
Webis at TREC 2016:
Tasks, Total Recall, and Open Search Tracks

Matthias Hagen Johannes Kiesel Payam Adineh Masoud Alahyari
Ehsan Fatehifar Arefeh Bahrami Pia Fichtl Benno Stein

Bauhaus-Universität Weimar
99421 Weimar, Germany

<first name>.<last name>@uni-weimar.de

ABSTRACT
We give a brief overview of the Webis group’s participation
in the TREC 2016 Tasks, Total Recall, and Open Search
tracks.
Our submissions to the Tasks track are similar to our

last year’s system. In the task understanding subtask of
the Tasks track, we use different data sources (ClueWeb12
anchor texts, AOL query log, Wikidata, etc.) and APIs
(Google, Bing, etc.) to retrieve suggestions related to a
given query. For the task completion and ad-hoc subtask,
we combine the results of the Indri search engine for the
different related queries identified in the task understanding
subtask.
Our system for the the Total Recall track also is similar

to our last year’s idea with some slight changes in the de-
tails; we employ a simple SVM baseline with variable batch
sizes equipped with a keyqueries step to identify potentially
relevant documents.
In the Open Search track, we axiomatically re-rank a

BM25-ordered result list to come up with a final document
ranking.

1. TASKS TRACK
The Tasks track has three subtasks: task understanding,

task completion, and the ad-hoc for each of which we briefly
describe our approach.

1.1 Task Understanding
The goal of the task understanding subtask is to auto-

matically identify related queries for all possible aspects or
topics a given user query may cover.
Like last year [5], we implement a two-step approach:

(1) collecting for each user query a number of related
queries suggested by the different modules listed below, and
(2) ranking them to select queries for the final output. The
suggested related queries are ranked summing up simple
scores that depend on the importance of the different sug-
gestion modules. We derived these scores in a manual pilot
experiment in which we assessed the output of the different
modules for non-test-set queries (scores are shown in paren-
thesis below).
Google Suggestions (100). Like in the last year, we sub-
mit the queries to Google and collect the query suggestions.
Bing Suggestions (90). Analogous to the Google sugges-
tions, but using Bing search.
Anchor Text Graph (80). We adopted last year’s idea
of Bennett and White [2] and used the ClueWeb12 Anchor

Text Graph to find similar queries. The assumption is that
the texts in HTML anchors (with href attribute) are short
descriptions of the documents they link to. Therefore, such
anchor texts can be seen as alternative descriptions of the
document they link to. Our approach works as follows. In a
pre-processing step, we use Mirex [8] to extract anchor texts
for the URLs in the ClueWeb12 and store them with their
frequency of being anchor texts in an Apache Lucene 2.4.1
index. Given a query, we retrieve from the index the an-
chor texts similar to the query, ordered by their frequency.
For post-processing, we remove all anchor texts that contain
dates, fewer words than the original query (since we want to
find more specific queries), or that have a tf -weighted cosine
similarity of less than 0.3 to the original query (to remove
vastly different suggestions).
Google Autocomplete (75). We use the Google auto-
completion API to get additional suggestions for related
queries. Different to Google suggestions, this API only re-
turns queries that have the original query as a prefix.
AOL query log sessions (70). First, we split the AOL
query log [11] into search sessions [4] (i.e., sets of queries
submitted for the same information need by some user). For
a given query q, we then retrieve all search sessions that
contain a query having a tf -weighted cosine similarity of at
least 0.8 compared to q. All queries of such sessions then
form potentially related queries with the idea that other
users submitted them for some information need related to q.
Netspeak Frequent Phrases (60). For a query q, we use
Netspeak [13, 14] to find related queries as follows. Let w1
be the first and wn be the last word of q. We then sent
the request ∗ w1 ∗ wn∗ to Netspeak. The query results are
the most frequent phrases containing w1 and wn, with ∗
matching zero or more words. The top-10 results (ordered
by frequency) are used as potentially related queries.
Wikidata (50). Since most queries of the Tasks track come
with annotated Freebase entities (ID and name), we submit
requests for similar entities/topics to Wikidata [15]. All re-
trieved topics are used as potentially related queries.
Freebase (30). The same as Wikidata, but using the Wiki-
data API that allows access to the old Freebase database.
ChatNoir Keyphrase Extraction (5). Our last data
source for related queries is ChatNoir [12]. We retrieve the
top-10 results and extract the top-10 keyphrases from their
main content [9] using a head noun phrase extractor [1].

Runs
We submitted the query suggestions with the highest scores
(sum of the importance values of the modules suggesting a

query) in the run webis1. In order to evaluate each module,
we also submitted the queries that score highest in the indi-
vidual modules but were not part of webis1 as runs webis2
and webis3. Since we did not know the pooling depth for
the evaluation, we used a round-robin approach to distribute
the individually highest scoring suggestions across these two
runs.

1.2 Task Completion & Ad-hoc
The setting of the task completion subtask is as follows:

given a user query, return all documents that are rele-
vant/useful to any task a user may be trying to fulfill with
the query. For the ad-hoc subtask, a ranked list of docu-
ments fitting the user query should be returned.

Runs
Our runs are on the full ClueWeb12 corpus (category A)
and contain the top-3 results returned by the Indri search
engine [10] for the queries we found in the task understand-
ing subtask. We use the same documents and ranking for
the task completion and the ad-hoc subtask. Runs webisC1
and webisA1 use the related queries from run webis1; we-
bisC2 and webisA2 the ones from webis2; and webisC3 and
webisA3 the ones from webis3. We create the list of docu-
ments by taking the top-3 documents that the Indri search
engine returns for the highest ranking query from the task
understanding subtask, then adding the top-3 from the sec-
ond highest and so on. We then filter out all duplicates in
the list, and sent the list to the server for evaluation.

2. TOTAL RECALL TRACK
The objective of the Total Recall track is to return all(!)

relevant documents for a given topic without too many ir-
relevant results. Like last year [5], we submit documents
in several iterations until a stopping criterion is met. Our
two runs are equal in the first iteration and the stopping
criterion, but differ in the other iterations.
In a pre-processing, we index the respective document set

using Apache Lucene’s BM25 retrieval model with default
parameter settings. We also pre-compute the tf·idf scores for
each document to use them for training a LibSVM classifier.
For each topic (i.e., query) we proceed as follows.
First Iteration. We obtain the first 512 results for the user
query from Lucene and submit them for evaluation.
Subsequent Iterations, Baseline Approach. We use
the judgements obtained from the previous iteration(s) to
train an SVM-classifier using the LibSVM library. We take
the tf ·idf vectors of all relevant documents as positive exam-
ples and the ones from all irrelevant documents as negative
examples, but as most as many as we have positive samples
since we expect a majority of the results being irrelevant.
The trained SVM is then used to classify all documents that
were not yet submitted for evaluation. We rank these docu-
ments by the classifier’s confidence for the positive class and
submit the top-n documents in the current iteration. The
value of n may change from iteration to iteration depending
on how well the classifier did in the previous iteration:

• If the ratio of relevant to irrelevant documents in the
last submission was greater or equal to 2, we double
n if it is not larger than 1024 and do not change it
otherwise (i.e., maximum “batch size” is 2048).

• If the ratio of relevant to irrelevant documents in our
last submission was less than 0.4, we halve n if it is
larger than 128 and do not change it otherwise.
• If the ratio of relevant to irrelevant documents in our
last submission was even less than 0.1, we halve n if it
is larger than 64.
• Otherwise, we don’t change n

In the rare case that the SVM cannot find relevant docu-
ments not submitted before, we submit 128 random docu-
ments that were not submitted before.
Subsequent Iterations, Keyqueries Approach. In our
second approach, we enhance the baseline with a diversifi-
cation algorithm that uses keyqueries.
A keyquery for a document set is a query that retrieves

these documents in its top-k results [3]. We use keyqueries
when at least 128 documents were judged as relevant in
the previous iterations (otherwise we proceed as the base-
line does). From the at least 128 relevant documents, we
randomly choose 128 documents and compute the pairwise
tf · idf -weighted cosine similarities for all document pairs.
We select the four documents with the highest sum of their
six pairwise cosine similarities, ignoring very low similari-
ties below 0.2. Such four documents are assumed to “repre-
sent” a specific topic covered in the previous result lists (the
previous random selection should ensure that changing the
topic in foucs in some later iteration should be possible). In
case that four documents could be identified, we extract the
top-10 head noun phrases [1] from their concatenated main
contents [9] (if no four documents are found due to the 0.2
lower bound on the similarity we proceed with a baseline
iteration). The keyphrases are used to form a keyquery for
as many of the relevant documents as possible against the
Lucene BM25 index as the reference search engine with k set
to 32. The top-128 results from the keyquery not previously
judged as relevant are used as additional positive examples
for training the SVM classifier (in addition to the documents
already judged as relevant).
Stopping Criterion. We stop submitting results when the
following empirically determined inequality is satisfied:

1.5 · |Drelevant|+ 1500 < |Dirrelevant| .

Where |Dx| is the number of documents that have been
submitted so far and were judged as relevant/irrelevant.

Runs
We submitted two runs, the first using the baseline iterations
and the second using the iterations with keyqueries.

3. OPEN SEARCH TRACK
The objective of the Open Search track is to rank a small

set of candidate documents (e.g., papers) in return to a
scholarly search query.
Our approach works as follows. We first rank the candi-

dates with Lucene’s BM25 implementation. This ranking is
then run through our axiomatic re-ranking pipeline [7] with
the axiom weights trained for BM25. We omitted the ax-
ioms from our pipeline that are not suited for the scholarly
search setup due to missing information (e.g., we omitted
the PageRank axiom due to the non-availability of a full
citation graph at the time of submission).

The re-ranking obtained from the combined axioms then
forms the submitted ranking similar to our runs for the Web
track 2014 and the Session tracks 2014–2015 [6, 5].

4. REFERENCES
[1] K. Barker and N. Cornacchia. Using noun phrase

heads to extract document keyphrases. In Proceedings
of AI 2000, pages 40–52.

[2] P. N. Bennett and R. W. White. Mining tasks from
the web anchor text graph: MSR notebook paper for
the TREC 2015 tasks track. In Proceedings of
TREC 2015.

[3] T. Gollub, M. Hagen, M. Michel, and B. Stein. From
keywords to keyqueries: Content descriptors for the
web. In Proceedings of SIGIR 13, pages 981–984.

[4] M. Hagen, J. Gomoll, A. Beyer, and B. Stein. From
search session detection to search mission detection. In
Proceedings of OAIR 2013, pages 85–92.

[5] M. Hagen, S. Göring, M. Keil, O. Anifowose, A.
Othman, and B. Stein. Webis at TREC 2015: Tasks
and Total Recall tracks. In Proceedings of TREC 2015.

[6] M. Hagen, S. Göring, M. Michel, G. Müller, and
B. Stein. Webis at TREC 2014: Web, Session, and
Contextual Suggestion tracks. In Proceedings of TREC
2014.

[7] M. Hagen, M. Völske, S. Göring, and B. Stein.
Axiomatic Result Re-Ranking. In Proceedings of
CIKM 2016, pages 721–730.

[8] D. Hiemstra and C. Hauff. MapReduce for information
retrieval evaluation: "Let’s quickly test this on 12 TB
of data". In Proceedings of CLEF 2010, pages 64–69.

[9] C. Kohlschütter, P. Fankhauser, and W. Nejdl.
Boilerplate detection using shallow text features. In
Proceedings of WSDM 2010, pages 441–450.

[10] Lemur Project. Indri.
http://www.lemurproject.org/indri.php, 2016.

[11] G. Pass, A. Chowdhury, and C. Torgeson. A picture of
search. In Proceedings of Infoscale 2006, paper 1.

[12] M. Potthast, M. Hagen, B. Stein, J. Graßegger,
M. Michel, M. Tippmann, and C. Welsch. ChatNoir:
A search engine for the ClueWeb09 corpus. In
Proceedings of SIGIR 2012, page 1004.

[13] M. Potthast, M. Trenkmann, and B. Stein. Netspeak:
Assisting writers in choosing words. In Proceedings of
ECIR 2010, page 672.

[14] Webis. Netspeak API. http://netspeak.org, 2015.
[15] Wikidata. Knowledge base API.

https://www.wikidata.org/, 2015.

http://www.lemurproject.org/indri.php
http://netspeak.org
https://www.wikidata.org/

	Tasks Track
	Task Understanding
	Task Completion & Ad-hoc

	Total Recall Track
	Open Search Track
	References

