
RMIT at the TREC 2016 LiveQA Track

Joel Mackenzie, Ruey-Cheng Chen, J. Shane Culpepper
RMIT University

Melbourne, Australia
{joel.mackenzie, ruey-cheng.chen, shane.culpepper}@rmit.edu.au

Abstract—This paper describes the four systems RMIT
fielded for the TREC 2016 LiveQA task and the associated
experiments. Similar to last year, the results show that
simple solutions tend to work best, and that our improved
baseline systems achieved an above-average performance. We
use a commercial search engine as a first stage retrieval
mechanism and compare it with our internal system which
uses a carefully curated document collection. Somewhat
surprisingly, we found that on average the small curated
collection performed better within our current framework,
warranting further studies on when and when not to use
an external resource, such as a publicly available search
engine API. Finally, we show that small improvements to
performance can substantially reduce failure rates.

Keywords-TREC LiveQA 2016; RMIT; paragraph re-
trieval; summarization; learning to rank

I. OVERVIEW

In the TREC LiveQA 2016 challenge, we continued
to explore ideas within an established two-stage answer-
finding framework used in last year’s LiveQA challenge.
Our long-term goal is to build a fully functional, modular
multi-stage retrieval system that cascades candidate results
through a series of increasingly complex filters. In our
current system, a first-stage retrieval module is employed
to first populate a good set of answer-bearing passages,
and then a summarization module is used to generate
the final answers via passage re-ranking or query-biased
summarization.

We configured four different systems following two
distinct strategies. First, we looked at the retrieval part and
made comparisons between two common retrieval settings:
retrieving passages from a home-made question-answering
test collection, and retrieving snippets from a commercial
search engine. Second, we made comparisons between
two common answer-producing strategies: answer re-
ranking using a Learning-to-Rank (LtR) model, and query-
biased summarization using a max-coverage optimization
model. This has led us to consider the following research
questions:

RQ 1:. Which strategy produces better passages, retriev-
ing from a local test collection or pulling content from a
commercial search engine?

RQ 2:. Which strategy produces better answers, locat-
ing the best passages directly or generating a succinct
summary out of the top passages?

RQ 3:. Does the efficiency of the first-stage retrieval
module contribute to the failure rate on longer questions?

Figure 1. System architecture for the RMIT systems.

We also did a careful per query analysis using the
2015 queries to determine how efficiency impacted the
performance with regard to the time budget. We found that
returning the top-k paragraphs from our local collection
followed by generating the answer with the coverage-based
summarizer provided the most effective answers.

II. METHODOLOGY

We now describe the collection and retrieval setting used
in our system.

A. Server architecture

The servers are built on top of the computing resources
we allocated from NecTAR,1 the Australian National
Research cloud computing network. Throughout the chal-
lenge, we use only one instance to host all of the services.

All four RMIT systems implemented a two-stage system
architecture, as illustrated in Figure 1. Upon receiving
a question, the system would first convert it into a bag-
of-words query, and run the query through the Retrieval
Module (cf. Section III). The Retrieval Module retrieved
a set of passages from the underlying corpora and served
them to the Summarization Module (cf. Section IV), which
in turn produces a piece of text that is coherent and long
enough to fill the required answer size.

The various modules were connected using a resource
allocator called Answer Producer, and written in the Go
Programming Language. It included graceful handling of
timeouts, and guaranteed responses within the 60 second
window.2

1https://www.nectar.org.au
2https://github.com/TimothyJones/trec-liveqa-server

https://www.nectar.org.au
https://github.com/TimothyJones/trec-liveqa-server

Table I
SUMMARY OF COLLECTIONS INDEXED TO ANSWER QUESTIONS.

Collection # Paragraphs # Words Description

Wikipedia-EN 47,193K 1,775M Online knowledge base
Yahoo! Answers CQA v1.0 31,972K 1,462M Answers items from the Yahoo! Answers website.
TREC 2015 LiveQA Data 22K 1.8M

●

●
● ●

●●

●●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

10

20

30

40

50

60

70

80

90

5 10 15 20 25 30
Query length

T
im

e
 [

s
]

Figure 2. Query times across our test set of queries, timing the
Indri passage retrieval function, #combine[passage100:50](...).
The horizontal lines at 40, 50 and 60 seconds denote an increasing
chance of failure, as the retrieval budget becomes too high. Clearly, any
query above the 60s line was a failure, and any above the 50s line was
likely a failure, given the time required to generate an answer from the
candidates and return the answer to the LiveQA server.

B. Run descriptions

RMIT-1 (automatic): A WAND bag-of-words passage
retrieval using all of the terms in the question title,
with answers generated from top-k passages by using
a Learning-to-Rank model. See Section IV-A for a full
description of our Learning-to-Rank model.

RMIT-2 (automatic): Bing Search API snippets using all
of the terms in the question title, with answers generated
from top-k passages by using a Learning-to-Rank model.

RMIT-11 (automatic): A WAND bag-of-words passage
retrieval using all of the terms in the question title, with an-
swers generated from top-k passages by using a coverage-
based summarization algorithm. See Section IV-B for
details on the summarization model.

RMIT-12 (automatic): Bing Search API snippets using
all of the terms in the question title, with answers
generated from top-k passages by using an optimization-
based summarization algorithm.

III. RETRIEVAL MODULE

A. Passage Retrieval Using WAND Indexes

Our first retrieval module was built on top of sev-
eral question-answering test collections, including English
Wikipedia, Yahoo! Answers CQA data 1.0, and the TREC
2015 LiveQA dataset. Table I shows the details for each
of these test collections. To prepare the test collection

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●● ●
●

●

●

●

●

●

10
0

10
1

10
2

10
3

10
4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Query length

T
im

e
 [

m
s
]

Engine
Indri

Wand

Figure 3. Query times across our test set of queries, comparing Indri to
our WAND algorithm. These timings are for top-1000 paragraph retrieval,
using the bag-of-words BM25 ranking function. Note that time is in log
scale msec, while Figure 2 on the left is in seconds without a log scale.

for English Wikipedia, open-source tools such as wp-
download3 and wikiextractor4 were used to fetch a recent
dump and extract the XML contents. Paragraphs extracted
from the output of wikiextractor were assigned a unique
docno and got indexed using Indri.5 For the Yahoo!
Answers CQA data, we stripped all answer items (not
just the best answers) from the data and indexed them as
documents. No further paragraph separation was done to
these answer items as most of them were short. No other
subject/content information was incorporated (i.e., question
title or description). The TREC 2015 LiveQA data was
prepared and indexed in a similar fashion, with answer
items treated as standalone paragraphs.

The approach taken here was similar to what we
did last year [2], but with a few subtle differences:
Instead of using the Indri index to answer queries
directly, and utilizing the passage retrieval operator
#combine[passage100:50](...) to return a set of
candidate passages from these documents, we chose
to index paragraphs and passages directly, and using
our own search system 6 to perform the top-k retrieval.
This allows us to use standard bag-of-words retrieval
models to get a reasonable candidate set of passages more
efficiently, which can then be passed onto the next stage
of our system. This was motivated by the scalability of
Indri passage retrieval: It does not scale well as query
length increases (Figure 2). Given that there is a fixed

3https://github.com/babilen/wp-download
4https://github.com/attardi/wikiextractor
5http://www.lemurproject.org/indri/php
6https://github.com/jsc/WANDbl

https://github.com/babilen/wp-download
https://github.com/attardi/wikiextractor
http://www.lemurproject.org/indri/php
https://github.com/jsc/WANDbl

Table II
COMPARING TITLE-ONLY TO TITLE + DESCRIPTION FIRST-STAGE

BAG-OF-WORDS QUERIES. WE REPORT RECALL@k, AND ERR@20.
NOTE THAT ALL OF THE TITLE-ONLY RESULTS WERE FOUND TO BE

SIGNIFICANTLY BETTER WITH A p < 0.01, USING A TWO-TAILED
PAIRED t-TEST.

Metric Title-only Title + Description

4+ Relevance

Recall@10 0.1268 0.0995
Recall@100 0.1870 0.1518
Recall@1000 0.2485 0.2036

3+ Relevance

Recall@10 0.2134 0.1606
Recall@100 0.3108 0.2457
Recall@1000 0.4129 0.3277

Weights 4,3,2,1

ERR@20 0.1624 0.1351

time budget in the task, and queries can be long, our
new approach allows us to more reliably retrieve a set of
candidate documents within the time budget.

Our custom indexing system (WANDbl) is a faithful re-
implementation of WAND [1] with several engineering
performance enhancements that maximize efficiency [3, 5,
6]. The index required for our system is generated from the
Indri index, and we used Krovetz stemming and the default
InQuery stoplist7. This yielded a single 5.6GB index that
contained 79.2 million paragraphs and 15.5 million unique
terms. The average length of an indexed paragraph was
47.4 terms. We use BM25 to rank the candidate passages,
with the parameter configuration of k1 = 0.9 and b = 0.4.8

The performance of the WANDbl index and Indri index
are shown in Figure 3. Clearly, it is more beneficial to
use the WANDbl system, as this allows more time for
the second-stage re-ranking and summarization. In the
production system, the module was deliberately configured
to return only the top-10 passages as increasing this
number showed no benefit in overall effectiveness with
our current summarizer.

Another design decision was whether to use Title-only,
or both the Title and the Description for our first-
stage retrieval. Given that we opted to use simple bag-of-
words models, we used the LiveQA2015 dataset to test the
performance of Title-only queries, compared to Title +
Description queries. Table II presents the effectiveness
results for this experiment. We present Recall@k including
only answers marked as “highly relevant”, and also
Recall@k including both “highly relevant” and “relevant”
answers. We also present ERR@20 to gauge how well the
first-stage system does in terms of early precision, using
the weights 4, 3, 2 and 1, as found in the LiveQA2015
QRELs. Based on these simple experiments, we found
that Title-only queries performed better in our current

7http://www.lemurproject.org/indri.php
8The values for b and k1 are different than the defaults reported by

Robertson et al. [7]. These parameter choices were reported for Atire
and Lucene in the 2015 IR-Reproducibility Challenge, see github.com/
lintool/IR-Reproducibility for further details.

Table III
LIST OF THE 5 QUERY-MATCHING FEATURES

Feature Description

ExactMatch Query is a substring in the passage
Overlap Fraction of query terms covered
OverlapSyn Fraction of query-term synonyms covered
LM Log-likelihood from the passage language model
Length Number of terms in the passage

system configuration. Thus, we use only the Title during
the first-stage candidate retrieval.

B. Bing Search API snippets

Our second retrieval module was built on top of the
Bing search engine, using its search result snippets as
answer candidates. The advantage of this approach is that
more answer-bearing passages can be directly discovered
from the Web, although these passages might contain
incomplete sentences or truncated texts. As will be shown
in Section V-A, Bing snippets were found to be indicative
of relevant webpages, but perhaps not optimized for
revealing answer-bearing sentences.

Our implementation used the Bing Search API which
was available via the Azure Data Market.9 For each
incoming question, the question title was submitted to
Bing, and then the top-50 search result snippets were
retrieved and passed on to the next stage. Increasing the
number of snippets to 100 showed no benefit in our earlier
experiments.

IV. SUMMARIZATION MODULE

A. Learning-to-Rank Model

Our first answer generation module implements a
Learning-to-Rank model proposed by Metzler and
Kanungo [4]. The model was originally used in query-
biased summarization, using six simple yet effective
features to predict the relevance of sentences from
retrieved documents. A summary can then be put together
by repeatedly incorporating top-ranked sentences until the
character limit is reached. This method was a common
baseline in snippet generation, and in some recent work it
was also used to rank answer sentences [9].

In our production system, this model was applied to
directly ranking paragraphs/passages. One reason for not
using finer-grained text units such as sentences is that the
top-ranked sentences do not always produce a coherent text
(even when sorted in their original order). Another reason,
and perhaps more compelling, is that adapting the model
to answer ranking provides an interesting comparison to
conventional summarization methods. In our preliminary
tests, the answer ranking strategy appeared to deliver
comparable results to the sentence ranking approach.

Table III provides more details about the features we
used. From the work by Metzler and Kanungo, five out of
the original six features were adapted to our passage data.
Two answer ranking models were developed separately

9https://datamarket.azure.com/dataset/bing/searchweb

http://www.lemurproject.org/indri.php
github.com/lintool/IR-Reproducibility
github.com/lintool/IR-Reproducibility
https://datamarket.azure.com/dataset/bing/searchweb

Table IV
EFFECTIVENESS SUMMARY FOR ALL FOUR RMIT SYSTEMS WHEN COMPARED TO THE AVERAGE ACROSS ALL SYSTEMS PARTICIPATING IN THE

2016 LIVEQA TRACK.

Run ID Description Avg. Score Success Precision
(0-3) @2+ @3+ @4+ @2+ @3+ @4+

RMIT-1 WAND + LtR 0.723 0.384 0.239 0.099 0.388 0.242 0.100
RMIT-2 Bing + LtR 0.422 0.250 0.132 0.039 0.254 0.134 0.040
RMIT-11 WAND + Opt 0.786 0.428 0.252 0.106 0.431 0.254 0.107
RMIT-12 Bing + Opt 0.447 0.273 0.137 0.037 0.274 0.137 0.037

All Runs 0.577 0.304 0.190 0.086 0.392 0.243 0.108

using the Yahoo! Answers CQA data 1.0 (WebScope
L6) and the TREC 2015 LiveQA data. The model from
the Yahoo! Answers data was trained on a sample of
1,000 questions, with the best answer labeled as 1 and
the other answer items as 0. The second model was
trained on the TREC 2015 LiveQA data using graded
relevance: All 1,087 questions with score-4 answers are
labeled as 2, score-3 answers as 1, and the others as 0.
Both models were trained via 5-fold cross validation using
the LambdaMART implementation from RankLib10, and
optimized for ERR@5. All the texts in the training data
were stemmed using the Krovetz stemmer, and stopped
using the InQuery stoplist. WordNet synsets were used
for extracting the OverlapSyn feature. The GOV2 test
collection was used as the background corpus in the
computation of the LM feature. The parameter µ in LM was
set to 10. We ran a small-scale grid search over the number
of trees and the learning rate to choose the final parameter
settings. Eventually, we settled on the latter model trained
on LiveQA data as it delivered stronger results in our
preliminary tests. The final model has this configuration:
the number of trees was set to 1000, the number of leaves
to 10, and the learning rate to 0.1.

B. Optimization Model

For summarization, we used the model proposed by
Takamura and Okumura [8] to generate extractive sum-
maries from the top-ranked passages. In this model,
summarization is characterized as a two-way optimization
problem, in which coverage over important words is max-
imized, and redundancies are minimized simultaneously.
The mathematical formulation is given as follows:

maximize (1− λ)
∑
j

wjzj + λ
∑
i

∑
j

xiwjaij

subject to xi ∈ {0, 1} for all i;
zj ∈ {0, 1} for all j;∑

i
cixi ≤ K;∑

i
aijxi ≥ zjfor all j

(1)

To produce an extractive summary, a choice over the
set of sentences is made to decide what to include. This
choice is modeled in the optimization problem as two sets
of variables xi and zj , where the former indicating the

10http://www.lemurproject.org/ranklib.php

binary decision on keeping sentence i, and the latter on
keeping word j in the summary. In other words, for each
sentence i, xi is set to 1 if sentence i is to be included in
the summary, or 0 otherwise. Analogously for each term
j, zj is set to 1 if term j is included.

In this problem, ci denotes the cost of selecting sentence
si (i.e. number of characters in si), and wj denotes the
weight of word j. We used a TF·IDF weighting scheme in
which the term frequency (TF) is derived from the question
title and body, and the inverse document-frequency (IDF)
is learned from a background corpus. The term frequency
collected from the question body is further penalized with
a factor α < 1 as the information given in the question
body can be less precise than in the title.

wj = [TFtitle(j) + α TFbody(j)] ∗ IDF(j) (2)

The correspondence between the sentence i and the word
j is coded in the indicator variable aij , whose value is set
to 1 if the word j appears in sentence i, and 0 otherwise.
With the first constraint, we limit the size of the summary
to K characters at most (K is set to 1,000 throughout).
With the second constraint, the word coverage is related
to the sentence coverage, thus completing the formulation.

Empirically, we fine-tuned the parameters λ and α based
on prior test runs. In the challenge, we set λ = 0.1 and
α = 0.43. We used the IBM CPLEX solver to compute
the optimal allocation. The background corpus used was
the GOV2 test collection.

V. RESULTS

A. Effectiveness

The LiveQA challenge results are shown in Table IV,
where our submitted runs and the average result across
all runs are shown. Our RMIT-11 run delivered the best
performance in our experiment, achieving 0.786 in Avg
Score. The base run outperformed the average across all
runs and metrics, except for P@4+, where it was very much
equal to the average score.

A post-hoc analysis was performed to understand the
effect of the test collection and that of our answer-
producing algorithm, using RMIT-11 as the reference run.
The distribution of score differences across query topics is
shown in Table V, where two related runs RMIT-1 (shared
the test collection) and RMIT-12 (shared the answer-
producing algorithm) are compared directly. Query-biased
summarization and the answer re-ranking algorithms were

http://www.lemurproject.org/ranklib.php

Table V
DISTRIBUTION OF SCORE DIFFERENCES ACROSS QUERIES BETWEEN RMIT-11 AND TWO RELATED RUNS

System Pair Score Differences
-4 -3 -2 -1 0 1 2 3 4 Pr(diff < 0) Pr(diff = 0) Pr(diff > 0)

RMIT-11 vs. RMIT-1 1 8 30 86 700 126 26 21 0 12.5% 70.2% 17.3%
RMIT-11 vs. RMIT-12 0 10 29 72 483 211 99 61 37 11.1% 48.2% 40.7%

Table VI
ERROR CAUSES, BASED ON AN ANALYSIS ON THE OBSERVED SCORE

DIFFERENCES BETWEEN RMIT-11 AND RMIT-12

Cause # Queries

Local collection errors

Navigational intent 1
Formatting (i.e., answer in HTML table) 1
Query drift caused by question body 2
Irrelevant answer 7
Assessor disagreement 4

Bing snippets errors

Result filled with query terms but no answer text 13
Answer truncated 12
Assessor disagreement 7

found to have differences on 29.8% of the queries, and
query-biased summarization appeared to have a slight
advantage. Regarding the influence of test collections, our
local collection and the Bing snippets performed similarly
for around 50% of the queries. For the remainder of the
queries, our local collection was roughly 3.67 times more
likely to produce a better result than the Bing snippets.

Inspired by this large difference on test collection, we
carried out a further error analysis to investigate any
potential issues that the test collections may have. A subset
of 408 queries was formed which included the queries
with the biggest score differences between RMIT-11 and
RMIT-12. For these, 47 queries were randomly sampled,
which is approximately 10% of the subset size. One of the
co-authors was asked to carefully review all 47 queries
and the associated answers, and identify possible causes
of the observed score differences. A breakdown of the
recorded error sources is provided in Table VI. For the
Bing snippet system, missing answers and text truncation
were responsible for the majority of differences. The local
collection also struggles to retrieve the valid answers
for some queries, but less-fragmented answer summaries
provided by the system were in general more readable,
which increased the odds of receiving a favorable judgment
by the assessors.

Generally speaking, it would appear that our own first-
stage system provides better candidates to the second stage
LtR/Opt systems, as both WANDbl-based systems clearly
outperformed the Bing systems. This is likely due to how
noisy the questions were. Given that our local collection
was optimized for QA, there is a greater chance that
the passages retrieved were relevant, whereas the Bing
system may have returned other extraneous information
(as the information need may be unclear), and the corpus
used is orders of magnitude larger and more diverse. This

●●●
●●●●●
●●
●

●
●

●

●

●
●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●●
●●●
●

●●●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●

●

●

●

●●

●●

●●●●
●
●●●
●●

●●●●●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●
●●●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●●

●

●
●
●

●●

●

●

●
●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●
●
●

●●

●

●

●

0.1

1.0

10.0

2015 2016
Year

T
im

e
 [

s
]

Figure 4. Response times compared to the 4 systems fielded by RMIT
in 2015. Clearly, the improved early stage performance provides a much
larger budget for late-stage processing. The yellow, orange and red
horizontal lines denote the 40, 50 and 60 second intervals respectively,
where performance begins to affect the likelihood that results will be
returned within the time budget.

highlights the importance of query understanding and
query rewriting for QA tasks – something we intend to
focus on in future LiveQA initiatives.

B. Efficiency

Each RMIT system returned 1,006± 6 answers, which
was considerably more than the average of 771 answers.
This is likely due to how efficient the RMIT systems
were – Figure 4 compares the 4 systems fielded by RMIT
in 2015 against the 4 RMIT systems used in this years
challenge. The 2016 systems were able to generate answers
under 10 seconds for every received query, a significant
improvement over last year.

Additionally, Figure 5 breaks down the timings for each
system by the query length. Interestingly, the query length
does not have an effect on the median query time. This
is because the timings are dominated by the second-stage
summarization module, which is not directly effected by
the length of the query. Both System 1 and 2 shared
a similar LtR last stage configuration, which is more
computationally expensive than our summarizer, as the
figure shows.

Clearly, there is much more time in our budget that can
be utilized to improve our answer quality; future work
includes adding additional stages to the retrieval system,
such as a query-rewriting stage, which should help improve
effectiveness, while utilizing the remaining time budget.

VI. CONCLUSION

We have explored four different system configurations
for the TREC LIVEQA Track in 2016. While we remain

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

0.0

2.5

5.0

7.5

10.0

 1 2 3 4 5 6 7 8 9 10+
Query Length

T
im

e
 [

s
]

System: 1 2 11 12

Figure 5. Response times broken down by query length for all 4 systems
used in the challenge. Query length does not adversely effect the timings,
as these are likely dominated by the second-stage summarization module.

pleasantly surprised with the performance of our simple
system configurations, we are hopeful that further improve-
ments can still be realized through better filtering steps,
better query parsing and prediction, and increasing the
coverage in our current documents collections.

In summary, we found that retrieving the top-k para-
graphs from a local test collection combined with generat-
ing a succinct summary of these paragraphs provided the
most effective solution. Additionally, we show that the first-
stage retrieval efficiency cost is dominated by the second-
stage re-ranking/summarizing stage. Finally, we show large
efficiency improvements compared to our systems from the
2015 LiveQA challenge, which allows us to include more
expensive stages in future work.

Acknowledgment.
This work was supported in part by the Australian

Research Council’s Discovery Projects Scheme
(DP140102655). Shane Culpepper is the recipient
of an Australian Research Council DECRA Research

Fellowship (DE140100275). The statements made herein
are solely the responsibility of the authors.

REFERENCES

[1] A. Z. Broder, D. Carmel, H. Herscovici, A. Soffer, and
J. Zien. Efficient query evaluation using a two-level
retrieval process. In Proceedings of the 12th ACM
international conference on Information & knowledge
anagement, pages 426–434. ACM, 2003.

[2] Ruey-Cheng Chen, J. Shane Culpepper, Tadele Tadela
Damessie, Timothy Jones, Ahmed Mourad, Kevin Ong,
Falk Scholer, and Evi Yulianti. RMIT at the TREC
2015 liveqa track. In Proceedings of TREC 2015, 2015.

[3] J. Mackenzie, F. M. Choudhury, and J. S. Culpepper.
Efficient location-aware web search. In ADCS, pages
4.1–4.8, 2015.

[4] Donald Metzler and Tapas Kanungo. Machine
learned sentence selection strategies for query-biased
summarization. In SIGIR Learning to Rank Workshop,
pages 40–47, 2008.

[5] M. Petri, J. S. Culpepper, and A. Moffat. Exploring
the magic of WAND. In ADCS, pages 58–65, 2013.

[6] M. Petri, A. Moffat, and J. S. Culpepper. Score-safe
term dependency processing with hybrid indexes. In
SIGIR, pages 899–902, 2014.

[7] S. E. Robertson, S. Walker, S. Jones, M. Hancock-
Beaulieu, and M. Gatford. Okapi at TREC-3. In Proc.
TREC-3, 1994.

[8] Hiroya Takamura and Manabu Okumura. Text
summarization model based on maximum coverage
problem and its variant. In Proc. of EACL, pages
781–789, 2009.

[9] Liu Yang, Qingyao Ai, Damiano Spina, Ruey-Cheng
Chen, Liang Pang, W. Bruce Croft, Jiafeng Guo, and
Falk Scholer. Beyond Factoid QA: Effective Methods
for Non-factoid Answer Sentence Retrieval. In Proc.
of ECIR, pages 115–128. 2016.

	Overview
	Methodology
	Server architecture
	Run descriptions

	Retrieval Module
	Passage Retrieval Using WAND Indexes
	Bing Search API snippets

	Summarization Module
	Learning-to-Rank Model
	Optimization Model

	Results
	Effectiveness
	Efficiency

	Conclusion

