
Fujitsu Laboratories TREC8 Report

{Ad hoc, Small Web, and Large Web Track {

Isao Namba Nobuyuki Igata

Computer System Laboratory Fujitsu Laboratories Ltd.

fnamba,igatag@
ab.fujitsu.co.jp

Abstract

This year a Fujitsu Laboratory team participated
in three tracks:that is ad hoc, small web track, and
large web track. As basic techiniques, we compared
four popular stemmers, and we made simple re-
moving stop pattern techniques for TREC queries.
For the ad hoc task, and small web track, we used
the same techiniques. We experimented with area
weighting, co-occurence boosting, bi-gram utliza-
tion, and reranking by bi-gram extraction from pilot
search.

The e�ect of blind application with those te-
chiniques is rather limited, or even uncertain in the
TREC8 experiment. What we can say from TREC8
result is that blind application of co-occurence
boosting and area weighting may be e�ective for
the small web track. They requerie query depen-
dent application.

In the large web track, our main interest is ef-
�ciency, that is how much resources are required
to process 100GB of web text and 10000 real web
queries in practical time. Using a statistical based
language type checker, we can eliminate 23% of non-
English text. This leads to speeding up a indexing
and reducing the index size. The search speed for
an inverted �le is CPU intensive if the target ma-
chine has main memory in excess of 10-25% of the
index size. So with simple, but e�ective index com-
pression methods, the throughput of query process-
ing is about 0.54-1.1 query/second even by a single
300MHz Ultra-sparc processor.

1 System Description

1.0.1 Tera�

Tera�[1] is a fulltext search library, designed to pro-
vide an adequate number of e�cient functions for
commercial service, and to provide parameter com-
bination testing and easy extension for experiments
in IR. For TREC8 we added functions for reranking
pilot search results, and �xed bugs found during the
TREC8 experiment.

1.0.2 trec exec

trec exec is designed for automatic processing of
TREC. It contains a procedure controller, evalua-
tion module , logging module, and all non-searching
units such as query generation, query expansion and
so on.

The motivation of making this prorgram is that
we could not fully tune the system in the TREC7 ex-
periment. In the TREC7 experiment it took about
5 minutes to evaluate the result, and we had dif-
�culty in analyzing what parameter was actually
e�ective as logging of parameters was imperfect.

trec exec can execute all the TREC processing for
one run in about one minute, and it can be used for
system tuning by hill-climing.

2 Common Processing

The following process is common among all tracks.

Large web track does not use bi-gram, reranking
by N-gram, and QE.

1

2.1 Indexing/Query Processing

2.1.1 indexing vocabulary

The indexing vocabulary consists of character
strings made up of letters, numbers, and symbols,
and no stop words were used in indexing. For
TREC8, we modi�ed the grammar of the token rec-
ognizer to accept acronyms with symbols such as
U.S., and AT&T as one token.

2.1.2 Stemmer

We compared the popular stemmers. We selected
four algorithms SMART[2], Porter1 , Lovins[4], and
Pickens[5] which are popular or can be used free ex-
perimentally. Their token recognizer was modi�ed
to compare in the same condition.
The table 1 is the result of a pilot search on the

same parameter settings. The parameter tuning is
based on the SMART stemmer and TREC7. Best
average precision wass bold face, and worst was
italic. T is the title �eld, D is the description �eld
, and N is the narrative �eld. Blank �eld was not
tested.

RUN SMART Porter Lovins Pickens

TREC4
D 0.218,3351 0.216,3447 0.221,3364
TREC5
D 0.163,2125 0.158,2010 0.149,1935
T 0.151,2050 0.146,1899 0.144,1684
TD 0.159,1973 0.156,1989 0.150,1823
TDN 0.208,2314 0.200,2360 0.190,2233
TREC6
T 0.211,2200 0.218,2215 0.182,2120 0.217,2182
D 0.173,1763 0.158,1631 0.170,1721
TD 0.237,2323 0.243,2320 0.223,2201 0.244,2324
TDN 0.254,2711 0.243,2581 0.240,2624
TREC7
T 0.194,2199 0.187,2227 0.156,2129 0.189,2182
D 0.210,2538 0.200,2392 0.182,2329 0.203,2391
TD 0.237,2323 0.215,2551 0.194,2479 0.219,2555
TDN 0.257,2762 0.238,2661 0.230,2638 0.256,2874

Table 1: Comparison of stemmers (average-
precision,rel-ret)

1We found the o�cial homge page of Porter Stemming
Algorithm [3], and found that the author said almost all the
implementation was di�erent from the original one, and he
made improvement of rules. Since we found the page in a
few days ago, we did not try the o�cial one.

Since the system is tuned based on the SMART
Stemmer, and nothing is known about the relation
between stemmer and system parameter tuning, it
is di�cult to deduce a concrete result.

What we feel is that SMART or Pickens are a
better choice, and our choice is SMART.

2.1.3 Information in inverted �le

Text number, term frequency, and term position are
stored for the ad hoc task, and small web track
for run time phrase processing and reranking by bi-
gram extraction.
Only text number and term frequency are stored

for the large web track to save disk space.

2.1.4 Stop word list for query processing

As in the TREC7[1], we used a stop word list of
about 400 words of Fox[6], and words with a high
df (more than 1/7 of the number of all documents)
were also treated as stop words.

2.1.5 Stop pattern removal

The expression of TREC queries are arti�cial, so
frequently appearing patterns such as \relevant doc-
ument\ are stop patterns. We generalized this ob-
servation, and removed the words which meet one
of the following condition.

1. Word in stopword list is a stopword.

2. Word which is not a proper noun2, and whose df
in TREC1-7 queries is more than 400*0.1 is a stop
word.

3. Word bi-gram whose df in TREC1-7 queries is
more than 400*0.02 is a stop pattern.

4. Word tri-gram whose df in TREC1-7 queries is
more than 400*0.01 is a stop pattern.

5. All the words in a sentence that contains \not rel-
evant" are stop words.

6. 4 words following \other than" are stop words.

7. 4 words following \apart from" are stop words.

For the TREC-8, this parameter setting seems
to remove too many patterns. The result is that
o�cial result is worse than with simple removal of
stopwords about 0.5-1 point.

2U.S appears 94 times in TREC1-7 queries.

2.2 Weighting Scheme

The term weight is qtf � tf � idf , and the score for
one document is the sum of the term weights with
co-occurence boosting.

1. qtf

qtf is the combination of the following param-
eters

qtf =
P

f
fw � tf � ttw

where

f is the topic �eld (title, description or narra-
tive).
fw is weight of the topic �eld. We set the value
for the title �eld to 3.0, the value for the de-
scription �eld 1.5, the value for the narrative
is 0.9. Some teams [7], [8],[9] used weighting
depending on �eld type, and we take the same
approach.

tf is the bare frequency in each �eld.

ttw is the term type weight. It is set to 3 for
terms, and set to 1 for phrase(word bi-gram).

2. tf

We simply used the tf part of OKAPI[7].

tf = (k1+1)�term freq

(k1((1�b)+
b�doc length in byte

average doc length in byte
)

k1 = 1:5; b = 0:75

3. idf

We used a modi�ed idf of OKAPI. We intro-
duced a cut o� point for low df words, and
decreased the idf value for high df words.

idf = log2
N�(n��)

n

N is the number of documents
n is df if (df > 1/10000 * N) else

n = 1/10000 * N
� is set to 3

2.3 Co-occurence Boosting

As in TREC7, we use co-occurence boosting te-
chinique which favours co-occurence of query terms
in a document. Co-ocurrence boosting is imple-
mented by simply multipling the boost ratio to the
similarity of each term.

Si =
X

t

B �Wt;i

Si is the degree of similarity between a
document and topics.
i is the document number.
t is a term that documenti includes.
Wt;i is the part of similarity of termt in
documenti.
B is the boost-ratio by term co-
occurrence.

In the experiment of last year, we could not get im-
provment except in very short queries. One of the
reasons was that applying this techinique to any
symbols, that is word with high idf, word with low
idf, and phrase(word bi-gram) caused the theme
to drift. So we limited the application of this te-
chinique only to words, and words within a limited
df range.
Apparently, the best parameter B depends on the

query, and we still have not found an automatic
parameter control method. So we set the B to 1.10
for the title word, to 1.05 for the description word,
and to 1.03 for the narrative word, and to 1.0 for
the word added by query expansion.

2.4 phrase(bi-gram)

Instead of traditional IR phrase (two adjacent non-
stopword pair with order or without order), we per-
mitted limited distance in phrase. The motivation
for introducing �xed distance is as follows. The
�rst motivation is that non-stopword may exist be-
tween two adjacent words in a query. For example,
in TREC7 query 351 \Falkland petroleum explo-
ration", the word Island may be inserted between
\Falkland" and \petroleum", but the two words
may be located near each other in the sentence
within a limited distance. The second motivation
is that there are many stopword lists in the world
and it is di�cult to select one ,and we don't like to
remake the index every time we choose a di�erent
stopword set for an experiment, and stopwords are
rather area dependent. The third motivation is that
it is easy and fast enough to experiment by comput-
ing the frequency of the bi-gram using a word o�set
in an inverted �le at run time.
The experimental environment is that the bi-

gram uses bare idf, and its weight is 1/3 that of a
normal word. The bi-gram is constructed from two
adjacent non-stopword pair in a query which is not
separted by stop pattern in stop pattern removal.
Their source area is only the title and description
�elds. Table 2 shows the average precision after QE.

bi-gram (dist=4) phrase(no-order)

trec4 d 0.285 0.278
trec5 d 0.192 0.186

trec6 t 0.260 0.260
trec6 d 0.185 0.187
trec6 td 0.261 0.253
trec7 t 0.244 0.235
trec7 d 0.273 0.273
trec7 td 0.280 0.281
trec8 t 0.288 0.283
trec8 d 0.256 0.257
trec8 td 0.293 0.290

Table 2: Short distance bi-gram vs phrase

2.5 Reranking by best bi-gram

The bi-gram in query is limited to non-stopword
pairs. This is because any bi-gram combination of
terms in query easily drifts away from its original
theme with its strong idf. 3 But in some cases, a
non-adjacent pair in original query is a key expres-
sion. For example in TREC7 query 351 \Falkland
petroleum exploration", the bi-gram expression of
\Falkland" and \exploration" in rather narrow win-
dow (less than 50 words) is a good expression. All
the 14 documents which contain this pattern are
relevant. What we thought is frequently appear-
ing bi-gram pattern of query terms in top ranked
documents in the pilot search may contain such ex-
pressions, and can be used to make the document
level average increase. Using TSV of Okapi, we se-
lected bi-grams in rather middle size windows, and
rerank the result of pilot search.

1. Rank top 1000 documents

2. Calculate the TSV score of every bi-gram of
the terms in a query in �xed window size(set
40). The top 20 documents are supposed to be
relevant, and the 500-1000 ranked document
are supposed to be non-relevant.

3. Sort the bi-gram by TSV score

4. Select the best N (set 5) bigram whose mutual
information is over the threshold(set -5). The
threshold setting of mutual informaition means
we accepted all the best bi-gram, and we did

3We did not try Robertson's phrase weighting[7] at
1999/10/27

not consider the TSV score of the words in bi-
gram.

5. Rerank the pilot search result after adding bi-
gram score (tf*idf)

The e�ect of blind application of this techniques
with this parameter setting and scoring seems to be
dubious. Unexpectedly its e�ect on TREC4 is 10%
and TREC5 5% and TREC7 3%, and we applied
this techiniques to some of the o�cial TREC8 runs.

The top ranked bi-gram expressions were the
combination of main theme word(title word), and
the other words in most cases. For example the
selected bi-gram expression in TREC8 query 406
"Parkinson's disease" were "Parkinson disease",
"Parkinson symptoms", "Parkinson treat", and
"Parkinson patient".
Table 3 shows the change of document level av-

erage, and average precision after QE in this case.

Cond @10 @20 (No QE) av-prec(QE)

With 0.50 0.350 0.452
Without 0.40 0.350 0.371

Table 3: Document level average and average pre-
cision after QE for topic 406

2.6 Query Expansion

Query Expansion was used for the ad hoc task, and
small web track. The Boughanem formula[7] was
used to select terms.

TSV = (r=R� �s=S):w(1) (1)

w(1) is modi�ed and more general version of Robert-
son/Sparck Jones weight.
The � was set 0.001, and k4 was -0.3, k5 was

1, and k6 was 64. The top 20 documents in the
pilot search were supposed to be relevant, and the
documents ranked from 500 to 1000 were supposed
to be non-relevant. The top ranked 40 words which
are not included in original query, which are not
included in the stopword list of SMART, whose tsv
score are more than 0.003, whose df are more than
20, and whose df are less than 33000 were added to
the original query.

No collection enrichment technique was used.

3 Ad hoc task

We tried many techiniques in the TREC8 ad hoc
experiment, and most of them did not survive as
their e�ects were uncertain or too merginal, and
were just logged by trec exec. As the following anal-
ysis shows, except QE, most of the techniques which
we applied to the o�cial runs were severely query
dependent or target document dependent.

3.1 Ad hoc o�cial runs

The results are shown in Table 4. TREC8 query
was easier than that of TREC7, and there is little
di�erence between the title only run and title and
desciption run.

Run-id Flab8as Flab8atd2 Flab8atdn Flab8ax Flab8at

�eld TD TD TDN TDN T

Av Prec 0.290 0.293 0.324 0.316 0.287
R-Prec 0.324 0.320 0.353 0.350 0.315

P@20 0.420 0.420 0.470 0.451 0.426
Retrieved 50000 50000 50000 50000 50000
Rel-ret 3090 2990 3261 3207 3084
Relevant 4728 4728 4728 4728 4728
best 0 2 1 1 3
>= med 42 39 39 41 40

Table 4: Eleven Point Average (O�cial Run)

The conditions of each run are given in table 5.

Name Flab8as Flab8atd2 Flab8atdn Flab8ax Flab8at

bi-gram + + + + +
Co-boost + + + + +
Rerank - + - -/+ +
QE + + + + +
Data fusion - - - + -

Table 5: Parameter condition of o�cial Runs

Flab8ax is data fusion of Flab8atdn and very
long query version of the Flabatd2 condition. For
the TREC7 experiment, merging two di�erent sys-
tem results in 1-1.5 points up in some cases (eg.
OKAPI+INQUERY). But as this result shows, it is
not stable.

3.2 Ad hoc analysis

The e�ect of the techiniques we employed, �eld
weighting, co-occurence boosting, bi-gram in query,
and reranking by bi-gram are shown in the following
tables.

bi-gram �eld boost rerank No QE QE

- - - - 0.243 0.271
+ - - - 0.247 0.288
+ + - - 0.251 0.290
+ + + - 0.252 0.291
+ + + + 0.241 0.293 (*o�cial)

Table 6: The e�ects of each techniques (title and
description)

bi-gram �eld boost rerank No QE QE

- - - - 0.215 0.259
+ - - - 0.236 0.288
+ + - - 0.236 0.289
+ + + - 0.238 0.290
+ + + + 0.235 0.288 (*o�cial)

Table 7: The e�ects of each techniques (title)

4 Small Web Track

The processing of Small Web Track is the same as
that of the ad hoc task.

No link run is submitted as we did not have
enough time, and it seems di�cult to use link infor-
mation for 2GB text.

What we felt during system training by TREC7
queries was the searching for small web data easily
drifted away from the main theme.
The result seems to support our feelings, that is

�eld weighting and co-occrence boosting is the most
e�ective of our techniques, and QE is less e�ective
than in the case of the ad hoc task.

4.1 Small Web Track o�cial Runs

Two runs are submitted, Flab8wtdnN and
Flab8wtdN. Their procedure was the same as that
of Flab8atd2. Flab8wtdnN used full �eld, and

Flab8wtdN used title and description �eld. The
results are shown in Table 8.

Name Flab8wtdnN Flab8wtdN

�eld TDN TD
link NO NO
Average Prec 0.340 0.332

R-Prec 0.353 0.355
P@20 0.401 0.398
Retrieved 50000 50000
Rel-ret 2279 2279
Relevant 1988 1954

best/ >= med 5/42 1/42

Table 8: O�cial small web track result

4.2 Small Web Track analysis

The following two tables show the combination of
each techinique.

bi-gram �eld boost rerank No QE QE

- - - - 0.289 0.325
+ - - - 0.296 0.323
+ + - - 0.304 0.338
+ + + - 0.315 0.340
+ + + + 0.301 0.332 *o�cial

Table 9: The e�ects of each technique (title and
description)

bi-gram �eld boost rerank No QE QE

- - - - 0.294 0.321
+ - - - 0.306 0.332
+ + - - 0.323 0.347
+ + + - 0.331 0.358
+ + + + 0.322 *0.346

Table 10: The e�ects of each technique (title de-
scription,and narrative)

* o�cial result is 0.340.

5 Large Web Track

Our goal for the large web track is to show that a
single CPU is enough for processing 100GB of Web

data, and even a slow CPU (Ultra-Sparc 300MHz)
is enough. This is because inversion and searching
is CPU intensive if hardware conditions are met,
and such hardwares are not so expensive today.
The balance between speed, precision and hard-

ware cost was our research goal.

5.1 Hardware environment

One Sun Ultra2 workstation was used for the lage
web track. It has 1GB memory and has 2 Ultra-
sparc 300MHz CPUs. Most of the processing was
done using 1 CPU, sometimes 2 CPU were used.

5.2 islang

As pointed out by some groups[7], large web track
data contains considerable non-English data. This
data increases the size of the index, and slows down
the inversion, and is never retrieved in English
query processing.
A statistical based language type checker, called

islang, which rejects both non-English text, and
non-language text was originally designed to se-
lect Japanese and English text for Web search
engine[10].
The basic idea of islang is that frequently appear-

ing spelling, pre�x and su�x patterns are the key
expression in language type checking, and we can
use the tri-gram as the pattern in English.
The algorithm is as follows.

1. Training

(a) L is the training corpus containing N pat-
terns.

(b) The pattern is the tri-gram of case folded al-
phabetical ascii character.

To re
ect the word construction of English,
patterns in word and patterns adjacent to
word boundaries are treated as two di�erent
patterns.

(c) Simply count the frequency of patterns and
calculate the information of each patterns in
the corpus.

ni(i = 1; 2:::n) is the pattern in L
fi is the frequency for ni respectly.
pi = �log2(

fiinL

N
)

2. Checking

(a) T is the target text containing M patterns.

(b) ti(i = 1; 2:::n) is the pattern in T .

fi is the frequency for ti respectly.

(c) Calculate average information and score.

av = (
Pi=n

i=1 fi � pi for ti)=M
If ti is not found in ni, use � � �log2(1=N)
instead of pi
socre is 2av

(d) If score is over the threshold, reject text as
not belonging to the language.

� is set to 1.0, and threshold is set to 40000, and
TREC7 documents are used as a training corpus.

The example of rejected documents from IA001-
0000-B001- set are given in Table 11.

DOCID score text

5 44167 Die Dapsy Dinos Leider wurde
44 81499 Sydsvenskan - Nyhetsrsikt ...
52 51064630 323c 2f44 4f43 4e4f 3e0a ...

Table 11: Sample of rejected document by islang

23% of the text is rejected as non-English. The
sum of word entry in inverted �le is reduced to 10
million from 20million, and the index size is reduced
to 4.0GB from 4.8GB without stopword condition.

5.3 Large web track result

Our main concern is the balance between perfor-
mance and precision. Introducing Boolean AND
condition speeds up query processing, but precision
may go down. To compare simple ranking and AND
condition with ranking, we submitted two runs.
All runs did not use phrases, and query expansion.
B+Rmeans ranking document with AND condition
of every non-stopword in a query. If the number of
retrieved documents is less than 20, then ranking
search is retried. This AND conditional interface is
popular in actual Internet services. R means tra-
ditional accumulator method. Only
8wlsb used
index with stopwords. Table12 shows our o�cial
result.

Run-id av-prec P@10 P@20 Calc speed(sec)

8wlnsb 0.4103 0.536 0.510 B+R 0.75

8wlnsr 0.4064 0.538 0.508 R 1.16

8wlsb 0.4116 0.540 0.507 B+R 0.54

Table 12: Large web o�cial result

There is no remarkable di�erence in precision.
B+R search and index with stopwords seems to be
the best choice considering speed.

5.4 Performance of pre-processing

The preprocessing involves web detagging, running
islang, and indexing. The o�cial pre-processing
data is as follows.

1. Detagging etc. took 3 or 4 weeks using 1 CPU.

The process contains gzip, gunzip, cat, copy
and rm for original data due to shortage of disk
space, But most of the time was comsumed by
a poor detagging script. After detagging text
size is reduced to about 50GB.

After submission of result, we wrote C version
of detagging program. Its processing time was
about 10 hours including the time for gunzip
the data.

2. islang takes 5.23 hours using 2 CPU.

23% of the text was rejected as non-English.

3. Indexing

It took about 30 hours using 1 CPU.

To compare the e�ect of the stopword, we
made two indexes. 'With stopword' uses the
stopword list of SMART[2], and rejects non-
alphabetical symbols, digital string equal or
greater than 1000000, and strings longer than
24 characters.

The o�cial inversion is very slow because we
failed to keep working area(300MB) of mem-
ory. Solaris2.6 swapped out the working area
while inversion was being done. So more than
half of the time was comsumed by page-in and
page-out. After submission of the o�cial re-
sult, we found we could lock the work area
in memory by mlock(), and mincore() system
calls in Solaris2.6, but we did not retry by
now(1999/10/27).

condition time status work area

With stopword 30.38 hours o�cial 300MB
Without stopword 27.63 hours o�cial 300MB

Table 13: Inversion time

The Index size is given in table 14.

�les with stopword without stopword

inverted �le 3.01 4.03
dictionary 0.46 0.59
text size array 0.07 0.07
text number id 0.41 0.41

total 3.95GB 5.10GB

Table 14: Index size

5.5 Performance of query processing

In this section we show the basic �gure of query
processing.

5.5.1 Design of Tera�

We brie
y list the features of Tera� concering per-
formance.

1. I/O optimization

(a) simply locating the bitmap entry of an in-
verted �le for the same term in continuous
area.

(b) Clustering frequently accessed bitmap en-
tries.(not used in TREC run)

2. Index entry is compressed by extended gamma
coding [11] which aims at a balance between
index size and decoding speed.

3. A Skip list [12] is used to minimize decoding
cost.

4. Many code optimization techniques are used
such as loop expansion, macro expansion, and
other coding techniques.

5.5.2 Average Processing Speed

The regulation of a large web track says that query
processing speed is the total processing time divided
by the number of query. Other teams generally take
the data parallel model to speed up processing, so
we took the round-robin model to increase speed.
The processing is very simple. We split a query �le
into 2 or 3 �les, and run 2 or 3 search programs to
the same index. 1, 2, and 3 processes are compared
and the result is given in Table 15.

Run-id 1 process 2 process 3 process

8wlnsb 0.75 0.40 0.53

8wlnsr 1.16 0.75 0.87

8wlsb 0.54 0.39 0.63

Table 15: Query processing speed (elapsed seconds
per query)

As the result shows that 2 process is the fastest
in 2 CPU environment. This suggest searching is
CPU intensive for some conditions, and we show
the evidence in the following secitons.

5.5.3 CPU time vs real time

If CPU time is dominant in most of the searching
processes, there is little di�erence between the dis-
tribution of CPU time and real time. The histogram
of query processing speed is �gure 1 . This speed
only includes searching the inverted �le.

1

4

16

64

256

1024

4096

16384

0 2 4 6 8 10

su
m

 o
f q

ue
ry

second

REAL TIME
CPU TIME

Figure 1: CPU time vs real time

For most of the queries CPU time is nearly equal
to real time. But in the case of huge queries they
di�er.
Figure 2 shows the relation between the number

of terms in query and average processing time.

0.25

0.5

1

2

4

8

16

0 2 4 6 8 10

av
er

ag
e

sp
ee

d(
se

c)

num of term

REAL TIME
CPU TIME

Figure 2: CPU time vs real time

The shortest CPU time is less than 1/1000 sec-
ond, and the longest CPU time is 7.7 seconds. The
shortest real time is less than 1/1000 second, and
the longest real time is 28.1 seconds.

5.5.4 Index size vs available Memory

What actually a�ects the search performance is
memory pages which the OS caches, and not search
system caches if the index uses Unix File System4.
But it is di�cult to know what block of what �les
the OS caches. So we limit avaliable main memory
size using a memory resident program using mlock()
and mincore(), and check search program perfor-
mance.
The result is omitted in this paper, but we get the

same result as that of past experiment. In our past
experiments on patent abstract (index size about
1GB), the query processing was CPU intensive if
memory size is more than 10-25% of index size.
In our past experiment with Japanese patent data
(index size 10GB), and actual query (about 13000
queries), the total of the accessed inverted �le entry
is about 1GB.

5.5.5 More speed

We simply list the techiniques for increasing speed.

4This means not using raw disk

1. inversion

(a) Stemmer

The speed of the stemmer is given in Table
16.

Stemmer speed(Gbyte/hour)

No stemmer 16.5
Porter 6.64
SMART 6.36
Lovins 7.10

Table 16: Stemmer speed comparison

Almost all stemmer implementations are
run time rule matching, so they are not
fast from the view of implementaion.

(b) Sorting in sort merge inversion

Tera� uses a sorting merge algorithm for
inversion, and quick sort algorithm is used
to sort the entries of an inverted �le. But
the quick sort algorithm is not the fastest
in this special case.

Stemming and sorting occupies more than 70%
of our inversion process.

2. Searching

(a) I/O optimization

Though the main memory size is large
enough compared with index size, in-
verted �le entry which is actually accessed
in query processing is not clustered.

(b) Changing Measures

We used OKAPI for all TREC8 runs. The
tf calculation of OKAPI requires division
every time as its form is tf=(tf + �). It
slows down the searching speed. To the
contrary, the vector space model measures
such as dtn.dnb [13] require division only
once for each document. Table 17 shows
the CPU time of OKAPI and dtn.dnb
weighting.

Measure CPU real

OKAPI 0.353 0.496
ddb.ddn 0.270 0.410

Table 17: Measure speed (elapsed second per query)

6 Conclusion

Though the combination of above techniques seems
to be working for automatic ad hoc, and small web
track, each technique is serverly query/search re-
sult dependent. We need control method whether
we apply those techniques or not. The result on
the Large Web track is good. The balance of index-
ing speed, index size, searching speed, and precision
is satisfactory, considering the hardware resources,
which is not measured by price because current PC
is faster than old workstation, and is cheaper.

References

[1] I Namba, N Igata, H Horai, K Nitta, and
K Matsui. Fujitsu laboratories trec7 report.
The Seventh Text REtrieval Conference, 1999.

[2] SMART
ftp cite. ftp://ftp.cs.cornell.edu/pub/smart/.
1999.

[3] Martin Porter. O�cial homge page of porter
stemming algorithm.
http://www.muscat.com/~martin/stem.html,
1999.

[4] MG Home Page.
http://www.mds.rmit.edu.au/mg/welcome.html.
1999.

[5] Jeremy Pickens. Stemming and cooccurrence
on a larger corpus. http://ciir.cs.umass.edu/,
1999.

[6] Chiristopher Fox. Chapter 7, lexical anal-
ysis and stoplists. Information Retrieval
Data Structure and Algorithms ed. William
B. Frakes, Ricardo Baeza-Yates Prentice Hall,
1992.

[7] S E Robertson, S Walker, and M Beaulieu.
Okapi at trec-7. The Seventh Text REtrieval
Conference, 1999.

[8] D R H Miller, T Leek, and R M Schwarts. Bbn
at trec-7. The Seventh Text REtrieval Confer-
ence, 1999.

[9] James Allan, Jamie Callan, Mark Sanderson,
Jinxi Xu, and Steven Wegmann. Inquery and
trec-7. The Seventh Text REtrieval Confer-
ence, 1999.

[10] InfoNavigator. http://infonavi.infoweb.or.jp/.
1999.

[11] Kunio Matsui, Isao Namba, and Nobuyuki
Igata. High-speed text search engine (in
japanese). IPSJ 97-DD-7-3 pp15-21, 1997.

[12] Ian H. Witten, Alistair Mo�at, and Timothy C.
Bell. Managing gigabyte - compressing and in-
dexing documents and images. Van Nostard
Reinhold New York, 1994.

[13] Amit Singhal, John Choi, Donald Hindle,
David D. Lewis, and Fernado Pereia. At&t at
trec7. The Seventh Text REtrieval Conference,
1999.

