
ILPS at TREC 2017 Common Core Track

Christophe Van Gysel, Dan Li, Evangelos Kanoulas∗

cvangysel@uva.nl, d.li@uva.nl, e.kanoulas@uva.nl
Informatics Institute

University of Amsterdam
The Netherlands

Abstract

The TREC 2017 Common Core Track aimed at gathering a diverse set of participating runs and building a new
test collection using advanced pooling methods. In this paper, we describe the participation of the IlpsUvA team
at the TREC 2017 Common Core Track. We submitted runs created using two methods to the track: (1) BOIR uses
Bayesian optimization to automatically optimize retrieval model hyperparameters. (2) NVSM is a latent vector space
model where representations of documents and query terms are learned from scratch in an unsupervised manner.

We find that BOIR is able to optimize hyperparameters as to find a system that performs competitively amongst
track participants. NVSM provides rankings that are diverse, as it was amongst the top automated unsupervised runs
that provided the most unique relevant documents.

1 Introduction
TREC 2017 Core Track aims to bring the information retrieval community back into a traditional ad-hoc search task.
The primary goal of itself is to build new test collections using recently created documents using new test collection
construction methodology based on a diverse set of participating runs. In this work, we applied two methods on the
ad-hoc task: a Bayesian Optimization intensified lexical method (BOIR), and a latent vector space method, named
neural vector space model (NVSM).

BOIR uses Bayesian Optimization method to automatically optimize configurations of Retrieval system. In this
work, we take Indri as our experiment platform. Indri is a search engine pipeline consisting of many components
such as indexing module, retrieval module, and pseudo-relevance feedback module. It has a big configuration (or
hyperparameter) space. We use Bayesian Optimization, a sequential decision making method which suggests the next
most promising configuration to be tested on the basis of the retrieval effectiveness of hyperparameters that have been
examined so far, to jointly search and optimize over the hyperparameter space. As the retrieval models in Indri are
TF-IDF, BM25, Language model, we submitted BOIR run - IlpsUvABoir - as a lexical run.

NVSM, on the other hand, is a method that learns representations of documents in an unsupervised manner for
news article retrieval. In the NVSM paradigm, we learn low-dimensional representations of words and documents
from scratch using gradient descent and rank documents according to their similarity with query representations that
are composed from word representations. Contrast to BOIR, NVSM overcomes the vocabulary mismatch between
query and documents and provide semantic matching. We therefore also submitted two runs generated by NVSM:
IlpsUvANvsm and IlpsUvAQlmNvsm.

This paper is organized as follows: Section 2 describes our approach to this task. Section 3 discusses the results
obtained from applying this approach to the test datasets. Finally, Section 4 presents the conclusions and potential
future work.

∗Any permutation of this ordered list is also valid.

1

2 Methodology

2.1 Neural Models for IR
Neural Vectors Spaces Models for Unsupervised Retrieval. We constructed the vector space models from Van Gysel
et al. (2017a, 2016) on the New York Times corpus. The rankings of the IlpsUvANvsm run were obtained using
the methodology as outlined in the Unsupervised Deployment section of Van Gysel et al. (2017a). To construct the
rankings of the IlpsUvAQlmNvsm run, we took the scores of the IlpsUvANvsm rankings and combined them with
the log-probability retrieval scores of the Query-Likelihood Model (Zhai and Lafferty, 2004) with Dirichlet smoothing
(µ = 1000, i.e., Indri’s default value). The combination was obtained by summing the per-query standarized scores of
the QLM and the ensemble of NVSM. An open-source implementation of NVSM is available at https://github.
com/cvangysel/cuNVSM.

2.2 Bayesian Optimization for IR

Start

IR

Solve hyperparameter conflict

Compute objective function

BO

Update posterior

Select next point

Stop condition

Stop

))(,(nn xfx

1�nx

N

Y

Figure 1: Hyperparameter optimization architecture.

Hyperparameter Optimization Process. The Bayesian Optimization framework provides a mechanism to se-
quentially search for the global optimum x of an objective function f(x) : X → R. There are two key components in
Bayesian Optimization (Shahriari et al., 2016). The first is a probabilistic surrogate model used to predict the objec-
tive function value y given a point x. For every x, there is a random variable y, whose distribution p(y|x) is given by
the surrogate model. The predictive distribution of y can then be used to construct an acquisition function. An acqui-
sition function is a policy for selecting the sequence of points {x1, x2, ..., xi, ...}, i.e. a mechanism to select the next
configuration xn+1 to test given D1:n := {(x1, y1), (x2, y2), ..., (xn, yn)}. As the acquisition function x is usually a
closed-form expression of hyperparameters it is easier to be optimized than the original objective function. The second
component is the objective function itself, a function of the target model requiring hyperparameter optimization.

Following the Bayesian Optimization framework for optimizing retrieval systems, proposed by (Li and Kanoulas,
2018), we have two major modules in our algorithmic pipeline, the IR module and the BO module (see Figure 1). The
IR module tackles the conditional hyperparameters, and computes the objective function value yn, given a hyperpa-
rameter configuration xn. The BO module adds (xn, yn) into the sample set, updates the posterior distribution of the

2

https://github.com/cvangysel/cuNVSM
https://github.com/cvangysel/cuNVSM

surrogate models, selects the next hyperparameter configuration xn+1, and passes it back to IR module. The process
stops when the stop condition is satisfied, such as the computation budget is run out.

Implementation of Retrieval System and Bayesian Optimization. We use Pyndri (Van Gysel et al., 2017b), a
Python Interface to the Indri Search Engine (Strohman et al., 2005) 1, as the IR module in our pipeline, which is mainly
decomposed to indexing, retrieval, and pseudo-relevance feedback modules. All the three modules are considered in
our optimization experiments. The objective function can be any retrieval effectiveness measure. In this work we
optimize for the Mean Average Precision (MAP) and use trec_eval2 for the computations. We use Pybo (Hoffman
and Shahriari, 2014) in our experiments, a Python package for Bayesian Optimization . We set Gaussian process with
Squared Exponential covariance function as the surrogate model, and Expected Improvement (Dixon and Szegö, 1978)
as the acquisition function. The hyperparameter optimization precess was conducted on the Rubost04 topics and the
corresponding document collection of Volume 4 & 5 (minus Congress Record).

Search Space of Hyperparameters. When configuring Indri, there are two choices to make when indexing doc-
uments: the stopword list and the stemmer, and three retrieval models to choose: TF-IDF with BM25 term weighting,
Okapi BM25, and Language Models. Indri also supports pseudo-relevance feedback models. Each of these choices
contains subsequent parameters to be decided.

Table 1: Hyperparameters and their search ranges in Indri

Hyperparamter Type Values
Stopper Boolean {True, False}
Stemmer Boolean {True, False}
rm Integer {TF-IDF, BM25, LM-JM, LM-DIR, LM-TS}
k1 Real value [1,2]
b Real value [0,1]
k1 Real value [1,10]
k3 Real value [1,10]
b Real value [0,1]
λdoc Real value [0,1]
λcol Real value [0,1]
µdir Real value [0,3000]
µts Real value [0,3000]
λts Real value [0,1]
prf Boolean {True, False}
fbDocs Integer [1,50]
fbTerms Integer [1,50]
fbMu Real value [0,3000]
fbOrigWeight Real value [0,1]

In total, we have a conditional hyperparameter space of 18 dimensions (see Table 1).

3 Results
The IlpsUvA team submitted 3 automatic runs to TREC Core Track. IlpsUvABoir is an automated run
that made use of the existing Robust04 judgments. The two automated remaining runs, IlpsUvANvsm and
IlpsUvAQlmNvsm, were constructed without any prior knowledge of the topics.

TREC Core Track provides two types of relevance assessments: judgments provided by NIST assessors and judg-
ments obtained through crowd sourcing. In this paper, we report the result evaluated on the 50 topics judged by the
NIST assessors.

1https://www.lemurproject.org/indri.php
2http://trec.nist.gov/trec_eval/

3

http://trec.nist.gov/trec_eval/

3.1 Test Dataset
TREC Core track uses The New York Times corpus 3 as the document collection, and the TREC Robust Track topics
as its topics. Most of the topics have remained the same but some have been revised to reflect the time past. There
are two sets of topics: topics judged by NIST and topics to be judged by crowd sourcing. Submission should either be
either on the 50 topics to be judged by NIST or on all 250 topics to be judged by crowd workers. The 3 runs submitted
by IlpsUvA include all the 250 topics.

3.2 IlpsUvA runs
Table 2 compares the overall performance of ILPS within the TREC Core Track. The entries in the table listed as
best, median and worst correspond to the average of the respective aggregate across all topics (i.e., a virtual system).
That is, the best automated run is the average (across topics) of the maximum AP (across participating runs). It is
important to note that the aggregate measures of the automated runs provided by the organizers were computed from
runs that used existing relevance judgments. IlpsUvABoir performs worse than the best automated run. To little
surprise, IlpsUvABoir performs better than the worst automated run. IlpsUvABoir also performs better than the
median automated run in terms of AP and NDCG. When optimizing for the Robust04 topics and relevance judgments,
the Bayesian optimization algorithm chose the following hyperparameters: the QLM (Zhai and Lafferty, 2004) with
Dirichlet smoothing (µ = 721) and pseudo-relevance feedback for query expansion. The result indicates that the
classical lexical models are quite strong baselines.

The IlpsUvANvsm and IlpsUvAQlmNvsm perform worse than the virtual automated median system. This
is not surprising, as the median retrieval effectiveness was computed from automated runs that additionally used
existing relevance judgments. However, it is important to note that the IlpsUvANvsm and IlpsUvAQlmNvsm were
amongst the top-3 automated systems (using no existing relevance judgments) that contributed the most unique relevant
documents to the test collection. This is due to the fact that NVSM provides semantic matching and, consequently,
retrieves relevant documents that were previously not retrieved by methods that perform retrieval using exact term
matching.

We also plot the result on each of the 50 topics (see Figure 2). By each topic, we calculate the difference of AP
scores between IlpsUvA runs and the best run in TREC Core in order to discover how the lexical method and the
semantic method differentiate with each other. The result shows that they are complementary to some extent. For
example, on topic 325 (Cult Lifestyles), 336 (Black Bear Attacks), and 345 (Overseas Tobacco Sales). This reminds
us that the future work may lie in combing the two kinds of philosophy and take their respective advantages.

Table 2: The overall performance of IlpsUvA in TREC Core Track. IlpsUvABoir is an automated run that used
existing relevance judgments, whereas IlpsUvANvsm and IlpsUvAQlmNvsm are automated runs that used no
prior information. The Auto-* and Manu-* runs were provided by the track’s organizers and contain runs that made
use of existing judgments.

Run AP NDCG P@10
IlpsUvABoir 0.286 0.515 0.570
IlpsUvANvsm 0.126 0.333 0.322
IlpsUvAQlmNvsm 0.172 0.412 0.418
Auto-Best 0.538 0.770 0.916
Auto-Median 0.228 0.479 0.548
Auto-Worst 0.006 0.048 0.002
Manu-Best 0.543 0.770 0.922
Manu-Median 0.379 0.638 0.672
Manu-Worst 0.165 0.399 0.282

3https://catalog.ldc.upenn.edu/ldc2008t19

4

41
4

34
5

42
3

33
6

64
6

39
4

41
6

61
4

42
2

37
5

40
0

37
8

67
7

37
2

37
9

62
0

36
2

32
1

41
9

36
3

40
4

42
7

35
5

31
0

30
7

33
0

44
3

43
3

38
9

35
3

39
9

34
4

34
1

35
0

43
5

39
7

44
5

34
7

40
8

69
0

35
4

35
6

42
6

43
9

43
6

36
7

39
3

62
6

44
2

32
5

Topics

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
AP

-d
iff

Auto-Best - IlpsUvABoir
Auto-Best - IlpsUvANsvm
Auto-Best - IlpsUvAQlmNsvm

Figure 2: Performance difference between IlpsUvA and the Auto-Best run in TREC Core.

4 Conclusion
In this paper, we described the participation of the IlpsUvA team at TREC 2017 Core Track. We applied two
methods on the ad-hoc task: a Bayesian Optimization intensified lexical method (BOILM), and a latent vector
space method, NVSM. Overall, IlpsUvA contributed 3 runs to the track: IlpsUvABoir, IlpsUvANvsm and
IlpsUvAQlmNvsm.

References
L. C. W. Dixon and G. P. Szegö. Towards global optimisation 2. North-Holland Amsterdam, 1978.

M. W. Hoffman and B. Shahriari. Modular mechanisms for bayesian optimization. In NIPS Workshop on Bayesian
Optimization. Citeseer, 2014.

D. Li and E. Kanoulas. Bayesian optimization for optimizing retrieval systems. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining, WSDM ’18, New York, NY, USA, 2018. ACM.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of the loop: A review of
bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

T. Strohman, D. Metzler, H. Turtle, and W. B. Croft. Indri: a language-model based search engine for complex queries.
Techn. report, in Proceedings of the International Conference on Intelligent Analysis, 2005.

C. Van Gysel, M. de Rijke, and E. Kanoulas. Learning latent vector spaces for product search. In Proceedings of the
25th ACM International on Conference on Information and Knowledge Management, pages 165–174. ACM, 2016.

C. Van Gysel, M. de Rijke, and E. Kanoulas. Neural vector spaces for unsupervised information retrieval. arXiv
preprint arXiv:1708.02702, 2017a.

5

C. Van Gysel, E. Kanoulas, and M. de Rijke. Pyndri: A python interface to the indri search engine. In European
Conference on Information Retrieval, pages 744–748. Springer, 2017b.

C. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information retrieval. ACM
Transactions on Information Systems (TOIS), 22(2):179–214, 2004.

6

	Introduction
	Methodology
	Neural Models for IR
	Bayesian Optimization for IR

	Results
	Test Dataset
	IlpsUvA runs

	Conclusion

