CLARIT TREC-8 Experiments in Searching Web Data
Jeffrey Bennett, Xiang Tong, David A. Evans
CLARITECH Corporation

Abstract CLARITECH submitted two baseline
content-only runs and completed two additional
content+link runs in the TREC-8 Web Track. These
represent our first serious attempt to deal with Web
data, and our first automatic runs in several years.
The first question was whether CLARIT would
perform as well on Web data as on more traditional
text. We found that, with extensive pre-processing of
the raw data prior to indexing, the automatic retrieval
system actually performed better on Web data than on
Ad Hoc data. For the link runs, we implemented a
version of the HITS algorithm [Kleinberg 1997],
originally developed at IBM. Our version optimized
HITS for the CLARIT environment, but also reflected
some constraints imposed by limited resources.
Unable to develop and sufficiently test our own
matrix-processing library in time, we used a
commercial product for the number crunching.
Performance on the link runs was poor, but failure
analysis suggests many ways to improve it.

1 Introduction

Even casual inspection of Web data reveals how
different it is from traditional newswire or article text.
Most obviously, it contains extensive HTML mark-up.
Even apparent plain text may conceal many types of
meta and tag data, as the example in Figure 1 shows.

<head>

<META name="keywords" content="waste water, biosolids,
waste treatment, geneva, marsh creek">

<title>Marsh Creek Waste Water Treatment Plant</title>
</head>

<body bgcolor="#ffff999" text="#006635" link="#993300"
vlink="#CC0099">

<center><img src="marbar.gif"
align="left"></center>

<br clear="all">

<img src="margenev.gif" align="Ieft" hspace="35"
vspace="10">

<p></p>
<p></p>

<h1> Marsh Creek</h1>

<h1> Waste
W ater Treatment Plant

</h1>

Figure 1. Example of web text with HTML markup

Clearly, something must be done; a naive parser,
attempting to find words in the above text, might
extract terms like “Creek</h1>" “Plant", and
“<title>Marsh”—words unlikely to be found in any
lexicon.

To address this problem, the CLARITECH web system
does extensive pre-processing to “sanitize” the text,
while preserving important information encoded in the
mark-up. Non-semantic tags, such “
”, “<body
bgcolor>", or “<center>”, are simply discarded; the
system processes certain other tags with greater care.

Specifically, it removes keywords, header data (e.g.,
the site URL, server address, last-modified date,
document length) and hyperlinks from the main text,
and stores them all in separate fields. (The link field
retains an offset into the main text for future context
recovery.) The system also records forms, images,
and an image count for possible future use. This pre-
processing step allows CLARIT to work on the plain
text and deliver quite satisfactory performance on the
content-only runs, particularly on recall. Our best run
was at or above median recall on 88% of the queries.
Precision was less impressive, but still slightly above
median. Surprisingly, the performance of the automatic
system on Web data was better than the same system’s
performance on the ad hoc corpora. We performed a
large number of ad hoc automatic runs (though we
made no submissions to this track), and found that our
system performed at or slightly above median for
TREC-8 queries. This is encouraging, since we have
made no attempt to “tune” our system for automatic
retrieval.

Having essentially no time for pre-experiment
evaluations, we took a very bold approach to the
content + link runs. After a brief literature review, we
decided to implement a “CLARITized” version of the
Hyperlink-Induced Topic Search (HITS) algorithm.
The idea is that hyperlinks can be viewed as implicit
annotations that encode human judgments about
relevance. Confronted with the thousands or even
tens of thousands of “relevant” documents that might
be returned by a general query, the link information
can be used to extract a much smaller number of
“authoritative” sources on the topic. These pages are
likely to be of greater utility to the user than a
“ranked” list of hundreds of nearly indistinguishable
documents.

A page linked to by many relevant pages is said to
have “authority,” even when the page itself is not
high-scoring. Conversely, pages containing links to
many relevant documents are called “hubs.” As with
authorities, the hub pages themselves may be low-
scoring; they may in fact have little or no content
beyond the list of hyperlinks. The premise of the
HITS algorithm is that authorities and hubs have
more utility than isolated relevant documents, and
should therefore be ranked higher.

As a first step, we used the connectivity information
supplied by TREC (rather than examining our own
link fields in context), and only considered links
involving the top 250 or so documents in the ranked
list. We used a brute-force method for the link matrix
calculations, and then simply front-loaded the top 30
authorities. Our approach was “bold” in that it did
not examine the content of the authority pages, and
was biased toward densely linked pages that
conventional retrieval had missed. (On average, 22 of
the 30 authorities came from below the top 1,000.)

2 Experiment design

The content-only runs used standard CLARIT
retrieval with pseudo-relevance feedback. We
generated the queries automatically using the “title”
and “description” fields; assigning a higher weight to
title terms. The two runs we submitted differ only in
the parameters used for feedback: CL99WebM
extracted terms from high-scoring subdocuments in
the top 10 documents, and added up to 30 new terms;
CL99WebH examined the top 30 documents and
added up to 50 terms. The system weighted new
terms lower than existing query terms. We submitted
the top 1,000 documents returned by a second
retrieval using the augmented queries.

The content + link runs started with the output of the
baseline runs, then analyzed the hyperlink
information in top-ranked documents to identify the
top 30 authority and hub pages. To produce the link
submissions, we promoted these pages to the top of
the ranked lists. We tested the utility of the HITS
algorithm in our environment, as well as the effect of
some slight modifications we made in order to
capitalize on the strengths of CLARIT.

We begin by constructing a base set of N pages (S),
and limiting our search for authoritative pages to this
set. N is arbitrary; we chose 1,000 as a practical limit
(imposed mostly by limited time and computing
resources). Using the connectivity information
provided by TREC, we expanded the initial result list
according to the following algorithm: number the
pages {1, 2,...., n}, and iterate through them in rank

order. Copy the ith page to S, then also copy all the
documents that the ith page links to as well (if they
are not already in the S). Proceed until S contains
1,000 unique documents. The average number of
links per page in the collection was 6.1; accordingly,
the average “depth” of the expansion step was around
230 to 250 documents. We felt this would bias the
results toward documents linked to the most highly-
ranked pages; expanding further might have turned
up densely linked networks of low-ranked, non-
relevant documents. Also, we were unable to process
large (3,000—5,000 square) matrices using the brute-
force methods we employed. The actual depth varied
considerably, from a minimum of 41 to a maximum of
410 documents. (Another approach, which we did not
explore, would be to mine deeper by examining the
links and adding them selectively, rather than simply
dumping them all into S.)

We then constructed an n x n *“adjacency matrix” A,
whose (i,j)th entry is set equal to a non-zero value if
page i links to page j, and zero otherwise. The
simplest approach would be to set link entries to 1.
Our bold approach biased the results toward
unretrieved documents by computing CLARIT-term-
based similarity between “best-hit” subdocuments
when both pages appeared in the top 1,000, and 1
otherwise. Many of these similarity scores were near
zero, effectively discounting links between dissimilar
documents among the top 1,000.

According to the HITS algorithm [Chakrabarti et al.
1999], we assign authority and hub weights to each
document in S. Let the authority score for the ith

document x, = Y; ; the sum of all pages j that link

| =i

to i. Similarly, compute the ith hub score y, = Dz X

-]
the sum all pages i links to. There is a natural
feedback effect here, since authority and hub pages
are closely related: good hubs are good because they
point to many authorities; and, authorities are
authoritative precisely because they are being linked
to by good hubs. Given the contents of the adjacency
matrix, and considering the set of hub and authority
scores as vectors, we can derive a process that
expresses this mutually reinforcing relationship and
reduces it to a standard operation in linear algebra.
By filling the matrix with similarity scores between 0
and 1 (non-negative values), we guarantee that the
matrix processing will converge on pages containing
the most dense linkage patterns.

Specifically, the authority vector update formula can
be expressed as X — (ATA)X; similarly, the hub

vector update function is y « (AAT)y. This is

equivalent to performing power iterations on A'A and
AA"; such iteration (given non-negative coefficients)
converges on the principal eigenvectors of the
associated matrices.

To find the most authoritative sources, we generated
both matrices, used a commercial package to calculate
their principal eigenvectors, and sorted the resulting
vectors by decreasing weight. We now had ranked
authority and hub vectors for the documents in S. The
final step was to merge the two vectors to obtain a
single ranked list of “authorities.” We did the merge
by computing a total score for each document. If
document D1 was ranked first in the authority vector
and third in the hub vector, it received a score of 1/1
+ 1/3 = 1.333. If D2 was ranked second in both
vectors, it received a score of %2 + % =1, and so on for
all documents. We moved the top N authorities to the
top of the original ranked list, where N was arbitrarily
(based on a literature review) set to 30, and that was
the submission.

3 Retrieval performance

The results show reasonable performance for the
content-only runs, and poor performance for the link
runs (see Table 1.)

Since our link submissions were not judged, and the
HITS algorithm may well find documents that are
non-relevant by TREC standards (i.e., collections of
links without content), we expected the link run
scores to be low, even if our approach was working
and returning helpful documents.

Noting that most of the documents in the top 30 were
originally ranked below 1,000, we thought that
perhaps our approach had been a little too bold. A
more conservative algorithm might perform a simple
resorting of the original results, without bringing in
previously unretrieved documents. We did two
follow-up runs using this more timid algorithm; see
Table 2 for these results.

These runs fall precisely in the middle; the most
irrelevant documents have been discarded, improving
all performance measures, but results still fall far short
of the content-only runs. See Figure 1 for the P-R
curve.

4 Failure analysis of the link runs

Upon closer analysis, these factors were not sufficient
to explain the poor performance. In fact, many pages
had links to common *“web statistics” and “hit
counter” sites. There were also many links to pages

giving mutual fund indices and commercial ad sites.
Since we did not examine the pages for relevance, and
actually preferred pages that were not returned by the
conventional search, such irrelevant links formed the
densest patterns!

One such site appeared in the top 30 on seven
different queries, 11 were referenced by six queries,
and 22 were referenced by three queries. Overall, 13%
of the top-ranked documents were non-unique. If the
queries are independent, all the top-ranked
documents should be unique, so this degree of
overlap is a sure indication something is wrong.

Our analysis confirms at least that we know the
linkage pattern detection is working properly. In
future work we could try several different approaches
to address this problem. We could generate a stop-list
of known statistics, counter, and commercial sites.
We could “sanity check” the final results for overlap
of top-ranked documents. We could impose a
minimum score or other relevance test on documents
that were not initially returned (or perhaps we should
limit ourselves to resorting documents in the top
1,000, and not look beyond the initial results at all).
Another strategy might be to weight the links using
an adapted IDF formula. We are looking for
“discriminating” links—document sets that link to
each other but not to lots of other documents scattered
throughout the database. A counter site might be
linked to by hundreds of unrelated documents in the
database; it would be assigned a very low “IDF”
score, and assigned a low value in the matrix (or
discarded entirely). We might even use clustering to
try to identify related groups of documents within a
link network.

5 Conclusion

We were encouraged by our relatively good
performance on the content-only runs, particularly
since our system has not been optimized to work
without user feedback. The link runs were
disappointing, but we can see why, and we have
many ideas to address the problems. In keeping with
our general belief that the next breakthrough in
performance will come from customizing an approach
for each query from a number of complementary
techniques, we will explore the range of conditions for
which link analysis is appropriate. It would appear to
be most applicable for sorting through large sets of
nearly equally high-scoring documents, as would
result from very general queries. When the query is
more specific, perhaps traditional CLARIT processing
is enough; link analysis might tend to decrease
performance in such cases. In the TREC-8 manual Ad
Hoc task, we discovered that users added boolean

constraints to nearly 75% of the queries; this implies
that the queries were generally quite specific this year.
This may have contributed to the poor performance,
especially of the CMLnk and CHLnNK runs.

Finally, we recognize that this technique is actually
quite general, and could be applied to hon-Web data.
We can imagine generalizing the concept of a “link” to
mean, for instance, references to the same RDB field
across multiple databases, similar subdocuments or
themes across different documents, detected “events”
in chronological newswire databases, etc. The concept
has already been applied to citations in databases of
academic papers.

References

[Kleinberg 1997] Kleinberg, J.M. "Authoritative
sources in a hyperlinked environment." In Proceedings
of Ninth ACM-SIAM Symposium on Discrete Algorithms,
1998, and IBM Research Report RJ 10076, May 1997.

[Chakrabarti et al. 1999] Chakrabarti, S., Jon
Kleinberg, et al. Mining the Link Structure of the World
Wide Web. February 1999.

Run Average Initial Precision Precision @ 100 Recall
Precision
CL99WebM 0.2885 0.5431 0.1724 1924
CL99WebH 0.2838 0.5315 0.1806 1933
CL99WebMLnNk 0.1237 0.2321 0.1518 1923
CL99WebHLNk 0.1266 0.2501 0.1538 1929
Table 1. Comparison of all runs
Run Average Initial Precision Precision @ 100 Recall
Precision
CMLnk 0.2043 0.3767 0.1728 1924
CHLnk 0.2055 0.3967 0.1782 1933
Table 2. Comparison of "conservative" link runs
P-R Curves

0.6

0.5 \

0.4

——M
c —&—H
:8 —4—MLnk
3 03 —>%—HLnk
o —%—CMLnk
\ —8—CHLnk
0.2
0.1 w
0 ‘
1 2 3 a4 5 6 7 8 9 10 11
Recall Level

Figure 2. P-R curves for all web runs

