10 docu-
ments

R-Precision query description

1. 8manexT3D1N0
(judged)

0.3325 0.3346 0.6520 0.3671 manually-assisted
topic expansion us-
ing only title and de-
scription fields.

2. GE8ATDN1
(judged)

0.3138 0.2623 0.5020 0.2984 automatic topic ex-
pansion using title
description and nar-
rative fields. Prox-
imity phrases only.

3. GE8ATDN2 (not
judged)

0.3068  0.2580 0.5498 0.2993 automatic topic ex-
pansion using title
description and nar-
rative fields. No
phrases used.

4. GE8ATD3 (not
judged)

0.3022 0.2618 0.5658 0.2959 automatic topic ex-
pansion using only
title and description
fields. Proximity
phrases plus original
text.

Below are short descriptions of our official ad-hoc runs (shown in the table above). All official runs
submitted were produced using only the stem stream as opposed to being the result of merging evidence
from different streams.



7.1 Summarization-based manually-assisted topic expansion run (8manexT3D1N0)
Manually-assisted topic expansion using only title and description fields. The methods used to obtain
this run where the same as the ones we used in TREC-7. Summaries used in expansion were derived
from top-ranked documents retrieved by SMART using the initial topics (title+description only). The
key characteristics of this run is the 10 minute time limit imposed on topic expansion. All expansion
has been performed via the Query Expansion Tool interface (QET) which allows the user to view only
the summaries of top retrieved documents, and select or deselect them for topic expansion. By default,
summaries of all top 30 documents were used for expansion unless the user manually deselected some
(this was precisely the only form of manual intervention allowed. ) We observed that for many queries 2
interactions were possible within the 10 minute interval. The first interaction (submit original query,
wait for result, get 30 summaries, review & deselect summaries, and commit the selections) would take
typically 4-6 minutes. In the second interactions, only the new documents retrieved in top 30 ranks (if
any) were considered, therefore usually 3-4 minutes were sufficient. The target of expansion was to get
between 5 and 10 “relevant” summaries within the allotted time. If this was achieved within the first
interaction, no further search was performed. Otherwise, the second interaction was attempted if at least
3 minutes remained. This 6-4 split was determined in dry-run trials with TREC-6 queries. The topic ex-
pansion interaction proceeds as follows:
1. The initial natural language topic statement is submitted to a standard retrieval engine via a Query

Expansion Tool (QET) interface. The statement is converted into an internal search query and run
against the database.

2. The system returns topic-related summaries of top N (=30) documents that match the search query.
3. The user reviews the summaries (approx. 5-15 seconds per summary) and de-selects these that are

not relevant. For TREC-8 evaluations (like for TREC-7), we set a time limit of 10 minutes per
query (clock time).

4. All remaining summaries are automatically attached to the original search topic.
5. bThe expanded topic is passed through a series of natural language indexing steps and then submit-

ted for the final retrieval.

7.2 Automatic topic expansion run (GE8ATDN1)
This run uses title description and narrative fields. Proximity phrases only: the query text is replaced by
the output of an algorithm that linked words which appeared in the same sentence at less than 3 words
of each other using the #phrase operator. This run was intended as a baseline but became an official run
when we were unable to beat its performance.

7.3 Automatic topic expansion run (GE8ATDN2)
This run uses title description and narrative fields, like GE8ATDN1, but no phrases are used.

7.4 Automatic topic expansion run (GE8ATD3)
This run, again, uses only title and description fields. It uses “proximity phrases” formed out of words
occurring together.

8. Continuing work
We are currently performing a set of new experiments that takes into account the rankings obtained
from every stream. All documents that have been ranked among the first 1000 documents by at least



one stream out of N streams constitute a “document pool” of at least 1000 documents and not more than
N*1000 documents. We let every stream score all documents in this pool. As a first experiment, we will
implement a simple linear combination of the judgments from the four streams. A weighted sum of all
the scores from each of the streams will get us the total score that includes the knowledge of all streams
in question. As mentioned before, the span for the ranking scores is not that large, and therefore even a
very small score can alter the ordering of the documents. For these tests we will retain the non-judged
documents.

There is a possibility that some documents could get a better total score by having been given four low
scores (too low to be among the best 1000 documents for any stream) than one with a high score on one
and no rating on the other streams. However, if none of our streams ranks a document among the top
1000 we will discard it. If the experiments with simple linear combinations turn out satisfactory – i.e.
better than the non-adapted learning algorithms – we will continue with more sophisticated methods, by
for example weighting the different streams.

The main point with more “forgiving” classifiers, is to not discard a stream immediately upon finding
an irrelevant document: document relevance is a debatable issue in itself, and cannot easily be com-
pared to other classification tasks where the errors are of a more clear-cut nature.

8.1 Further experiments
This paper is just a preliminary report. Before we present a final version for the TREC-8 proceedings
we must complete at least the following experiments:

• Create indexes for all linguistic streams that allow for query expansion using the same algorithm
used for the stem stream. Try merging algorithms again but with runs obtained using query expan-
sion.

• Merge: stem run (without expansion) with some (or each of the) linguistic stream(s) (without ex-
pansion). Can we get any improvement from merging? If yes, then expansion is drowning the im-
provement obtained by linguistic streams.

• Compare performance of automatic expansion using passages and automatic expansion using sum-
maries.

• Compare the performance of runs obtained using LMI vs. runs obtained linguistic processing on the
queries only.

9. Conclusions
Preliminary results seem to suggest it would be possible to get as good a performance by processing the
query (including expansion) and using an IR system with an expressive query language such as InQuery
as what we get creating indexes using sophisticated and very expensive linguistic techniques. We
should explore the possibilities of using a much more sophisticated linguistic analysis of the queries but
less on the index.
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