
	

PolyU at TREC 2016 Real-Time Summarization

Haihui Tan Dajun Luo Wenjie Li

tanhaihui92@gmail.com
luodajun100@gmail.com

cswjli@comp.polyu.edu.hk

Abstract. This paper presents the participation of The
Hong Kong Polytechnic University (PolyU) to the TREC
2016 Real-Time Summarization track. The two tasks
related to Scenario A and Scenario B both focuses on
information real-time processing. During the evaluation
period, the system monitors the Twitter sample stream with
respect to a number of “interest profiles”. We submitted
three runs for both scenarios. We describe the system
overview and the implementation details in this paper.

1. INTRODUCTION
The TREC Real-Time Summarization (RTS) track
explores techniques for constructing real-time update
summaries from social media streams in response to users'
information needs. The TREC 2016 Real-Time
Summarization evaluation took place from August 2, 2016
00:00:00 UTC to August 11, 2016 23:59:59 UTC. During
the evaluation period, participating systems monitor the
Twitter sample stream with respect to a number of “interest
profiles” that represent users’ information needs. The
Twitter streaming API offers an approximately 1% sample
of all tweets (sometimes called the “spritzer”). For this
year, 203 interest profiles (queries) are given.

In Scenario A, the content that is identified as relevant by a
system based on the user’s interest profile will be pushed
in real-time. At a high level, push notifications should be
relevant (i.e., on topic), timely (i.e., to provide updates as
soon after the actual event occurrence as possible), and
novel (i.e., users should not be pushed multiple
notifications that are about the same thing).

In Scenario B, a system can identify a batch of up to 100
ranked tweets per day per interest profile. At a high level,
these results should be relevant and novel. Timeliness is
not important as long as the tweets were all posted on the
previous day.

Comparing these two scenarios, Scenario A is a “really”
real-time task while Scenario B is not, which means we
may utilize some more sophisticated real-time techniques
and pay more attention on the efficiency problem during
implementation.

To fulfil the requirements mentioned above, we develop a
system, which consists of pre-processing, relevance
measurement, redundancy detection and push strategy. We
also take efficiency, robustness and reliability into
consideration.

2. SYSTEM OVERVIEW
The whole system is based on the “bag-of-words” model.
As shown in Figure 1, the system consists of two parts:
Offline Part and Online Part.

Offline Part: 1. In order to find the synonyms and related
keywords to better measure the relevance, we expand the
original query (interest profiles) utilizing the Bing News
Search API and Reuters Corpus. 2. In order to measure the
relevance of each coming tweet w.r.t the query, we train a
Relevance Measurement Model based on the labelled data
of Microblog Track from past years, 3. Utilizing the
clustered data from past years, we train a clustering model
to do redundancy detection and discard the redundant ones.

Online Part: 1. Use official API to listen the Tweet
Stream. 2. Pre-process a vast amount of tweets to filter out
most of the “trash” or irrelevant tweets and transform each
tweet into a standard and clean format. 3. Extract the
feature vector from each tweet based on tweet text, URL
external text and metadata. 4. Estimate Relevance score. 5.
Check the redundancy. 6. Do a Scenario A Push and
Scenario B Ranking using certain rules (such as daily
quota, etc.).

Since the core tasks in Scenario A and Scenario B are the
same, i.e., to estimate the tweet relevance to interest
profiles, the workflows for these two scenarios are merged
into one single system, except the last module (Push for
Scenario A and Rank for Scenario B).

The difference among PolyURunA1, PolyURunA2,
PolyURunA3 (PolyURunB1, PolyURunB2, PolyURunB3)
is in the Relevance Measurement Model. There’s a slightly
difference in Relevance Measurement strategy among 3
runs. We will describe in more detail in the next section.

3. COMPONENTS
Offline Part:
3.1 Query Expansion

In order to find the synonyms and related keywords to
measure the relevance better, inspired by the approaches
proposed in [3][4], we do the query expansion. For every
topic, we feed the topic title into Bing News Search API
and get top 50 search results’ snippets. Then we calculate
the TF-IDF score based on Reuters Corpus for every term
in all snippets, and select top-20-score terms as “Expansion
Terms”. We select top 10 terms from narrative and
description the same way as above, as “Narr-Desc Terms”.
All terms except stopwords in title as “Title Terms”.

3.2 Relevance Model Training

For 3 different runs, we implement 3 different Relevance
Measurement strategies. And we use the same relevance
measurement on both scenarios.

	

Figure 1: An Overview of the system

Run 1: 12-features model (add word2vec-info feature)

Almost the same as Run 2, except that we add an additional
feature: word2vec-info. To briefly explain the intuitive idea
behind this feature, let’s look at an example. For topic
MB236, "California drought agricultural effects", after
query expansion, we can get these terms as expanded query:
“water” “groundwater” “california” “drought” “impact” and
etc.

Now, let’s imagine there are two different tweets comming:

tweet A: “water drought groundwater”

tweet B: “water California impact”

Both can be hit 3 times by terms in query. However tweet B
is more relevant, apparently, because tweet B gives more
information. In other words, “water” “California” “impact”
these three words are semantically “distant” from each other
so they bring more relevant information. On the other hand,
“water” “groundwater” “drought” are semantically close to
each other (actually all about water), although they hit 3
times, they bring less information.

Under this intuition, we utilize the word2vec model [5] to
calculate the similarity between words, and then we can
calculate how much relevant information a tweet brings to
us. We give the equation:

𝑖𝑛𝑓𝑜 = 	 (1 − 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑡1, 𝑡34567))
9

1:;

Here, 𝑡1 denotes the term which hits the text, 𝑁 denotes
the number of terms which hit the text, 𝑡34567 denotes the
most similar term to 𝑡1	which hits the text. The range of
𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑡=, 𝑡>) function is (0, 1] where 1 means 𝑡=
and		𝑡> are the same word. The word2vec model is trained
on GoogleNews Corpus.

Run 2: 11-features model (without word2vec-info
feature)

In a word, the core task is to determine whether a tweet is
relevant to an interest profile (profile) or not. Intuitively, we
consider the relevance estimation as a classification
problem in which we should classify each coming tweet into
three classes: 2 (highly-relevant), 1 (relevant) or 0
(not-relevant).

Inspired by [2][4][2], we utilize a 11-features vector space
to represent every tweet to a corresponding interest profile
(query), and we list all of them as following:

count_ti: the number of times “Title Terms” appear in tweet
text

count_te: the number of times “Title Terms” appear in
external URL text

count_di: the number of times “Narr-Desc Terms” appear
in tweet text

count_de: the number of times “Narr-Desc Terms” appear
in external URL text

count_ei: the number of times “Expansion Terms” appear
in tweet text

count_ee: the number of times “Expansion Terms” appear
in external URL text

is_link: a tweet consists of URL for 1; otherwise for 0

log_followers_count: the log of the number of followers of
the author who publishes the tweet.

log_statuses_count: the log of the number of tweets the
author publishes.

world_count: the number of words in this tweet.

	

hashtag_count: the number of hashtag in this tweet

We train a SVM model based on labelled Microblog Track
past data. For each coming tweet, we predict it into 2
(highly-relevant), 1 (relevant) or 0 (not-relevant) with a
probability based on well-trained SVM classifier. Since the
metrics this year lays emphasis on precision rather than
recall, so only if a tweet is predicted into highly-relevant
class, then we let the corresponding probability value be its
Relevant Score and do the next processing; otherwise we
discard this tweet.

Run 3: Naive Strategy

This Run implements a naïve but efficient strategy to
estimate the relevance between an interest profile and a
tweet. Intuitively, more “profile terms” appears in a tweet
more relevant they are. We regard this naïve strategy as a
reference compared to other two runs with more
complicated relevance-estimation strategy. So, we just add
up 6 kinds of number of appearance as following:

ti: the number of times “Title Terms” appear in tweet text

te: the number of times “Title Terms” appear in external
URL text

di: the number of times “Narr-Desc Terms” appear in tweet
text

de: the number of times “Narr-Desc Terms” appear in
external URL text

ei: the number of times “Expansion Terms” appear in tweet
text

ee: the number of times “Expansion Terms” appear in
external URL text

𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒	𝑆𝑐𝑜𝑟𝑒 = 𝑡𝑖 + 𝑡𝑒 + 𝑑𝑖 + 𝑑𝑒 + 𝑒𝑖 + 𝑒𝑒

Online Part:
3.3 Pre-processing

(a) Language detection: Based on RTS official guideline,
Non-English tweets should be judged as not relevant. To
filter out non-English tweets, we read the “lang” field of
Tweet Stream API attribute and retain only the “en” ones.
If length (ASCII characters)/length (the whole text) < 0.8,
we discard this tweet, because that means this tweet
consists of too many non-ASCII characters. Then, we use
langdetect [1] package to detect the language and discard
non-English tweets. The main reason why we use these
three-level detector to detect non-English tweets is that
efficiency is crucial in this real-time track. We will discuss
the efficiency issue in the Section 4.

(b) Trash discard: Learned from [2], we decide to discard
“trash tweet” before further processing. If a tweet meets
one or more these conditions below, we regard it as
“Trash” tweet and filter out it (bracketed texts are intuitive
reasons):

1. the length of text is less than 20; (too few words to
provide enough information)

2. the number of hashtag is more than 5; (typical trash
tweet)

3. All characters are capital. (typical trash tweet)

(c) Keyword filtering: In consideration of efficiency, we
implement a keyword filtering to filter out the vast
majority of apparently irrelevant tweets. We select
keywords from every topic’s title based on the IDF score
on Reuters Corpus and check them manually. If a coming
tweet does not match any one of these keywords, we
discard it.

(d) Crawl URL: crawl external URL webpage text to get
more text about this tweet for further process.

(e) Clean original tweet text: remove hashtag, remove
RT@, remove all URLs.

3.4 Redundancy Detection

For each tweet considered as relevant to an interested topic,
an efficient and naive similarity measurement was adopted
to detect redundancy.

We observe that most of redundant tweets are not rephrased
but simply copies of the original tweet. Hence our method
assumes that the similarity between two tweets is merely
determined by occurrences of their common vocabulary.

The similarity for redundancy detection is defined as the
union score divided by the intersection score of two tweets.

Similarity t;, tN

= 	union_score(t_1, t_2)	/	intersection_score(t_1, t_2)

The union score of two tweets is defined as the sum of word
length of the union of two tweets. And the intersection score
is defined as the sum of word length of the common word of
the two tweets.

For example, tweet A is “I have a cat”, tweet B is “My cat
has claws I do not have”. The union of these tweets is “I
have a cat my cat has claws I do not have”. “I” length is 1,
“have” length is 4, and etc.. So the union score is
1+4+1+3+2+3+3+5+1+2+3+4 = 32. While the intersection
is “I have cat cat I have”. Hence the intersection score is
1+4+3+3+1+4 = 16. By our definition, the similarity of
sample tweets is 16 / 32 = 0.5.

Using the training data from previous years, we find an
optimal threshold of 0.6 for redundancy detection. For each
topic we maintain a list of pushed tweets. Before pushing a
new tweet, it’s similarity with every tweet which is pushed
previously in the list corresponding to the topic is computed
to determine redundancy. Then discard the redundant ones.

3.5 Push Strategy and Ranking Strategy

As for Scenario A, it seems like a variant of The Secretary
Problem. However, a crucial difference is that The Secretary
Problem aims to get more sum of gain or sum of score,
regardless of average gain or “precision”. In Scenario A,
according to metrics of guideline, recall is much less
important than precision. So, a “cautious” push strategy is
reasonable. We set thresholds based our observation on the
Tweet Stream for days before evaluation period. As for
Run1, we only push the tweets which were classified as
“highly-relevant” with the probability of 0.7 or higher. For
Run2, we only push the tweets which were classified as
“highly-relevant” with the probability of 0.6 or higher. For
Run3, we only push the tweets with the relevance score of 7
or higher.

As for Scenario B, we use the same relevance measurement
with Scenario A. The only difference is that we collect and
store all the tweets relevant to each topic during one day.

	

Then select top ten tweets to push, ordered by the
probability to be classified as “highly-relevant”.

4. ABOUT EFFICIENCY
The efficiency of the whole system is significant in this
year’s Track, since the listening and pushing part are both
truly real-time. The Twitter streaming API offers an
approximately 1% sample of all tweets. According to docs
[6], Twitter streaming volume is not constant. Throughout
the course of a 24 hour period, there is a natural ebb and
flow to the number of Tweets delivered per second.
According to our test, the coming data rate of Twitter Public
Stream is about 50 tweets/s ~ 80 tweets/s. So that is to say, if
the rate of a system’s pipeline to process all coming tweets
is less than this rate, there might be some problem.

Our approach to tackle this problem is to set 5 levels of
filters as mentioned above. The idea is that put the
compute-fast filtering module front in pipeline, so only a
few of tweets need to pass compute-intensive or
time-consuming module, such as external URL webpage
crawling or Relevance Estimation.

5. RESULTS
Team Run ID P (strict) P (lenient)
COMP2016 run1-11 0.5143 0.5238
COMP2016 run2-12 0.5465 0.5581
COMP2016 run3-13 0.5710 0.5828

Table 1: Performance of submitted runs for Scenario A
(evaluated by the mobile assessors)

Team Run ID EG-1 nCG-1 GMP(.33)
COMP2016 run1-11 0.2565 0.2515 -0.0804
COMP2016 run2-12 0.2559 0.2483 -0.0585
COMP2016 run3-13 0.2698 0.2909 -0.3262

Table 2: Performance of submitted runs for Scenario A
(evaluated by NIST assessors)

Team Run ID nDCG-1 nDCG-0
COMP2016 PolyURunB1 0.2536 0.0215
COMP2016 PolyURunB2 0.2523 0.0184
COMP2016 PolyURunB3 0.2898 0.0684

Table 3: Performance of submitted runs for Scenario B
(evaluated by NIST assessors)

For Scenario A, Table 1 and Table 2 report the performance
of our three runs. As we can see, Run3 outperforms both
other runs, indicating that a naïve strategy is very useful in
such kind of task. Note that Run3 gets a worst GMP (.33) in
Table 2. It means although the naïve strategy gains much, it
suffers from pushing too many non-relevant tweets. Run2
performances better under GMP (.33) metric.

For Scenario B, Table 3 reports the performance of our three
runs. Apparently, Run3 significantly outperforms other two
runs. That means a naïve strategy is effective for this
scenario.

6. ACKNOWLEDGMENTS
The work described in this paper was supported by Research
Grants Council of Hong Kong (PolyU 152094/14E) and
National Natural Science Foundation of China (61272291).

7. REFERENCES
[1] Shuyo Nakatani. 2010. Language detection library

(slides). URL:
http://www.slideshare.net/shuyo/language-detection
-library-for-java.

[2] Luchen Tan, Adam Roegiest and Charles L.A. Clarke.
University of Waterloo at TREC 2015 Microblog
Track. In The Twenty-Fourth Text REtrieval
Conference (TREC 2015) Proceedings. NIST, 2015.

[3] Feifan Fan, Yue Fei, Chao Lv, Lili Yao, Jianwu Yang
and Dongyan Zhao. PKUICST at TREC 2015
Microblog Track: Query-biased Adaptive Filtering in
Real-time Microblog Stream. In The Twenty-Fourth
Text REtrieval Conference (TREC 2015) Proceedings.
NIST, 2015.

[4] Tianyi Luo, Dehong Gao and Wenjie Li.
POLYUCOMP at TREC 2014 Microblog Track.

[5] Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey
Dean. Efficient estimation of word representations in
vector space. 2013. arXiv:1301.3781v3 [cs.CL] 7 Sep
2013.

[6] Twitter Documentation of Streaming APIs. URL:
https://dev.twitter.com/streaming/overview/processi
ng

