
Light-weight, Conservative, yet Effective:
Scalable Real-time Tweet Summarization

Reem Suwaileh, Maram Hasanain, Tamer Elsayed

Computer Science and Engineering Department
Qatar University

Doha, Qatar
{reem.suwaileh,maram.hasanain,telsayed}@qu.edu.qa

ABSTRACT
Microblogging platforms and Twitter specifically have be-
come a major resource for exploring diverse topics of inter-
est that vary from the world’s breaking news to other top-
ics such as sports, science, religion and even personal daily
updates. Nevertheless, one by herself cannot easily follow
her topics of interest while tackling the challenges that stem
from the Twitter timeline nature. Among those challenges
is the huge amount of posted tweets that are either not in-
teresting, noisy, or redundant. Additionally, one cannot sur-
vive with manual techniques to summarize tweets related to
topics that are discussed on the stream and are developed
rapidly. In this paper, we tackle the problem of summarizing
a stream of tweets given a pre-defined set of topics in the
context of Qatar University’s participation in TREC-2016
Real-Time Summarization (RTS) track. We participated in
both push notification and e-mail digest scenarios. Given
a set of users’ interest profiles, our RTS system for push
notifications scenario adopts a light-weight and conserva-
tive filtering strategy that monitors the continuous stream
of tweets over a pipeline of multiple stages, while maintain-
ing a scalable processing of a large number of interest pro-
files. For the e-mail digest scenario, we adopted a similar but
even simpler approach. At the end of each day, a list of po-
tentially relevant tweets is retrieved using a query of topic
title terms that is issued against an index of all streamed
tweets of that day. Our push-notification runs exhibited the
best performance among all submitted automatic runs in
the push notification task this year. Moreover, our best-
performing email-digest run was the second-best among all
submitted automatic runs in the email-digest task this year.
However, the evaluation results show that the performance
is still away from being adopted in practice.

1. INTRODUCTION
Twitter is one of the leading social media networks through

which users post information as personal as their daily habits
to updates and opinions on the world’s breaking news. This
rich and diverse stream of posts attracted users to turn to
Twitter as a major source of information on ongoing topics
and events. However, due to the continuous and enormous
volume of the Twitter stream, manually looking for updates
on topics of interests is a very daunting task for users. This

TREC ’16 Gaithersburg, Maryland USA

necessitates the need for a real-time summarization system
that automatically tracks events or topics of interest to users
(perhaps millions of topics for millions of users) in parallel
and generates a summary of representative on-topic tweets
in real-time for each.

Given the continuous tweet stream, a real-time summa-
rization (RTS) system aims to monitor the online stream
and identify the tweets that are relevant to a set of prede-
fined interest profiles (representing the users’ topics of inter-
est) while taking their novelty and freshness into account.
For instance, if a user is interested in following the updates
on the “Brazilian Soccer League”, the system should effi-
ciently monitor the stream and capture the on-topic tweets
including all aspects of the topic (e.g., results and stand-
ings) which might change over time. Accordingly, real-time
summarization approaches should use simple and efficient
approaches that can scale to follow multiple interest profiles
in parallel. Most importantly, the RTS systems are expected
to overcome many challenges that stem from the nature of
tweets, such as sparsity and topic drift. The former chal-
lenge originates from the very short length of tweets. One
way to tackle such a challenge is by enriching the tweet text
by contextual terms. The latter challenge requires the sys-
tem to cope with the changes of the topic over time. One
possible solution to this challenge is to update the topic rep-
resentation by terms from the topic’s new aspects that are
discovered over the live stream.

In this paper, we present our real-time summarization sys-
tem as a participant in TREC-2016 Real-time Summariza-
tion Track. Given a live stream of tweets and a set of interest
profiles of users that represent their topics of interest, the
RTS track has two main scenarios: (1) Scenario A (push
notification), in which the system is expected to push few
(relevant and novel) tweets per day as notifications on the
user’s mobile phone for each topic, and (2) Scenario B (email
digest), in which the system suggests a list of tweets that
summarizes the topic over a period of time and sends it to
the user as a periodic email digest for each topic. This year,
the track organizers provided a broker through which par-
ticipants can fetch the interest profiles and push the filtered
tweet immediately when they system decides to elect one [2].
The interest profile is composed of three main fields: title
(short query), description (1-2 sentences describing the in-
formation need), and narrative (a paragraph describing the
information need).

For the push notifications scenario, we adopted a light-
weight and conservative filtering strategy that listens to the

1

relevant, fresh &

novel tweets

tweet stream

Pre-qualification

Preprocessing

Relevance Filtering Novelty Filtering

interest profiles

statistics

Tweets

Nomination
Indexing

Figure 1: A high-level overview of the core real-time summarization system

English tweets over the 1% sample of the Twitter stream,
and processes the incoming tweets successively. Our system
processes the incoming tweets in a pipeline that involves
preprocessing, pre-qualification, relevance filtering, novelty
filtering, and tweet nomination. Our system is considered a
pure “streaming” system as it adopts “one-tweet at-a-time”
processing model to ensure the least possible latency in mak-
ing pushing decisions. To alleviate the sparsity and topic
drift problems, we followed the typical solution, that is topic
expansion; we attempt two expansion methods: (1) over the
local stream and (2) over Twitter search service. In the for-
mer, we extract the expansion terms from the potentially-
relevant documents that are identified by the system. In the
latter, we search Twitter online and extract the expansion
terms from the top returned tweets. Surprisingly, according
to our results, both expansion methods affect the system
performance negatively; our best run is the one that does
not perform any expansion.

For the email digest scenario, we adopted a similar but
even simpler approach. At the end of each day, a list of
potentially-relevant tweets was retrieved by searching the
index of all streamed tweets of that day. We experimented
with different ranking models with a static relevance thresh-
old. The tweets go through similar novelty check to the one
adopted in the push notifications scenario, and the surviving
tweets are ranked based on their relevance scores before be-
ing added to the submitted digest. Our results show that a
ranking algorithm that uses language modeling with Jelinek
Mercer smoothing outperforms other models.

The remainder of the paper is organized as follows. We
present the design of our systems in detail in Section 2. We
then discuss our official TREC results in Section 3 followed
by the drawn conclusions and some guidelines for the future
work in Section 4.

2. APPROACH
Our system this year extends upon the system that we

participated with in TREC-2015 Microblog Filtering track [5].
The system adopts a light-weight and conservative filtering
strategy; it monitors and processes the stream of tweets fol-
lowing a pipeline of multiple stages, while tracking a large
number of topics in a scalable manner. Each topic is repre-
sented by an interest profile consisting of three fields: a short
title that describes information need, a description of one
or two sentences and a narrative paragraph that articulates
the information need in detail. This year, we only utilize the
title to represent the topic in our system since our experi-
ments over TREC-2015 test collection showed that adding

the other two fields to the topic representation negatively
affects the system performance [5].

In this section, we first present the core architecture of
our RTS system that was leveraged in both scenarios, then
we discuss each component in the system in detail for both
scenarios.

2.1 System Design
Figure 1 depicts the high-level architecture of our system.

As we indicated earlier, our system is a pure “streaming”
system, in contrast to “micro-batching” systems. It adopts
one-tweet-at-a-time processing model to ensure the shortest
possible latency in making pushing decisions.

2.1.1 Pre-qualification
As the system gathers tweets from the Twitter stream,

it ignores non-English tweets detected using the tweet lan-
guage attribute provided by the Twitter API, and replaces
all retweets by their original tweets. The incoming tweet is
not eligible to pass to the subsequent pipeline components
if it is a low-quality tweet. We define low-quality tweets as
tweets with very few terms, too many hashtags or too many
URLs. Based on this criteria, we filter out any tweet that
has less than 5 terms or more than one URL or more than
3 hashtags. Furthermore, we drop any tweet that does not
match at least one title term of any interest profile from
being further processed.

2.1.2 Preprocessing
A tweet that survives the pre-qualification filter will be

passed to the preprocessing stage where a sequence of steps
are included: special characters (e.g., emoticon and symbolic
characters) removal, stop-words removal, URL removal, and
stemming. We also expand the tweet with the hashtags but
as terms (i.e., without the ’#’ prefix), before it is examined
against all interest profiles for relevancy.

2.1.3 Indexing
Since we acquire term statistics in other components of the

system, we initialized the system with an index of a 5-day
stream of tweets preceding the beginning of the evaluation
period. The system also incrementally indexes all incoming
English tweets during the evaluation period.

2.1.4 Relevance Filtering
We use the vector space model to represent each interest

profile (title specifically) and each incoming tweet as a vector
using idf -based term weighting scheme. We compute the

2

term weights using the following equation:

w(t) = idf(t) = log
N − df(t) + 0.75

df(t) + 0.75
(1)

where N is the number of tweets indexed at the time of con-
structing the vector, and df(t) is the document frequency
of the term. We chose this term weighting function due
to being light-weight (which is necessary for real-time and
scalable systems) and also very similar to the standard tf -idf
weighting function noticing that terms rarely appear more
than once in a tweet due to the limited length (140 charac-
ters).

Once the incoming tweet is represented in the vector space,
the RTS system computes its relevance score against each
interest profile using the standard Cosine Similarity func-
tion. To efficiently compute relevance scores, an in-memory
index of profile vectors is maintained to match an incoming
tweet with interest profiles. The relevance model makes a
threshold-based decision in which it considers a tweet with a
similarity score above a relevance threshold τr as a potentially-
relevant tweet to the corresponding profile.

2.1.5 Novelty Filtering
The RTS system should only pushes tweets that are rel-

evant and novel to the user. Therefore, a novelty model
has to be used to estimate the novelty for each potentially-
relevant tweet. In our system, any potentially-relevant tweet
of a profile has to be examined against all previously-pushed
tweets for the corresponding profile to estimate its novelty
before deciding to push it to the corresponding user. To es-
timate the novelty of a potentially-relevant tweet, we lever-
age a lexical similarity measure, that is a variant of Jaccard
similarity, which computes the lexical overlap between the
tweet and each pushed tweet for the corresponding profile
as follows:

J ′(Q,T) =
|Q| ∩ |T |

max(|Q|, |T |) (2)

Where Q and T are the profile and the tweet term sets,
and |Q| and |T | are their lengths (in terms) respectively. A
tweet is considered novel if its similarity score with every
pushed tweet is below a novelty threshold τn (i.e., it is dif-
ferent enough from any of the pushed tweets), otherwise, the
system does not consider pushing it to the user.

2.2 Push Notifications Scenario
The push notifications scenario simulates a recommender

system that sends pop-up messages to users on their mo-
bile phones after capturing tweets that match their interests.
The task design restricts the number of pushed tweets per
profile to a maximum of 10 tweets per day to avoid over-
whelming the users. Having such constraint on the number
of tweets to push, the system should wisely select the best
candidate tweets to elect to the user in a timely fashion.
We explain next how we used tweet freshness to nominate
tweets to be pushed for an interest profile.

2.2.1 Tweets Nomination
While tracking all interest profiles simultaneously and mon-

itoring the tweets stream, the system maintains, for each of
the interest profiles, a list of candidate tweets that contains
the tweets that were found relevant and novel so far. The
RTS system periodically nominates a tweet to push to the

broker [4] for a topic if the system overtakes a silence pe-
riod δ or it has already found l candidate (i.e., potentially
relevant and novel) tweets for that topic. Before actually
pushing a candidate tweet to the user of a specific profile
through the broker, the system re-ranks tweets in the can-
didates list of that profile based on relevance and freshness
using equation 3 below. The top tweet is then pushed to the
user through the broker.

S(t) = Sr(t) ∗ 100− (CurT ime− time(t))
100

(3)

Sr(t) is the relevance score of tweet t (computed using Co-
sine similarity as we discussed earlier), curtime is the cur-
rent system time (in minutes), and time(t) is the tweet cre-
ation time (in minutes). The final nomination score S(t)
adopts a linear decay factor that linearly penalizes the tweets
based on their posting time, hence favoring fresh tweets.

2.2.2 Profile Expansion
To cope with topic development over time, the system

periodically enriches the topic representation for an inter-
est profile using Rocchio’s pseudo relevance feedback. The
main idea is to periodically select k “relevant” terms from
p tweets that are potentially-relevant to the topic, and add
those terms to the topic representation.

We utilized two different sources of the expansion. The
first is the list of potentially-relevant tweets as detected by
the relevance filtering, and the second is the top resulting
tweets from searching Twitter using the online search ser-
vice1. For the latter, we used the topic title as a query
and restricted the search date to the current date to get as
fresh tweets as possible. The system also applies the same
qualification and preprocessing rules to the tweets and de-
duplicates the result list. For both sources, terms of all can-
didate tweets are scored by adding up their idf-based scores
as follows:

we(t) = nR(t) ∗ idf(t) (4)

Herein, we(t) is the score of the term t in the pseudo-relevant
tweet set R, nR(t) indicates the number of tweets in R that
contains t, and idf(t) is the idf-based weight of t as computed
earlier.

After scoring all terms, the top k terms, denoted as ex-
pansion terms, are added to the topic vector. To avoid topic
drift, the topic vector is reset to the title terms (i.e., original
vector) before each expansion, as shown below.

~q
′

= ~q + β ∗ ~e (5)

where ~e is the normalized vector of the k expansion terms,
and β is a parameter used to restrict the influence of expan-
sion terms on the new topic vector.

2.3 Periodic E-mail Digest Scenario
In this scenario, the RTS system is required to compile a

daily list of a maximum of m tweets per interest profile and
send it as an email digest to the user. For that, we adopted
a similar but even simpler approach than the approach for
push notification scenario. At the end of each day of the
evaluation period, the system issues the title of the interest
profile against the local tweet index that is incrementally
updated over time. We experimented with three retrieval

1https://dev.twitter.com/rest/public/search

3

models: query-likelihood model with Dirichlet smoothing,
query-likelihood model with Jelinek-Mercer smoothing, and
a combination of both [1]. The system retrieves a list of 2m
tweets and filters out the tweets that have a relevance score
below a static relevance threshold τr. The survived tweets
are then passed to the novelty filtering that is exactly similar
to the push notification scenario. The tweets that pass the
novelty checking are then ranked based on their relevance
scores before sending the top m as a digest email to the
user.

3. EXPERIMENTAL EVALUATION
In this section, we present the evaluation measures used to

evaluate our RTS system in both scenarios, and the results
of our official TREC-2016 runs. The RTS system for the
push notifications scenario is allowed to push a maximum of
n = 10 tweets per topic in each day of the evaluation period.
If a system pushes more than 10 tweets, the extra tweets
will be just ignored. For the other scenario, the system is
expected to send a daily tweet list of a maximum of m = 100
tweets per topic.

3.1 Evaluation Measures
Three basic evaluation measures were used in push noti-

fications scenario: the expected gain (EG) (which is the of-
ficial measure), the normalized cumulative gain (nCG), and
the Gain minus Pain (GMP) measures. All of them were
computed per day per topic and then averaged per topic.

• Expected Gain (EG):

EG =
1

N

∑
t∈P

G(t) (6)

P is the set of tweets that are pushed by the system
and N is the number of those tweets (i.e., N must be
≤ 10 tweets). G(t) is 0 if the tweet is judged as non-
relevant, 0.5 if it is judged as relevant, and 1 if it is
judged as highly-relevant. The measure also penalizes
redundancy in pushed tweets using the semantic clus-
ters (each contains a set of relevant tweets that are
semantically similar to each other) that are released
as part of the relevance judgments; once a tweet from
a cluster is pushed, all upcoming pushed tweets from
the same cluster are considered non-relevant.

• Normalized Cumulative Gain (nCG):

nCG =
1

Z

∑
t∈P

G(t) (7)

Z is the maximum possible gain for that topic in that
specific day based on all judged pushed tweets.

• Gain minus Pain (GMP):

GMP = α
∑
t∈P

G(t)− (1− α)P (8)

P is the number of non-relevant tweets pushed by the
system and α is a parameter to balance between gain
and pain.

Unlike in TREC-2015 filtering track, this year, the fresh-
ness is not considered in evaluating the system output, hence

the gain of a run is not subject to temporal penalty. How-
ever, the latency was reported separately for tweets that con-
tribute to the gain using mean (MLT) and median (MedLT)
latency measures. Those measures compute the difference
between the pushing time of a tweet and the first tweet of
the cluster which the pushed tweet belongs to (i.e., reference
tweet).

As for the e-mail digest scenario, the daily e-mail digest
is evaluated as a ranked list of tweets using normalized
discounted cumulative gain (nDCG) computed at cut-
off 10 of the list. The measure also penalizes redundancy in
the same manner followed in the push notifications scenario.

For all evaluation measures in both scenarios, the score
of a submitted run is the average of scores over all topics.
Moreover, for all measures, there are two variations based
on how the silent days (i.e., days when there were not any
relevant tweets) are treated. The measures that have “1” as
a suffix reward a system by a score of 1 if it kept quiet on
silent days, while measures that have “0” as a suffix treat
all systems the same way by assigning a score of 0 on silent
days regardless of how they behaved.

3.2 Official Runs
In this section, we discuss our submitted runs for both sce-

narios in detail including the configuration and results. We
used the test collection from the microblog track of TREC-
2015 [3] to tune parameters of all our runs.

3.2.1 Push Notifications Scenario
We submitted three runs in this scenario. In all of them,

we set both of the relevance and novelty thresholds τr and
τn to 0.6 according to the experiments we conducted on
TREC-2015 test collection.

• QUBaseline is the baseline run that does no expan-
sion to the topic profile.

• QUExpP has a similar configuration to QUBaseline
except that it uses pseudo relevance feedback to ex-
pand the profile hourly. It extracts the top k = 2
terms from the top p = 20 potentially-relevant tweets
detected by the relevance filtering. We set the expan-
sion term weight factor to be β = 0.2 to avoid the topic
drift.

• QUExpT also performs hourly expansion, but using
Twitter search API. It adds the top k = 1 term ex-
tracted from the top p = 20 pseudo-relevant tweets
returned from Twitter live search. Similar to the pre-
vious run, we set the expansion factor β to 0.2.

Table 1 shows the results for our official runs for the push
notifications scenario in comparison to the baseline run (i.e.,
YoGosling) [6] provided by the track organizers. The table
also shows the performance of two other hypothetical runs
denoted as Median and Best, which indicate the average of
the best and median scores respectively per topic among all
participated runs. These scores were provided by the track
organizer for EG-1, nCG-1 and GMP.5 measures. Note that
the unit of both the mean latency (MLT) and median latency
(MedLT) is seconds.

The table clearly shows that our baseline run (QUBase-
line) outperforms the other two runs and also the track base-
line in terms of the official measure EG-1. It is interesting to

4

Table 1: Official TREC 2016 results of QU runs for the push notifications scenario. Best value per column is
boldfaced.

Run EG-1 EG-0 nCG-1 nCG-0 GMP.33 GMP.5 GMP.66 MLT MedLT
QUBaseline 0.2643 0.0321 0.2479 0.0157 -0.1357 -0.0888 -0.0447 173843 62478
QUExpP 0.2519 0.0233 0.2413 0.0127 -0.1641 -0.1134 -0.0657 161403 56863
QUExpT 0.2552 0.0230 0.2455 0.0133 -0.0986 -0.0647 -0.0329 141163 46025

YoGosling 0.2289 0.0253 0.2330 0.0295 -0.6000 -0.4317 -0.2733 120909 8718

Median 0.2335 - 0.2303 - - -0.1049 - - -
Best 0.3816 - 0.4576 - - 0.0388 - - -

note that topic expansion had a negative effect on the sys-
tem performance in both expansion runs. This could have
happened due to several reasons. One possible reason is
that we did not exhaustively tune the expansion parame-
ters. Perhaps performing expansion at a lower rate or using
a different expansion factor β could have helped improve the
overall system performance. Moreover, as topic expansion
might cause drift in some topics, a further failure analysis
of the topics that got drifted is needed to explore better
methods of expansion term selection.

Compared to the other submitted runs, we notice that all
our runs outperform the median for the measures EG-1 and
nCG-1. Indeed, our best submitted run scored above the
median over EG-1 measure in 19 topics out of the 56 evalu-
ated topics. While there is a significant difference with the
“oracle” best run, our best submitted run exhibited the best
score over EG-1 measure for 15 topics. It is worth mention-
ing that our runs exhibited the best performance (according
to the official evaluation measure, EG-1) among all submit-
ted automatic runs (42 runs submitted by 19 participating
teams) in this scenario this year.

3.2.2 E-mail Digest Scenario
We have also submitted three runs in this scenario. In all

of them, we set the novelty threshold τn to 0.6.

• QUDR8 retrieves tweets using a language model with
Dirichlet smoothing while setting the smoothing factor
µ to 2000. The relevance threshold τr is set to 8.

• QUJM16 retrieves tweets using a language model with
Jelinek-Mercer smoothing while setting the interpola-
tion factor λ to 0.7. The relevance threshold τr is set
to 16.

• QUDRJM24: ranks tweets using a scoring function
that combines evidence from two retrieval models [1]:
language model with Dirichlet smoothing (µ = 2000)
and Jelinek-Mercer smoothing (λ = 0.7). The rele-
vance threshold τr is set to 24.

Table 2: Official TREC 2016 results of QU runs for
the e-mail digest scenario. Best value per column is
boldfaced.

Run nDCG1 nDCG0
QUDR8 0.2344 0.0094
QUJM16 0.2621 0.0300
QUDRJM24 0.2558 0.0237

YoGoslingBSL 0.2352 0.0299

Median 0.1931 0.0325
Best 0.4427 0.2481

Table 2 shows our results for this scenario compared to
the YoGosling baseline run provided by the track organiz-
ers [6]. The table shows that QUJM16 run (that retrieves
tweets using a language model with Jelinek-Mercer smooth-
ing) is the best performing run compared to all other runs.
Overall, that run was ranked second among all submitted
automatic runs in that scenario this year. We plan to work
on improving this simple approach by experimenting with
more effective retrieval models. Additionally, a more thor-
ough parameter tuning is needed to set λ, and the novelty
and relevance thresholds.

4. CONCLUSION AND FUTURE WORK
In this work, we presented a light-weight scalable real-time

tweet summarization system as our participation in the real-
time summarization track in TREC-2016. For both of the
scenarios of the track (i.e., push notifications and e-mail di-
gest scenarios) we followed a simple pipeline that includes
multiple stages: pre-qualification, preprocessing, relevance
filtering, novelty filtering, and tweets nomination. As for
the push notification scenario, we experimented with differ-
ent interest profile expansion approaches to test how we can
enrich the topic representation with terms of interest to cope
with topic development over time. Surprisingly, our results
showed that the baseline run that does not perform any ex-
pansion outperformed the ones used expansion. As for the
e-mail digest scenario, we used simple daily ad-hoc search
over the index of tweets collected during a day to retrieve the
set of potentially-relevant tweets that went through the same
pipeline. Our results showed that a simple language model-
ing retrieval model with Jelinek-Mercer smoothing achieved
the best performance compared to other runs. Overall, our
push notification runs exhibited the best performance among
all submitted automatic runs this year.

We plan to further perform failure analysis on all compo-
nents of the system. We specifically plan to investigate the
poor performance of runs that perform expansion by con-
ducting experiments with different expansion techniques to
update the topic profile over time. We also plan to experi-
ment the effect of using dynamic thresholds on the system
performance. Additionally, we are planning to study the ef-
fect of using different similarity features in both relevance
and novelty filters such as the semantic and social features.

5. ACKNOWLEDGMENTS
This work was made possible by NPRP grant# NPRP 6-

1377-1-257 and NPRP grant# NPRP 7-1313-1-245 from the
Qatar National Research Fund (a member of Qatar Foun-
dation). The statements made herein are solely the respon-
sibility of the authors.

5

6. REFERENCES
[1] E. A. Fox and J. A. Shaw. Combination of Multiple

Searches. In Proceedings of the Second Text REtrieval
Conference, TREC 2, pages 243–252, 1993.

[2] J. Lin. TREC 2016 track guidelines. http:
//trecrts.github.io/TREC2016-RTS-guidelines.html.

[3] J. Lin, M. Efron, Y. Wang, G. Sherman, and
E. Voorhees. Overview of the TREC-2015 Microblog
Track. In Proceedings of the 24th Text REtrieval
Conference, TREC ’15, 2015.

[4] J. Lin, A. Roegiest, L. Tan, R. McCreadie, E. Voorhees,
and F. Diaz. Overview of the TREC-2016 Real-Time
Summarization Track. In Proceedings of the 25th Text
REtrieval Conference, TREC ’16, 2016.

[5] R. Suwaileh, M. Hasanain, M. Torki, and T. Elsayed.
QU at TREC-2015: Building Real-Time Systems for
Tweet Filtering and Question Answering. In
Proceedings of the 24th Text REtrieval Conference,
TREC ’15, 2015.

[6] L. Tan, A. Roegiest, C. L. Clarke, and J. Lin. Simple
Dynamic Emission Strategies for Microblog Filtering.
In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in
Information Retrieval, SIGIR ’16, pages 1009–1012,
2016.

6

