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Abstract

The main aim of the MultiText experiments for TREC-7 was to derive very short queries

that would yield high precision and recall, using a hybrid of manual and automatic processes.

Identical queries were formulated for adhoc and VLC runs. A query set derived automatically

from the topic title words, with an average of 2.84 terms per query, achieved a reasonable but

unexceptional average precision for the adhoc task and a median precision @20 for the 100 GB

VLC task. However, these short queries achieved very fast retrieval times | less than 1 second

per query over 100 GB using four inexpensive PCs. Two further query sets were derived using

post-processing of the results of interactive searching on the adhoc corpus. Queries comprising a

single conjunction, averaging 1.86 terms, achieved high precision on both adhoc and VLC tasks,

and achieved faster retrieval times than the title-word queries. Compound queries averaging

6.42 terms achieved precision values competitive with the best runs, and retrieval times of 1.51

seconds per query on the 100 GB VLC corpus.

1 Introduction and Background

The MultiText search engine �nds passages of text that exactly match a manually or automatically
generated boolean query. Documents containing many short matching passages are assumed most
likely to be relevant, and are ranked accordingly.

This approach has been found to be e�ective in several information retrieval contexts: \manual
�xed query" (TREC-4 manual adhoc and routing [2]) in which a query is formulated from the
topic statement and then run without modi�cation; \interactive query" (TREC-5 adhoc [1]) in
which a query is formulated and then re�ned interactively after viewing the top{ranked documents;
\interactive routing" (TREC-5 routing and TREC-6 VLC [1, 5]) in which a query is formulated
and then re�ned interactively after viewing results and judgements on another corpus; \interactive
search and judging" (TREC-6 adhoc and high-precision [5]) in which simple queries are formulated,
the top-ranked documents are viewed and judged, and the process is repeated { the documents
judged relevant are recorded and submitted as the run; \cover density ranking" [3] in which a
query is constructed automatically from a very small number of terms.
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Each of these approaches o�ers advantages and drawbacks. Manual �xed queries are appropriate
when the search system is slow or o�-line, where interaction time is prohibitively expensive, or where
the data does not yet exist (e.g. routing or �ltering) and no suitable training data is available.
Interactive query formulation is likely more appropriate in modern contexts where fast response is
available. Yet formulating the \ideal" query is still a di�cult task { it is possible to remove poor
search terms and to add new ones discovered through interaction, but it quickly becomes di�cult
to determine whether a given re�nement improves or degrades the query. Furthermore, it quickly
becomes apparent that many of the same documents are retrieved again and again as the query is
revised | to be e�ective the system must have some provision for previously viewed documents.

This provision for previously viewed documents leads immediately to interactive search and
judging. The system cannot simply eliminate previously viewed documents, or the user will be
unable to determine whether a re�nement improves or degrades a query. Therefore, the user is asked
to record a judgement for each viewed document, and these judgements (but not the documents)
are reported in subsequent queries. Once judgements are recorded, it would appear that the best
approach to adhoc retrieval would be to rank those documents judged relevant �rst, and to rank
those documents judged not relevant last. It turns out that this assumption is not entirely accurate
| documents judged not relevant still have a signi�cant probability of being judged relevant in the
o�cial qrels | about 10% for our TREC-6 adhoc e�ort. For routing or �ltering, the judgements
cannot be used directly, as they apply to documents in the training corpus rather than the test
corpus. But they can be used indirectly to test the e�cacy of a given query.

All of the methods above require an amount of user interaction ranging from minutes to hours.
It is not obvious which approach yields the best results for a given amount of user time: for �xed
and interactive manual query construction a fair amount of time is spent composing sophisticated
queries; for interactive search and judging, the queries tend to be simple and the majority of time is
spent judging documents. It is our impression that interactive search and judging is more e�ective
for any amount of user time, but we have yet to conduct experiments to con�rm this impression.

The smallest possible amount of user time is a�orded by the use of cover density ranking.
A very small number of terms (not greater than 3) are used as a conjunctive query and ranked
as described above. If this query yields an insu�cient number of documents, a weaker query is
constructed automatically. This weaker query consists of a subset of the terms. If there are still an
insu�cient number of documents, an even weaker query is chosen, and so on. The advantage with
this approach is that it requires little user time (none, if you use the title �eld of a TREC topic).
For short queries, cover density ranking yields performance that is comparable to other automatic
techniques that do not use pseudo-relevance feedback.

2 TREC-7 Runs

Our primary goal was to construct simple boolean queries that we used for both the adhoc task and
Very Large Collection track. Interactive search and judging was used to help develop the queries
for the manual runs. The queries that were generated do not include the judgements which allows
us to run these queries for the adhoc and VLC tasks. Our o�cial runs were:
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uwmt7a0, uwmt7v0: Boolean queries consisting of exactly the title words. Plurals
expanded to singular and plural forms. Weaker queries (using
subsets of the terms) were derived automatically to be used
as necessary for improving recall.

uwmt7a1, uwmt7v2: 3-term (or less) boolean queries automatically constructed
using the information gathered during interactive search and
judging on the adhoc corpus. Weaker queries (with a subset
of the terms) derived automatically as necessary to improve
recall.

uwmt7a2, uwmt7v1: Larger (6.5 term average) boolean queries automatically con-
structed using the information gathered during interactive
search and judging on the adhoc corpus. No weaker queries
used to improve recall.

uwmt7v3: Title words only; no expansion of plurals; no weaker queries.
Not reported further in this paper.

In addition, we conducted a number of uno�cial runs:

uwmt7isj: A run consisting of all documents judged \relevant," followed
by all documents judged \i�y" followed by all documents
judged \not relevant."

uwmt7a210: A run consisting of all documents in uwmt7a2, followed by all
documents in uwmt7a1, followed by all documents in uwmt7a0,
to a maximum of 1000 per topic.

uwmt7isj210: A run consisting of all documents in uwmt7isj, followed by all
documents in uwmt7a210, to a maximum of 1000 per topic.

Precision results for the six adhoc and four VLC runs are given in �gures 1 through 4. Precision
recall graphs are given in �gure 5.

3 Title Only Automatic (uwmt7a0, uwmt7v0)

For TREC-6, the best automatic runs used only the title terms, expanded using pseudo-relevance
feedback. We submitted such a run, achieving an average precision of 0.24. As an uno�cial run, we
tried cover density ranking with no expansion and achieved an average precision of 0.20. Since our
interest this year was in pure boolean queries, we used an enhanced cover density ranking procedure
for TREC-7.

We took the title words and expanded all plural words into their plural and singular forms.
This expansion used naive su�x matching as shown in �gure 6

This was the only form of expansion or stemming performed. The rationale is that we observed
from previous TREC e�orts that the topics used a collective phrasing when documents describing
individual instances were relevant; for example \automobile accidents."

We did not use other forms of stemming because we found previously that stemming com-
promised early precision, and did not necessarily improve average precision. We did not wish to
compromise early precision, especially for our VLC runs.

We constructed weakened queries by taking all subsets of the title terms and ordering them by
their inverse frequency of occurrence in the database. For example, topic 366 (commercial cyanide
uses) was expanded to:
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commercial AND cyanide AND (use OR uses)

commercial AND cyanide

cyanide AND (use OR uses)

cyanide

commercial AND (use OR uses)

use OR uses

Recall that the second and subsequent queries are used only if the previous query or queries
yield insu�cient results. Weakened queries were further restricted to be contained in some interval
of 128 words. The average number of terms per (un-weakened) query was 2.84, where depluralized
words count as 2 terms (e.g. there are 4 terms in the query for topic 366, above).

This technique was applied to the TREC-6 adhoc task yielding an average precision of 0.22; we
were hoping to achieve similar results on TREC-7. We have no explanation at this time as to why
the average precision was signi�cantly worse (0.19). As expected, on the VLC runs precision @20
improved with collection size, from 0.190 on 1 GB to 0.442 on 100 GB.

4 Interactive Search and Judging

The remaining runs were based on interactive search and judging. For TREC-6, four researchers
spent an average of two hours per topic searching and judging documents. Our analysis of this
e�ort lead us to conclude that we could achieve good results with less time [6]. Therefore, we spent
less than 30 minutes per topic searching and judging. We tried to �nd a reasonable number of
documents for each topic, but were not exhaustive.

As for TREC-6, documents were judged to be \relevant", \not relevant", or \i�y". In total, we
judged 5529 documents: 2561 relevant, 629 i�y, 2339 not relevant. 2237 of the documents we judged
relevant were judged also by NIST; 1543 of these (about 2/3) were judged relevant by NIST. This
level of agreement is nearly identical to last year. However, NIST judged 2836 documents relevant
that we did not judge, and judged relevant a further 133 documents that we judged not relevant.
These sets are shown as a Venn diagram in �gure 7.

We did not submit ISJ to NIST as an o�cial run. We did, however, evaluate the documents
we judged using the o�cial judgements | this run is reported here as uwmt7isj. The average
precision of 0.3458 is much lower than that achieved by ISJ last year. No doubt this is due to the
poorer recall reported above | last year we judged about 2/3 of those documents the NIST found
relevant. We were a bit surprised by the low recall of ISJ this year. While we spent considerably
less time at it (by more than a factor of 4), we did not feel that we were overlooking large numbers
of relevant documents. Apparently our feelings were inaccurate.

We used our ISJ judgements to evaluate uwmt7a0 (see �gure 8). Early precision was signi�cantly
better with NIST judgements while average precision and R-precision was signi�cantly better with
ISJ judgements. uwmt7a1 and uwmt7a2 show much better precision �gures, which is no surprise
because they were constructed to optimize their performance on these judgements (see next section).
uwmt7isj and uwmt7isj210 exhibit perfect scores with respect to this set of judgements because
they place all the relevant documents �rst.
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Run P@1 P@2 P@4 P@20 P@40 RP AP

uwmt7a0 .5600 .4700 .4700 .3560 .2800 .2289 .1866
uwmt7a1 .7200 .7700 .7000 .5330 .4205 .3402 .2983
uwmt7a2 .7800 .7900 .7300 .5610 .4730 .4012 .3587

uwmt7isj .8000 .7800 .7400 .6060 .5115 .3952 .3458
uwmt7210 .8200 .7900 .7150 .5620 .4740 .4092 .3868
uwmt7isj210 .8000 .7800 .7400 .6060 .5135 .4384 .4112

Figure 1: Adhoc Runs

Run P@1 P@2 P@4 P@10 P@20

uwmt7v0 .5000 .4800 .4900 .4680 .4420
uwmt7v2 .6200 .6100 .5950 .5860 .5740
uwmt7v1 .6600 .6700 .6600 .6380 .5980

Figure 2: VLC Runs (100 GB Corpus)

Run P@1 P@2 P@4 P@10 P@20

uwmt7v0b10 .5200 .4500 .4500 .4160 .3690
uwmt7v2b10 .5800 .5500 .5150 .4660 .4110
uwmt7v1b10 .6000 .5900 .5800 .5180 .4740

Figure 3: VLC Runs (10 GB Sample)

Run P@1 P@2 P@4 P@10 P@20

uwmt7v0b1 .4000 .3200 .3100 .2420 .1900
uwmt7v2b1 .4400 .4000 .3850 .2820 .2230
uwmt7v1b1 .5200 .4500 .4000 .3140 .2350

Figure 4: VLC Runs (1 GB Sample)
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5 Automatic Query Extraction

Rather than submit the results of ISJ as an o�cial run, we used an automatic process to extract
query terms from the ISJ logs and to build queries that optimized AP on the ISJ judgements.

As mentioned in the introduction, the process of formulating an ideal query can be quite di�cult
and time consuming. Yet such a query may be desirable for a number of reasons. First, if ISJ is
performed on a subset of the corpus, or on a separate training corpus, a query is needed to gather
additional documents not subject to ISJ. Second, if ISJ is incomplete, that is, if not all potentially
relevant documents are judged, a query may include relevant documents that would otherwise be
missed. Third, because of poor judging agreement between searchers and the o�cial judgements,
it may be desirable to include documents judged \not relevant" by the searchers.

We had a second purpose in extracting queries from ISJ. We wished to test the hypothesis
that queries with a very small number of terms can yield good retrieval performance. It was seen
in TREC-6 that the topic titles contained enough information to give the best performance of all
automatic approaches. The VLC queries we constructed by hand for TREC-6 were very short
and yielded much better performance. We wished to explore the possibility of building still better
queries using an automatic optimization procedure.

To this end, we extracted all the queries used in ISJ from our logs. We further reduced each
query to sum-of-products form and considered each product separately. We then considered all
subsets of each product. For example, the query

(amazon OR rain) and forest and (brazil or colombia)

would yield:

amazon AND forest AND brazil

amazon AND forest AND colombia

rain AND forest AND brazil

rain AND forest AND colombia

amazon AND forest

amazon AND brazil

amazon AND colombia

rain AND forest

rain AND brazil

rain AND colombia

forest AND brazil

forest AND colombia

amazon

rain

forest

brazil

colombia

All such queries were evaluated using the ISJ judgements. The run uwmt7a1 is the single query
for each topic that yielded the highest average precision. No query exceeded 3 terms, and the
average number of terms was 1.86.
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pattern expansion

*ss *s, *ss
*sses *s, *sses
*xes *x, *xes
*zes *z, *zes
*ches *ch, *ches
*shes *sh, *shes
*eys *ey, *eys
*ies *y, *ies
*s *, *s

Figure 6: Su�x Pattern Matching Rules

Relevant or "iffy"
MultiText Judged

Officially Judged Not Relevant = 75671

3190 =

1543

133
162

2836

794

1314

388

73175

MultiText Judged Not Relevant = 2339

Officially Judged Relevant = 4674

"iffy" = 629

79

224

892

Figure 7: Judging Coverage and Agreement
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Run P@1 P@2 P@4 P@20 P@40 RP AP

uwmt7a0 .4800 .4500 .4350 .3110 .2280 .2603 .2245
uwmt7a1 .9600 .9100 .8650 .6270 .4635 .5348 .5206
uwmt7a2 .9800 .9600 .8900 .6970 .5480 .6760 .7006

uwmt7isj 1.000 1.000 .9900 .8750 .7097 1.000 1.000
uwmt7a210 .9600 .9600 .8900 .6970 .5490 .6746 .7043
uwmt7isj210 1.000 1.000 .9900 .8750 .7097 1.000 1.000

Figure 8: Adhoc Runs (ISJ Judgements)

For uwmt7a1, we considered combinations of up to �ve of these elementary queries, choosing the
one yielding the best average precision with respect to the ISJ judgements. Then we considered
each of the queries in the query log. If one of the original queries (as entered by the searcher)
yielded a higher average precision, it replaced the automatically generated query. Such was the
case for only 12 topics. The average number of terms per query (counting repeated words only
once) was 6.42 terms.

As seen in �gures 1 and 5, uwmt7a1 signi�cantly outperforms uwmt7a0 (title only) although the
queries are equally simple. uwmt7a2 performs better still. These �gures also show that uwmt7a2 and
uwmt7isj have nearly identical performance, with uwmt7isj having slightly higher early precision
and uwmt7a2 having slightly higher average precision.

6 Combining Results

Some of the runs, most notably uwmt7a2 and uwmt7isj, produced less than 1000 documents for some
topics, compromising recall and therefore average precision. To uwmt7a2, we appended the results
of uwmt7a1 and uwmt7a0 (up to 1000 documents per topic) to form a new run, uwmt7a210. The
performance of uwmt7a210 is, of course, better than uwmt7a2, as shown in �gures 1 and 5: average
precision, for example, rises from 0.3587 to 0.3868. ISJ (uwmt7isj) can similarly by extended by
these other runs, yielding uwmt7isj210. Figures 1 and 5 illustrate that this combination yields the
best overall result: average precision improves from 0.3458 to 0.4112.

These combinations show two ways in which extracting queries from ISJ logs can be an advan-
tage: the queries themselves yield good performance, especially when combined; the queries can
be used to extend the set of documents found by ISJ. We would expect the latter approach to be
particularly e�ective when the time for interactive search and judging is severely restricted.

7 Very Large Corpus

We used the same queries for the 2 GB adhoc, 1 GB VLC, 10 GB VLC, and 100 GB VLC collections.
uwmt7v0 used the same queries as uwmt7a0, ful�lling the requirement for an automatic run based
on only title and description �elds. uwmt7v1 and uwmt7v2 used the same queries as uwmt7a2 and
uwmt7a1 respectively, and may therefore be regarded as routing tasks.

It was observed at TREC-6 that P@20 improves with collection size. This should be no surprise.
Indeed, we would expect that P@(k/c) would be constant for a given query, where k is any constant
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and c is the size of the collection. We modi�ed the trec eval program to report relevant P@(k/c)
values and observed that this value was roughly constant for our TREC-6 VLC queries, as measured
between the 2 GB sample and the 20 GB VLC corpus, and also as measured between the 2 GB
adhoc corpus and the 20 GB VLC corpus.

This observation led us to conclude that, when building queries based on ISJ with the 2 GB
adhoc corpus, optimizing P@0.4 would yield the best result with respect to the 100 GB VLC2
corpus. On the other hand, optimizing P@4 would be best with respect to the 10 GB VLC corpus,
and P@40 would be best with respect to the 1 GB VLC corpus. If we had had su�cient time, we
would have constructed such a run in addition to the ones we submitted. Nevertheless, our runs,
yielded P@1 (P@0.4 is of course meaningless) of 0.48, 0.96 and 0.98 on our ISJ judgements. Due
to judging disagreement, we predicted that the last two might achieve about 2/3 of these values,
or 0.64 and 0.65. In fact, our runs achieved P@20 of 0.4420, 0.5740, and 0.5980; about 10 percent
less than predicted. As an aside, we note that the P@1 values on NIST judgements (which were,
of course, unknown when we prepared these runs) turned out to be 0.5600, 0.7200, and 0.7800.

Our predictions for the smaller sizes were much less accurate. P@40 on the 2 GB adhoc collection
should predict P@20 on the 1 GB VLC. P@4 should predict P@20 on the 10 GB VLC. They do
not. From this we conclude that the relationship between k and P@(k/c) is radically di�erent
between the adhoc and VLC collections. We conjecture that this might be due to a much smaller
fraction of relevant documents in VLC. A more appropriate formula might be P@(k/R) where R
is the number of relevant documents in the collection. Unfortunately, unlike c, R is very di�cult
to anticipate for an unknown collection.

The relationship between k and P@(k/c) is invariant among the various VLC collections. For
example consider uwmt7a0: P@2 (1 GB) and P@20 (10 GB) are 0.3200 and 0.3200; P@2 (10 GB)
and P@20 (100 GB) are 0.4444 and 0.4420. The insensitivity of P@(k/c) to c can be seen visually
in �gure 9.

8 Architecture and E�ciency

For VLC, we used four commodity Intel Pentium II 300 MHz personal computers, connected by
a 10 MB/s ethernet. Each computer ran two copies of the search engine, so as to a�ord CPU/IO
overlap during processing. A dispatcher sent each query in turn to all 8 search engines, and waited
to receive 20 results from each. Then the best 20 of these results were returned as the result of the
query.

The central data structure for each engine is an inverted index, structured so that the entire
occurrence list for a word appears contiguously on disk. Furthermore, the index is structured so
that a random access into the occurrence list can be performed with a single disk operation [4]. This
allows intervals containing a set of terms to be calculated with e�ort roughly proportional to the
frequency of the least common term. We further reduced the e�ort by restricting the interval size
to 128 words or less | this restriction allowed fruitless partial results to be discarded. To further
improve performance, the queries were normalized and redundancies were eliminated. Execution
times for the VLC runs (seconds/query) are given in �gure 10.

The index structures were built in two passes. In the �rst pass, blocks of approximately 100MB
were scanned and indexed, and the index written to disk. In the the second pass, these index blocks
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Figure 9: P@(k/c) for each VLC and Adhoc Run

Run 1 GB 10 GB 100 GB

uwmt7v0 .306 .294 .708
uwmt7v2 .251 .299 .882
uwmt7v1 .216 .377 1.51

Figure 10: VLC Query Execution Times
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were merged to form a single index. This process was done sequentially for the two engines per
computer, and in parallel across the four computers. Total build time for the 1 GB, 10 GB, and
100 GB systems was 0.052 hours (187 seconds), 0.504 hours (30.2 minutes), and 5.33 hours.
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