
Ask Me Tomorrow:
The NRC and University of Ottawa

Question Answering System.

 Joel Martin Chris Lankester
National Research Council University of Ottawa

 Ottawa, Canada Ottawa, Canada
 joel.martin @nrc.ca clank@site.uottawa.ca

Funny how one extra Perl sort function can make a score of
0.521 on the question answering task look a lot like 0. This
paper describes our brute force approach to the question
answering task and how we did achieve some success, despite
formatting problems with our answer file. This paper also
describes how we conducted automatic evaluations using the
NIST judgment file on newly proposed answers.

A good question says what it is about and constrains the form of the answer. In
other words, it specifies the distinguishing context for an answer and partially
describes the kind of information that would count as an answer. The question
"Who wrote the Declaration of Independence?" specifies that we are talking
about someone who wrote a particular document, instead of engaging in some
other action with respect to some other document. In addition, the question
describes that we are looking for a "who" which must be a person, agency, or
institution.

The process of finding an existing answer to a question means finding part
of a document that matches the distinguishing context of the question and then
extracting an answer of the right type from nearby. Ideally, the extracted answer
would have the right sort of relationship to the context of the question.

Since this is our first year at TREC, and we were starting with no existing
code, we decided to take a brute force approach to the problem. We divided
the task into three phases. Phase I does a very high recall retrieval using the
words in the question with the goal of discarding 90% of the document
collection. Even with only a tenth of the documents, who wants to read them
all? Phase II does an exhaustive scan of all 200-500 byte windows in the
retrieved tenth, looking for strings with high similarity to the original question.
This phase also ranks these text windows and adds extra points if an obvious
answer type is nearby. Finally, Phase III was intended (and did a poor job of it)
to extract the best answer of the right answer type from the best outputs from
Phase II.

In the rest of this notebook paper, we first describe the three phases in
more detail and then describe how we evaluated the system. We end with a
discussion of the results and ideas for future work.

1.0 The Question Answering System (QA)
The question answering system was written in Perl and run on several

Unix-based (Linux and Solaris) machines. Paragraph indexing and retrieval was

1 This is the score of our system based on the judgement of (non−NIST) human assessors .

done using an unmodified copy of MG 1.3 (Managing Gigabytes, Witten, Moffat,
Bell, 1999). As noted before, the overall system was divided into three largely
independent phases, each with a different goal.

1.1 Phase I: High Recall
 Even though our system searches for answers in a brute force manner,

it cannot exhaustively search through all the documents in the collections.
Thus, we want to first select from all the documents those that are likely to
contain all the answers. Achieving high recall is often quite difficult because it is
hard to keep the list of retrieved documents small. In our case, we do not need
the list of retrieved documents to be small yet. That is the task of the later
phases. We only care that about 90% of the documents are excluded from the
Phase I results.

Figure 1 shows the major substeps involved in performing Phase I. This
is a description of the version of Phase I that was used for the answers
submitted to NIST. After seeing the NIST test questions, we omitted the use of
Wordnet to get synonyms as it was hurting the performance of Phase I.

In Phase I, each word of the question is first turned into a very long
boolean query by disjoining many different forms of the word. For example, the
word 'question' would be turned into a query like: "question OR query OR
questioning OR questionable OR questoin". Each of these queries is then sent
to a search engine (Witten, Moffat, Bell, 1999). This results in one set of
documents retrieved for each cloud of related words. In our system, each
document is a single paragraph.

These sets of retrieved documents are then merged so that each
document has a score reflecting how many of the non-stopwords in the
question appear in that document. For instance, if the question were "How are
questions turned into queries?", the paragraph immediately above this one
would contain the words (or variants thereof): 'questions' and 'queries' and have
a score of 2.

This score is calculated as an estimate of which documents contain more

Figure 1: The steps involved in Phase I

of the distinguishing context of a question. Finally, those paragraphs which are
highly ranked are connected to adjacent high-scoring paragraphs to form
segments. Segments are formed because the distinguishing context and the
answer to the question may not appear in the same paragraph. Segments and
paragraphs are discarded if they contain fewer than half of the question words.

1.2 Phase II: Higher Precision
The QA system assumes that the distinguishing context of a question will

appear in a fairly small chunk of text and that the answer will be in close
proximity. Thus, after locating those documents that contain the important
words, the system should search for strings of words that densely pack those
important words. If the words appear close together and possibly in the same
order in a given paragraph, then that paragraph is better than another one
where the important words are spread throughout the text.

Figure 2 shows the main steps of Phase II. First, Phase II augments the
question with known answers stored in the thesaurus and with a tag indicating
what type of question it is. Second, it builds a lookup table that stores a
similarity score for a word to a word that appears in the question. This lookup
table results in a less computationally expensive calculation of the similarities of
many text segments to a given question.

Phase II assumes that there is a definition of similarity between two
strings of words that is based on the similarities of the words, their relative
position, and the addition or deletion of words. As well, there are several
parameters that define the relative impact of each factor on an overall similarity
score. This is much like an inverse sort of edit-distance.

Ideally, a large amount of training data would allow setting similarity
parameters automatically. However, because only a small amount of training
data was available for this competition, the parameters were set by hand.

Figure 2: Steps in Phase II

1.3 Phase III: Answer Extraction

The results of Phase II contain many small windows of text that are very
likely to contain the distinguishing context of a question. The task for Phase III
is to scan the text in the window or just outside of it, looking for something that
looks like an answer to the question. There is no magic algorithm for this
phase. There must be a large and growing dictionary of question types and
patterns for recognizing answers. If this is true, the success of Phase III should
be less a result of the algorithm and more a result of having the right dictionary.

Figure 3 shows the main steps of Phase III. The first two steps of this
phase should be done during indexing (and will be next year). This will save
processing time and ensure consistent simplification of the paragraphs.

Phase III assumes that there are question types and corresponding answer
types. Furthermore, it assumes that the answers are in close proximity to the
distinguishing context of the questions. Using a dictionary of question types, it
checks whether the question is of a recognized type, such as "Who is" or "Who
was". If the question type is recognized, Phase III uses the corresponding
pattern to find possible answers, such as "John Smith". When more than one
answer is found, the answer that is closest to words that also appear in the
question are better.

If, on the other hand, the question type is not recognized, Phase III finds the text
window that covers as many words from the question as possible, trying to
center on the distinguishing context. In either case, Phase III tries to maximize

Figure 3: Steps followed in Phase III

the amount of information contained in an answer for a given size of answer. If,
for example, the answer must be 50 bytes long: a) the answer loses all its
punctuation and stopwords, and then b) is expanded to be as close to 50 bytes
as possible by adding tokens on the right and left of the window.

2.0 Using NIST Judgments for Automatic Evaluations
As we fix our QA system and want to test intermediate versions of it, we will not
get human evaluations for every set of outputs. Instead, we need some
automatic approximation to the official evaluations. This means that we must
somehow compare the proposed answer strings from our new system with the
NIST answers that appear in the judgment file.

Unfortunately, the NIST answers will not always match the lengths and
boundaries of proposed answers. For example, two systems could choose the
text window boundaries differently. One system might choose the answer
substring: "by Hugo Young (Farrar,", whereas another might choose: "Thatcher
by Hugo Young". Furthermore, several NIST answer strings have had some
tokens removed, such as punctuation, SGML tags, or even some words. As a
result, simple string searching will not give a good measure of the correctness
of proposed new answers.

As a first pass, we can say that a proposed answer is correct if it fully
contains a correct NIST answer. If the NIST answer is correct and a proposed
answer contains all of it, the new answer must also contain the correct
information. Of course, because of the problems of string matching, we will
have to put the answers into a (closer to) canonical form. To do this, we
replaced all strings of whitespace and punctuation with a single space. In
addition, we replaced all special characters (&) and SGML tags with a
single space.

Even with this notion of contained-within, there are at least three more
problems. First, in the NIST answers, there are several examples where the
same substring is deemed both a correct answer and an incorrect answer. For
example, in question 54, one correct NIST answer is "54 FBIS4-3997 1 22 April"
and one incorrect NIST answer is "54 FBIS4-19846 -1 22 April". This may be
because the judges looked at the substring in context and judged one document
to contain the answer substring by accident. Second, in at least one case, a
substring is correct if capitalized and incorrect if not capitalized: "China" is right,
"china" is wrong. Third, although a correct answer may be contained in a
proposed answer, it might be hidden among distracting information. For
example, the proposed answer may list three proper noun phrases when only
one is requested. In such a case, the proposed answer may be judged to be
incorrect because the answer is buried.

To partially address these considerations, we augmented the definition of
contained-within. Some apparent cases of contained-within can be invalid if the
proposed answer also contains an incorrect answer. If this situation arises, we
can use the source document to decide whether the proposed answer matches
the correct answer or the incorrect one. More concretely (from question 103),
suppose a proposed answer,P = "Estonia last month, in which 900 people died.
Norway is", contains a correct NIST answer, C = "900". Further suppose that
there is an incorrect NIST answer, I = "900 people", that is contained-within P

and also contains (or is equal to) C. In this case, our only (automatic) recourse
is to consult the source documents. Since the proposed answer came from the
same document as the correct answer and not the same document as the
incorrect answer, the proposed answer is rated as 'correct'.

Table 1: The algorithms for automatic scoring of correct answers.

The specific rules applied are shown in Table 1. These rules are very
conservative. They were derived to minimize the chance of rating a proposed
answer correct when it is wrong (low false positive rate). It clearly misses many
correct answers because there are no correct strings contained in the proposed
answer. As in the above example (question 103), there are many correct
substrings of "a last month , in which 900 people died. Norway is", but only a
select few would be recognized as correct. If the judgment file continues to
grow, this problem of many false negatives would gradually improve.

We must remember that the automatic score is generally only a lower
bound on the performance of the question and answer system. If System A gets
a score of 0.72 and System B gets a score of 0.56, that doesn't necessarily
mean that System A is best. It could be that System A did a better job of
matching the text windowing used to generate the NIST answers. As a side
effect of how the NIST answers were generated, any official QA submission that
was scored would receive very close to the same score by this automatic
method as was reported by TREC (a very tight lower bound). Hence, we cannot
easily use the results of the automatic evaluation to compare a new system

flag <- contained-within(correct, proposed)
 correct_simp <- replace punctuation, spaces, SGML, & with space
 proposed_simp<- replace punctuation, spaces, SGML, & with space
 if (correct_simp is a substring of proposed_simp) then
 flag <- true
 else
 flag <- false
 end if

correct_flag <- isCorrect(P, correct_answers, incorrect_answers)
 correct_flag <- false
 foreach C in correct_answers (while correct_flag equals false)
 if (contained-within(C, P) then

 if (not invalid(P, C, incorrect_answers)) then
 correct_flag <- true;
end if

 end if
 end loop

invalid_flag <- invalid(proposed, correct, incorrect_answers)
 invalid_flag <- false
 foreach I in incorrect_answers (while invalid_flag equals false)
 if (contained-within(I, proposed) AND
 contained-within(correct, I) AND
 documentOf(I) equals documentOf(proposed)) then
 invalid_flag <- true
 end if
 end loop

against an official TREC submission.
Even though this metric is only a lower bound on question answering

performance, it can still help improve our QA system. The automatic nature of
this evaluation would allow it to be run many times in order to, for example,
optimize the settings of several parameters. Suppose a system received a score
of 0.72 by human evaluation and 0.63 by the automatic evaluation. If you can
improve your system so that the automatic evaluation gives a score higher than
0.72, you know that you have a true improvement.

3.0 Results
Although our system's performance is difficult to compare to that of the other
question answering systems in TREC, we can use the automatic evaluation to
place a rough lower bound on performance. Two additional difficulties arise
when doing this with the NIST answers. First, five of the NIST test questions
have no answer in the judgments file and as a result, those questions cannot be
marked correct. Second, because we are judging an answer correct if a NIST
answer is contained-within it, it is very difficult to get an informative lower bound
for the 50-byte task, (a 50-byte answer is not likely to contain many other
answers).

We evaluated the original 250-byte submission using both the automatic
evaluation method described in the last section and human judges. These
scores are based on the full set of 198 questions, even though we are
guaranteed to get 5 of them incorrect. Table 2 shows the results for the three
phases.

At least one
answer in output

NIST Rank
Score

Phase I 73% −−−

Phase II 68% −−−

Phase III 52% 0.4

Human 59% 0.52

Table 2: Results of the three phases for the answers
 submitted to NIST, August 1999

We have also re-run the first 100 questions after examining the test
questions and answers and removing most of the sensitivity to synonyms. These
results are shown in Table 3. All three phases improved markedly. In particular,
Phase I now has 98 questions with at least one answer in the result list. Phase II
is moderately better, as is Phase III. The (over) use of WordNet seemed to be a
bad idea for the TREC test questions.

At least one
answer in output

NIST Rank
Score

Phase I 98% −−−

Phase II 81% −−−

Phase III 67% 0.54

Table 3: Results of the three phases after removing WordNet.

Phase III is still a loose collection of heuristics and will require some
organization to support further improvements. Many answers are lost because
they appear one paragraph earlier than the identified answer or are lost
because the date substitution is done incorrectly.

4.0 A Final Word
We are happy with our moderate success this year. Most of the product of our
efforts is experience, and that will be applied in future competitions. As such,
we hope that the QA track continues.

One way that the QA track might mature is to better define the types of
questions that are included in TREC and those that are excluded. This year
there was some process that selected appropriate questions from among
submitted questions. Was this process random or where some questions
omitted because their answers were not of the right form or they were difficult to
find with typical search engines?

As noted in our discussion of Phase I, we originally designed the recall
step to be robust to the use of synonyms in questions. Indeed, many of our ten
submitted questions assumed some ability to recognize synonyms. Oddly
enough, our system was quite good at handling this sort of question which did
not appear in the TREC test questions.

Over the next few months, we expect to improve our question answering
system. Besides optimizing the system to handle the TREC test questions, we
will be generating a larger set of training questions. This should allow us to find
more question-types and the corresponding answer-types.

We also want to speed up Phase I and Phase II. We will attempt to do this
with as few minor changes to an existing search engine, as is possible. The
goal will be to replace the function of Phase I and Phase II, while at the same
time taking advantage of existing data structures in a search engine.

Phase III needs the most improvement. This phase attempts to extract an
answer of the right type from paragraph-sized windows of text. Improvement in
this phase may require a huge knowledge-engineering effort to find and
characterize different types of queried information. This effort may require
reproducing some of the effort that went into many of the systems designed for
the MUC conferences.

5.0 Acknowledgments
The authors wish to thank Terry Copeck, Rob Holte, Ken Barker, Stan

Matwin, and Stan Szpakowitz for discussions and assistance with questions,

answers, and the document collections.
This project is funded by an NSERC/NRC Research Partnerships grant:

NSERC-NRC #653-022-96 "Intelligent Information Access"

6.0 References
Witten, I. H., Moffat, A. & Bell, T. C. (1999). Managing Gigabytes: Compressing

and Indexing Documents and Images. San Francisco: Morgan Kaufmann.

