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Abstract

This paper describes ETH Zurich’s submission to the TREC 2016 Clinical Decision
Support (CDS) track. In three successive stages, we apply query expansion based
on literal as well as semantic term matches, rank documents in a negation-aware
manner and, finally, re-rank them based on clinical intent types as well as semantic
and conceptual affinity to the medical case in question. Empirical results show
that the proposed method can distill patient representations from raw clinical notes
that result in a retrieval performance superior to that of manually constructed case
descriptions.

1 Introduction

The volume of annually published scholarly medical articles has been growing rapidly in recent
years. Statistics report a growth of the MedLine directory by as much as 1 Million new citations per
year. While this considerable amount of scientific research holds a rich and ever increasing well of
knowledge, its sheer scale makes it intractable for manual inspection and mandates the development
of dedicated automatic retrieval facilities.

In this paper, we present a modular patient-centric information retrieval system based on a pipeline of
individual query and document processing steps. Most notably, our system provides functionality for
query expansion, document retrieval as well as a number of re-ranking methods. Starting from noisy
natural language health records in the form of clinical notes, we apply rigorous filtering to reduce the
effects of surface-form variance between notes and articles.

Our query expansion scheme jointly combines evidence from 4 sources of information: (1) human
expertise in the form of explicitly assigned keywords, (2) textual statistics of highly salient tf-idf
terms, (3) external ontological MeSH information (4) semantics-preserving neural word embeddings.
After an initial retrieval run pseudo-relevant documents are analyzed and evidence for the usefulness
of expansion candidates is aggregated from our various sources, resulting in a significantly more
powerful and robust representation of the clinical information need. Using this augmented query
representation, our retrieval model is centrally based on a BM25 variant that is capable of detecting
natural language negations. As such, negated terms and their respective scopes can be treated
differently from findings recorded in positive modality. The model allows us to carefully distinguish
between confirmed and refuted facts in notes as well as scientific articles, leading to a significantly
more intricate relevance estimation than mere keyword matching could achieve.

While the previous steps aimed at a reliable representation of topic and document subject matter,
each clinical case is accompanied by a specific context that may be independent of the core medical
findings. To this end, we apply multiple types of re-ranking, each maximizing the likelihood of
retrieved documents given the topic’s intent type (diagnosis, test, or treatment), its latent semantic
focus as well as conceptual similarities. Experiments on historic editions of the TREC CDS track led
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Table 1: Parameters for term-wise query expansion.

keywords tf-idf MeSH α β n
summary k = 100 k = 20 k = 50 0.5 0.5 60
description k = 100 k = 20 k = 50 0.4 0.4 100
note k = 100 k = 20 k = 50 0.4 0.4 80

to very encouraging results, especially when working with the generally harder-to-process long and
noisy descriptions. Given that the newly introduced notes showcase even higher degrees of noise
and initial retrieval difficulty, we believe that such functionality is crucial for attaining satisfactory
retrieval clinical decision support performance.

2 Methodology

The submission relies on three successive steps, (1) query expansion enriches raw patient records with
additional synonyms and semantically related terms. (2) A negation-aware ranking model computes
document relevance scores. (3) Finally, several re-ranking components modify these raw scores to
give the final ranking. The following sections describe the respective components in detail.

2.1 Term-wise Query Expansion

This expansion method uses terms proposed by pseudo relevance feedback and is composed of three
components that use different aspects of each pseudo-relevant document. We begin by lowercasing
the query and remove stop words. In addition to that, we filter the noisier descriptions and notes to
retain only nouns and verbs. The presented method expands an initial query q by a set of terms E.

q′ = q + E (1)

In a first retrieval run using query q, we obtain a ranked list of the k most relevant documents Dk,q.
All documents di ∈ Dk,q are sorted in descending order of relevance. The set of newly added terms
E is given by the n most important terms according to PC(t,Dk,q) in Dk,q .

E = argmaxt,nPC(t,Dk,q) (2)

A term’s importance is supported by three sources of evidence. (1) The document’s keyword meta-
information field. The importance score PW (t,Dk,q) represents the number of occurrences of
keyword t in Dk,q. (2) High-ranking tf-idf terms are extracted from the whole article. PS(t,Dk,q)
indicates the number of times that term t has a high tf-idf ranking in Dk,q. (3) MeSH concepts
are extracted from article abstracts. PM (t,Dk,q) counts the occurrence of individual MeSH terms.
The overall importance PC(t,Dk,q) is calculated on the basis of the normalized importance scores
obtained from the three previously discussed sources of evidence and weighted using factors α, β
and γ, which we require to sum up to one.

PC(t,Dk,q) = α · ‖PW (t,Dk,q)‖+ β · ‖PS(t,Dk,q)‖+ γ · ‖PM (t,Dk,q)‖ (3)

The most reliably performing parameters are shown in Table 1.

2.2 Semantic Query Expansion

To go beyond literal term matches and expand queries with semantically related terms, we employ
Google’s word2vec1. The skip-gram model is first used to train distributed word vector representations
on the collection of all preprocessed documents (topics ti and articles ai of 2016). The so learned
vocabulary is further refined with a smaller learning rate into per-topic vocabularies Vti and Vqrels.

Vti is trained on the concatenated phrases of topic ti and articles retrieved for this topic by a standard
BM25 retrieval run.

1https://code.google.com/archive/p/word2vec/
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Vqrels is learned by a modified version of word2vec. Given a sentence s = w0, w1, . . . , wk−1, wk,
the standard skip-gram task is to predict a local context around each word, e.g., given the skip-word
wi, the neural net is judged on how well it predicts words

wi−c, wi−c+1, . . . , wi−1, wi+1, . . . , wi+c−1, wi+c

for a context size of 2c. To train Vqrels, we replace words from local context by random words from
an article we are confident to be relevant to the topic wi belongs to. As ground-truth collection C we
use the topic/article pairs from qrels2014 and qrels2015, as well as the top ranked results for 2016
retrieved by a standard BM25 baseline.

For each original word wo in a query, the global Vqrels and the per-topic embedding Vti are used to
find its k neighbours maximizing the cosine similarity in each embedding.

To achieve a focus on medical expansion terms, those of the 2k neighbours that appear less frequently
than a given threshold ω0 in a general news corpus are considered as expansion candidates ei.
Additionally, candidates stemming from Vti are discarded if they are not used as a keyword in at least
one article ai ∈ C.

From the remaining candidates, expansion terms are picked in a round-robin fashion up to a maximum
ratio of original words wo vs. expansion terms ei of count(ei)

count(wo)
≤ ω1.

2.3 Negation-aware Ranking

Investigations by Kuhn and Eickhoff [7] on historic TREC CDS data suggest that, if not taken
into account appropriately, the presence of negations in medical case records can have a significant
negative impact on retrieval performance. Motivated by these findings, our retrieval model accounts
for sentences in queries and documents, in which the author explicitly notes the absence of some
symptom or condition. “She denies smoking, diabetes, hypercholesterolemia, or a family history of
heart disease.”, for instance.

Following Limsopatham et al. [8], our approach is based on introducing a new term representation
for terms appearing in a negated context, i.e., “no diabetes” is converted to “[nx]diabetes”. The
intuition behind this approach is to match the contexts (positive or negative) in which a given term
appears in both the query and the document.

Using NegEx [2], we tag all negated terms in the document collection and the queries in the above
manner. Furthermore, the untagged versions of negated terms are added to the queries, with reduced
term weights, to extend the coverage of our queries.

After pre-processing the data in this fashion, we compute relevance scores according to the standard
Okapi BM25 retrieval model [10].

S(Q,D) = S(Qtagged, Dtagged) + β × S(Qneg, Dtagged)

where Qtagged and Dtagged are the negation-tagged versions of the query and the document respec-
tively. Qneg are the negated terms from the query in untagged form.

2.4 Re-ranking

To account for variability in the concrete choice of words between documents and queries, we re-rank
the literal matching scores described previously based on estimates of topical affinity.

We use a latent dirichlet allocation (LDA) [1] model with 50 topics and a vocabulary of 150’000
terms. The model is trained by iterating 25 times over an in-domain training-set containing 114’000
bio-medical journal articles. To extract the in-domain training set from the provided TREC corpus,
we select the 4000 top-ranking documents of each query according to BM25.

The LDA model takes a text document in bag-of-words representation as input and returns a multi-
nomial distribution over latent topics. The topic affinity score, describing the similarity between
a query and a document, is obtained in the form of the Jensen-Shannon (JS) divergence between
topic distributions of query and document as shown in Equation 4, where QT and DT are the topic
distributions of query Q and document D.

Stopic-model(QT , DT ) = 1− JSD(QT , DT ) (4)
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The Jensen-Shannon (JS) divergence is a smoothed and symmetrized version of the Kullback-Leibler
(KL) Divergence which measures how bad the probability distribution P is at modelling S and vice
versa. The JS-divergence is bounded by [0, 1] and defined in the following way:

JSD(P, S) =
1

2
∗KL(P,M) +

1

2
∗KL(S,M) (5)

Where M is responsible for the symmetry in the JS-Divergence and defined as follows:

M =
1

2
∗ (P + S) (6)

KL(P, S) =
∑
i

P (i) ∗ log2(
P (i)

S(i)
) (7)

In addition to topical re-ranking we further measure the likelihood of document D satisfying the
clinical intent type (diagnosis, treatment, or test) specified in topic T . To this end, we employ an
idea similar to the classification and fusion approaches of [3, 11, 4]. For each topic-document pair
(T,D), we compute a classifier score Sclassifier(Ttype, D) which measures to which degree document
D matches the intent type of topic T .

The classifier score is given by:

Sclassifier(Ttype, D) =
SML-classifier(Ttype, D) + SKeyword-Counter(Ttype, D)

2
(8)

The first component of Equation 8 is computed using linear SVMs with a squared loss function (using
the implementation from scikit-learn [9]). For each of the three intent types — diagnosis, test,
treatment — we construct a binary linear SVM classifier; topics 1—10 use the diagnosis classifier,
topics 11—20 use the test classifier, and topics 21—30 use the treatment classifier. The classifier is
applied to the top 1000 results of each topic.

The positive training samples of the classsifiers are PMC articles retrieved by the following PMC
search queries:

• for the diagnosis and test classifiers, we use the following PMC query: open
access[filter] AND diagnosis[MeSH Major Topic];

• for the treatment classifier, we use the following PMC query: open access[filter] AND
therapeutics[MeSH Major Topic];

The negative training samples are the rest of the MeSH-indexed documents in the collection.

The second component of Equation 8, the Keyword-Counter, measures for each document the
frequency of certain keywords related to the topic intent type:

• for diagnosis, frequency of words that stem to diag;

• for test, frequency of words that stem to diag or test;

• for treatment, frequency of words that stem to treat.

The classifier score and the Keyword-Counter score are then normalized and fused according to
Equation 8, to produce the final classifier score. This score is then fused with the original ranking
scores, as well as the previously described topical affinity scores and the query-document cosine
similarity in doc2vec space using linear combination according to Equation 9:

Sfinal(T,D) = α · Srelevance(T,D)

+ β · Sclassifier(Ttype, D)

+ γ · Stopic-model(T,D)

+ δ · Sdoc2vec-model(T,D)

(9)
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Table 2: Linear combination weights for Equation 9.

α β γ δ

Diagnosis 0.75 0.125 0.11875 0.00625
Test 0.85 0.015 0.1215 0.0135
Treatment 0.8 0.1 0.095 0.005

where α, β, γ, δ sum up to 1.

For TREC 2016, we choose the weights that maximize the mean BM25 scores of the TREC 2014 and
2015 topics. These weights are listed in Table 2:

After the TREC 2016 submission deadline, we further improved the ML-classifier in several ways:

• we used the confidence values of the decision function as the ML-classifier scores, instead
of the predicted class labels (0 or 1);

• we used the error-rate loss function (from SVM-perf[6]), instead of the squared loss
function;

• we used the Clinical Hedges Database [5] for training, instead of documents retrieved by
PMC queries; the CHD contains 1000 positive diagnosis documents and 8000 positive
treatment documents.

In the following section, we will discuss both the official submitted results as well as the performance
of the more recent, modified re-ranking scheme.

3 Results

We submitted five official TREC CDS 2016 runs for evaluation, addressing all three query types
(summary, description, note). During previous experiments, negation-aware ranking and query
expansion consistently improved retrieval performance. As a consequence, we apply the techniques
described in Sections 2.1 – 2.3 in all five runs. The various re-ranking methods previously showed to
be highly parameter dependent and could occasionally decrease performance. To account for this
fact, we discuss scores both before and after re-ranking. Table 3 lists the final performance of each
run in terms of precision at 10 retrieved documents. Official runs that were submitted to TREC 2016
are highlighted with an asterisk.

Table 3: Recomputed experiments results (P@10).

Expanded Re-ranked Submitted Re-ranked Improved
Summaries 30.33* 30.67* 32.67
Descriptions 23.33 22.67* 26.33
Notes 25.67* 25.67* 29.33

While the preliminary submitted re-ranking showed no noteworthy influence on result quality, the
improved version has a consistently positive effect. Similar to the results of previous years, summaries
tended to make better queries than the longer descriptions. Interestingly, however, our pre-processing
was able to distill considerable amounts of information from raw clinical notes, making them more
effective queries than the manually produced descriptions.

4 Conclusion

In this paper, we presented a three-stage processing pipeline for clinical notes including query
expansion, negation-aware ranking and finally, a re-ranking step. We obtained a solid overall
performance and were able to achieve, on the basis of raw notes, a retrieval performance superior to
that of manually created case descriptions.
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