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Abstract

In this paper, we present CMU’s question answering system that was evaluated
in the TREC 2017 LiveQA Challenge. Our overall approach this year is simi-
lar to the one used in 2015 and 2016. This system answers real-user submitted
questions from Yahoo! Answers website and medical questions, which involves
retrieving relevant web pages, extracting answer candidate texts, ranking and se-
lecting final answer text. The main improvement this year is the introduction of
our new question paraphrase identification module based on a neural dual entail-
ment model. The model uses bidirectional recurrent neural network to encode
the premise question into phrase vectors, and then align corresponding phrase
vectors from the candidate question with the attention mechanism. The final sim-
ilarity score is produced based on aggregated phrase-wise comparisons of both
entailment directions. In the TREC 2017 LiveQA evaluations, human assessors
gave our system an average score of 1.139 on a three-point scale and the median
score was (0.777 for all the systems evaluated. Overall, our approach received the
highest average scores among automatic systems in main tasks of 2015, 2016 and
2017, and also the highest average score in the new medical subtask of 2017.

1 Introduction

Similar to the LiveQA tracks in 2015 [[1]] and 2016 [2], the main objective of LiveQA 2017 was still
to provide automatic answers to real-user questions in real time. In previous years, the test collection
came from a stream of questions that freshly submitted to the Yahoo! Answers website and have not
been previously answered by humans. This year, due to technical difficulties, the participant systems
were fed with cached questions instead. Participant systems need to return answer texts with no
more than 1000 characters in length and within 1 minute. There are no additional restrictions on the
resources that can be used, with the exception of the human answers to the same question in Yahoo!
Answers. System responses were then judged by TREC assessors on a 4-level Likert scale.

CMU’s Open Advancement of Question Answering (OAQA) group continued the work from last
two years’ LiveQA submissions. We improved the real-time web-based Question Answering (QA)
system, and submitted one run to 2017 evaluation. Our QA pipeline begins with candidate pas-
sages retrieval and extraction, then answer candidate ranking and tiling. In this paper, we focus on
discussing our recent development on the question paraphrase identification module. Being con-
sidered as one of the key challenges of developing effective QA system, the question paraphrase
identification is to verify whether a retrieved candidate question is a paraphrase of input question.
Two questions are paraphrases of each other if they can be adequately answered by the exact same
answer. During the official run, our QA server received one question per minute for 24 hours and
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Figure 1: Architecture of the CMU-OAQA LiveQA system

provided answers within one minute for 98% of the input questions. On a normalized three-point
average score metric, CMU-OAQA received a score of 1.139 on the main task, which was signifi-
cantly higher than the median score of 0.777 from all systems. A new subtask focused specifically
on medical questions is also offered this year. Our system answered medical questions the same
way as the main task, and also achieved the highest average score of 0.637 comparing to the median
score of 0.431. In the rest of this paper, we will briefly sketch the OAQA LiveQA system structure,
and then introduce the new question paraphrase identification model in more details.

2 System Architecture

Our overall system architecture remains the same to the one used in 2015 [9] and 2016 [10]. The
pipeline is briefly described here for completeness, please refer to our reports for the last two years
for a complete description. As illustrated in Figure[I] the architecture of our system decomposes the
solution into three major processing phases:

1. Clue Retrieval. Given a question title and its full-text description, we formulate search
engine queries and issue them to different search engines (Bing Web Search, Yahoo! An-
swers) in order to retrieve web pages related to the question.

2. Answer Ranking. Answer candidates (title/body/answer tuples that represent either con-
ceptional questions or answer texts) are extracted from web pages, and ranked based on a
relevance estimator. The most effective relevance estimator we found was a heuristically-
weighted combination of: a) optimized BM25 similarity scoring over the title and body
texts, b) an attentional encoder-decoder recurrent neural networks model [[10, [11] that esti-
mates the relevance of a candidate answer text given a question text, and c¢) a novel neural
dual entailment based question paraphrase identification model that predicts the relevance
between input question and titles of answer candidates.

3. Answer Passage Tiling. Finally, a simple greedy algorithm is used to select a subset of
highest-ranked answer candidates; these are simply concatenated without further process-
ing in order to produce the final answer.

3 Question Paraphrase Identification by Neural Dual Entailment

Able to determine if two questions have the same meaning semantically can greatly improve the
candidate answer ranking performance. However, it is a challenging task even for human experts.
Questions from online forums can range from highly technical subjects to ambiguous thoughts. The
question texts are also not always grammatically correct and often contain misspelled words.

In this section, we discuss the problem of question paraphrase identification which predicting a bi-
nary label for whether two input questions convey the same meaning. We introduce a new neural
dual entailment model for the question paraphrase identification task. This method uses bidirec-
tional recurrent neural networks to encode the premise question into phrase vectors, and then fetch
the softly aligned corresponding phrase embedding from the candidate question with the attention
mechanism. The final similarity score is produced based on aggregated phrase-wise comparisons of
both entailment directions. Our model is fully symmetric and then parameters are shared on both
sides. This allows the model parameters can be trained effectively even on the medium sized dataset.
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Figure 2: Model Structure of our Neural Dual Entailment Model

We evaluated our model on the Quora Question Pairs datasetm Experimental results show that our
model achieves the state-of-the-art performance on this benchmark dataset.

3.1 Problem Formulation

Let w* = (wf,...,w} ) and w¥ = (wY, ..., w},) be two input questions consisting of ¢* and ¢¥

words, respectively. Each word in both sentences, w{ or wi’ belongs to the vocabulary V,,. The
training data is in the form of labeled text pairs {(w®, w¥)(™) p("IN_ “where p(™ € {0,1} is a
binary label indicating whether w” is a paraphrase of w¥. The goal is to predict the correct label p
given a previously unseen text pair (w”, w¥).

3.2 Model Structure

As outlined in Figure[2] our model decomposes the paraphrase identification problem into four steps:
Encode, Attentional-Align, Matched-Aggregate, and Dual-Predict.

Encode. The goal of this step is to obtain a dense representation of each word w; in w” and w¥
that captures word meaning along with contextual information.

We first individually map each word w; into a d-dimensional vector by a mixed embedding matrix
E € RIVwl*xd where E = Ep e +Eiune. Here Ep,. is a word embedding matrix that unsupervisedly
pre-trained on a large corpus and will be fixed during the model training. On the other hand, E;,,
is a trainable embedding matrix that are randomly initialized. This mixture setup aims to fine-tune

'"https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
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the pre-trained embeddings to recognize domain specific semantics of word usage, while avoiding
deviating from the pre-trained representations too early.

Then the encoder converts the word embedding sequence into a list of contextual vectors H =
{hy,hs, ..., hyw}, whose size varies with regard to the length of the passage. This context repre-
sentation is generated using a two-layer stacked bidirectional recurrent neural networks (BRNN),
which utilize context of both sides. Specifically, the encoder BRNN processes the data from both
directions with two separate hidden sub-layers, where

h_i- . (ﬁi—laE [sz

h =" (RH,E fwi]).

Here W is a recurrent activation unit that we employ in the Long Short-Term Memory (LSTM) [3].

)

The output of current time step is then generated by concatenating both direction’s hidden vector h;

e
and h;. The stacked upper layer BRNN treats the output from the lower layer h} as the input, and
further outputs h?. Finally, the encoded contextual vector is aggregated as the sum of embedding

and outputs from both layers:
h; = E [w;] + hj + h. 2)

Attentional-Align. Regarding each h;, this step attempts to gather a softly aligned context vector
from the other sentence’s encoded sequence H. It starts by computing the content-based score of
each pair of context vectors as:
T

em = hi hJ B (3)
This score measures similarity between h; and the j-th context vector of H. These relevance scores
are further normalized by the softmax function:

exp(ei,;)

YA )
> k—1¢xP(€ik)
and we call o ; the attention weight. The softly aligned phrase vector h; is then the weighted sum
of the context vectors with their attention weights from above:
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hi = Zaiyjljlj. (5)
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o, ; = softmax(e; ;) =

Matched-Aggregate. Given the H and its softly aligned H, the problem has been reduced to
comparing a sequence of aligned phrase vectors. Each pair of aligned vectors are first merged into a
matched vector m; with a Multi-Layer Perceptron M:

mi:M({hi;ﬁj;(hi—flj)QD. (6)

The list of matched vectors {my, ..., my} are later scanned by an RNN layer, and its output of the
last timestamp is served as the final aggregated vector.

Dual-Predict. The prediction network consists of a two-layer batch-normalized multi-layer per-
ceptron (MLP), MaxOut neurons [4] , and a linear layer to produce an entailment score based on the
matched aggregate vector above. As yet, the Attentional-Align, Matched-Aggregate, and the predic-
tion network can only to check whether the information of one sentence is phrase-wise covered by
another sentence. To identify paraphrase, we use the shared network to calculate entailment scores
from both directions of question pairs. Finally, two scores are summed and followed by a logistic
layer, to predict the label p.

3.3 Experiments
3.3.1 Dataset

We evaluated our models on the Quora question paraphrase dataset which contains over 404,000
question pairs with binary labels. The dataset has approximately 37% positive and 63% negative
pairs. We use the same data split and tokenization provided by Wang et al. [12]. Each of the devel-

This partition of Quora dataset can be downloaded athhttps://zhiguowang.github.iol
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Method Dev Acc. Test Acc.

Siamese-CNN - 79.60
Multi-Perspective CNN - 81.38
Siamese-LSTM - 82.58
Multi-Perspective-LSTM - 83.21
LD.C - 85.55
BIMPM 88.69 88.17
pt-DECATTord 88.44 87.54
pt-DECATTchar 88.89 88.40
Ours model 88.61 88.92

Table 1: Evaluation results on the Quora paraphrase identification dataset in terms of accuracy. The
first eight rows are taken from [8}, [12].

opment and test datasets has 5,000 positive and 5,000 negative instances. The remaining instances
are then used as the training set. We further augment the training set with 20,000 positive pairs with
identical question pairs to make sure the model can generalize well on easy situation as well.

3.3.2 Network Setup and Parameter Optimization

The embeddings E,,.. was initialized with the 300-dimensional GloVe [[/] word vectors pre-trained
from the 840B Common Crawl corpus. Out-of-vocabulary words were initialized as zeros. Our
encoder RNN contains two-layer stacked LSTMs. Each layer of LSTM has a memory size of 300.
The MLP networks used ReLU as activation functions and dropout rate of 0.2. The network weights
are randomly initialized using a uniform distribution (—0.08, 0.08), and are trained with the ADAM
optimizer [6], with an initial learning rate of 0.002. Gradients were clipped so their norm does not
exceed 5. Each mini-batch contains 1000 question pairs.

3.3.3 Results

In this section, we compare the performance of our approach with the baseline models, bilateral
multi-perspective matching (BiMPM) [12] model, and Paralex pre-trained decomposable attention
(pt-DECATT) [8]] models, which have benchmarked on this dataset before. The BiMPM model
employs both character-level and word-level LSTMs to represent input, four different types of multi-
perspective matching functions, an bi-LSTM aggregation layer, and a MLP with softmax output for
final prediction. The pt-DECATT model uses sums of character n-gram embeddings to represent
words, both bi-attention and self-attention to softly align phrase vectors, a MLP followed by sum
as aggregation layer, and another MLP with linear output for prediction. pt-DECATT also utilized
Paralex [3] question paraphrase corpus to pre-train both its character n-gram embeddings and rest of
the model.

Table |1| shows the accuracy results of baseline models implemented in [12], BiMPM model, pt-
DECATT model, and our method. From the results, we can see that our model can outperform the
previous best performance on the test set. Notes that our model is also simpler since it does not
employ character encoding, self-attention, multi-perspective matching, and Paralex pre-training as
required in previous methods.

4 Official Evaluation Results

In this year’s LiveQA evaluation, there is a total of 1180 questions for the main task and an additional
set of 102 medical subtask questions. Our system returned answers for 1162 main task questions
and 99 medical subtask questions. Submitted answers were judged and scored by TREC assessors
using the same 4-level Likert scale same as last two years:

e 4: Excellent: “a significant amount of useful information, fully answers the question”

e 3: Good: “partially answers the question”



Avg score Success@ Precision@
Task | System ID ©3) | 2+ 3+ 4+ | 2+ 3+ 4+
Medical Median of all runs 0.417 0245 0.142 0.059 | 0.331 0.178 0.078
CMU-OAQA 0.637 0.392 0.265 0.098 | 0.404 0.273 0.101
Main Median of all runs 0.777 0421 0250 0.126 | 0.482 0.286 0.144
CMU-OAQA 1.139 0.567 0.387 0.198 | 0.577 0.393 0.201

Table 2: Official TREC 2017 LiveQA track evaluation results.

e 2: Fair: “marginally useful information”
e 1: Bad: “contains no useful information for the question”

e -2: “the answer is unreadable (only 15 answers from all runs in 2015)”
The evaluation metrics are defined as follows:

e avg-score (0-3): “average score over all queries (transferring 1-4 level scores to 0-3, hence
comparing 1-level score with no-answer score, also considering -2-level score as 0)”

e succ@i+: “number of questions with i+ score (i=1..4) divided by number of all questions”

e prec@i+: “number of questions with i+ score (i=2..4) divided by number of answered only
questions”

Table [2| summarizes the results of our system run and median scores from all submitted runs. We
believe the overall performance of our system to be promising, as it suggests that our system can
provide a useful answer (fair, good, or excellent) for more than 56% of the questions. It is also
encouraging that our system can generalize to medical domain and receive the highest score without
any domain-specific processing or modification.

5 Conclusion

This paper presented the improved question matching module and evaluation results for our LiveQA
2017 system. We showed that efficient parameter sharing and mixed word embeddings result in
state-of-the-art accuracy on question paraphrase identification task even without complex neural
architectures, character-level embeddings, or pre-training the full model. The new matching module
also shown its robustness when integrated into our LiveQA system, and helped our system achieved
highest average score among automatic systems in both main task and medical subtask.
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