
CLIP at TREC 2016: LiveQA and RTS

Mossaab Bagdouri
Department of Computer Science

University of Maryland
College Park, MD, USA
mossaab@umd.edu

Douglas W. Oard
iSchool and UMIACS
University of Maryland
College Park, MD, USA

oard@umd.edu

ABSTRACT
The Computational Linguistics and Information Processing
lab at the University of Maryland participated in two TREC
tracks this year. The LiveQA and the Real-Time Summa-
rization tasks both involve information processing in real
time. We submitted eight runs in the total. In both tasks,
our best system had the highest precision among all auto-
matic participating systems. This paper describes the archi-
tecture and configuration of the systems behind those runs.

1. INTRODUCTION
We participated in the LiveQA and the Real-Time Sum-

marization TREC 2016 tracks [1, 4] with systems that were
derived from our earlier participation in the TREC 2015
LiveQA and Microblog tracks. Lessons learned from our pre-
vious participation were taken in consideration. We describe
the systems for these tasks in the following two sections.

2. LIVEQA
We developed two systems for the LiveQA track, depicted

in Figure 1. CLIP-YA searches in an extensive crawl of Ya-
hoo! Answers (Y!A). CLIP-TW searches in a large corpus
of tweets.

2.1 Answering with Old Yahoo! Answers
Last year, we obtained 226M questions and 1.3B answers

through an extensive crawl of Yahoo! Answers. We searched
in a subset of those to return answers to new questions. We
updated this collection by recrawling all of the questions (to
gather new answers and user identifiers) and revisiting the
pages of all the users (to gather more questions and users
identifiers). Then, we crawled all of the new questions and
users through several iterations as explained in [2], yielding a
total of 260M questions and 1.4B answers. We, then, limited
our focus to the questions and answers downloaded from the
main Yahoo! Answers website.1 We used this subset of 123M
questions and 673M answers for both searching for candidate
answers (Section 2.1.1) and training a deep neural network
that ranks these candidate answers (Section 2.1.2).

1https://answers.yahoo.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
TREC’16, November 15–18, 2016, Gaithersburg, Maryland USA.
Copyright is held by the authors.

The architecture of our system CLIP-YA is designed as
a cascade of four stages. First, we search in the corpus to
extract a list of candidate answers. Second, we score the
answers based on a classifier trained on old question-answer
pairs from the the Y!A crawl. Third, we rescore the answers
based in part on this first score, using a classifier trained on
TREC 2015 LiveQA qrels. Fourth, we optionally combine
several short answers into a long one.

2.1.1 Searching in Old Yahoo! Answers
Preliminary evidence from our participation in the first

edition of this track was in favor of using more terms from
the question for searching for candidate answers. In fact,
the average score of 0.82 for the 11 questions for which we
had used both the title and the body of the question was
higher than the average score of 0.62 for the 1,068 questions
for which only the title of the question was issued to the
search engine. However, long queries come with a high effi-
ciency risk, as it might take over the allowed 60 seconds to
extract the posting lists and the corresponding documents
from disk. For this reason, we put our index on a solid-state
drive (SSD), instead of a traditional hard disk drive (HDD).
This allowed us to use all of the terms of the title and the
body of the question without worrying about timing out.

From last year, as well, we found that the 186 cases in
which we searched in the combination of the title and the
body of the old questions had an average score better than
the 109 cases in which we searched only in the title field
(average scores of 0.54 and 0.43, respectively). Searching in
old answers appears to be better than either approach, how-
ever, as the average score of 0.67 for the corresponding 784
cases indicates. Overall, it appears that the more content we
search in, the better the result we can expect. Consequently,
we decided to search in the combination of the title, body,
and answer of old answers, for each incoming question.

The query and indexed documents are preprocessed by
substituting spaces for all characters other than alphanu-
meric and apostrophe, lower casing, and applying the Porter
stemmer [6] from Lucene 6.2 A list of 100 candidate answers
is returned, ranked by the BM25 implementation of Lucene.

2.1.2 Initial Scoring with Old Yahoo! Answers
The Y!A crawl is useful as a repository for searching for

candidate answers. A retrieval model might be able to find
topically relevant answers, but it might fail to find the good
answers among those. Fortunately, there is content in Y!A
that we can use to train a classifier to rank topically rel-

2http://lucene.apache.org



Y!A 1%

4 Years
of Random 
Sampling

55 Days of
Words Tracking

TW

Select Tracking 
Words

LiveQA
2016

Question 
remover

(Answer)

(Local 
Crawl)

(7 Categories)

(Local Crawl)

(7 small sets)

(Answer)

(twitter.com)

BM25

1%

LSTM

Answer 
content

Embed.

LSTM

Question 
body

Embed.

LSTM

Question 
title

Reputation

Answer 
user

3 Dense Layers

Label

Normalization

Embed.

LiveQA
2015

Candidates

Candidates
Microblog 2015• Reranking

• Summarization
• Concatenation

BM25

• TF-IDF
• BM25
• Doc2Vec

• Question features
• Asker features
• Answer features

Training

Training

Search 
Ngrams

• Reranking
• Deduplication
• Concatenation

Real-time search

Answering from Old Yahoo! Answers Answering from Twitter

Training

• Tweet features
• Topic - tweet similarity

Figure 1: General architectures of the two LiveQA systems.

evant answers. For a given old question, we assume that
all (or most) of its answers are relevant, but that some are
more useful than others. We extract this usefulness from the
social interaction of the crowd with the answers. The Y!A
community can choose up to one best-answer for any given
question. Y!A users can also vote for different answers by
providing thumb-ups and thumb-downs. We define a rank-
ing of the answers for any given question by ranking the
best-answer, if one is available, at the top of the list. Then
we sort the remaining answers in decreasing order accord-
ing to the difference between the number of thumb-ups and
thumb-downs, breaking ties arbitrarily.

The question then arises how best to select the training
data, of negative and positive instances, on which we can
train a classifier. Obviously, the answer at the top of the
ranked list can be a positive instance. How best to se-
lect negative instances is, perhaps, less obvious. An answer
ranked near the top of the list might actually be as good
as the top one (consider a case where two identical good
answers are present, but the website forces the asker to se-
lect no more than one best-answer). Some of the answers
at the bottom of the list might be completely irrelevant to

the question (e.g., spam). Hence, we decided to choose, as
a negative instance, the answer located at the middle of the
ranked list, after limiting ourselves to questions that have
at least three answers.

Answers are often accompanied by user information. When
this is the case, we extract the following seven integer fea-
tures, which might serve as a surrogate of the reputation
or the expertise of that user: the user level; the number
of points; the number of questions, answers and best an-
swers; and the numbers of friends and followers. Otherwise,
we simply stuff that feature vector with zeros. Finally, each
training instance is composed of the binary label for inferred
utility, the title and body of the question, the answer con-
tent, and the seven-element feature vector for the answerer.

The top left corner of Figure 1 shows a deep neural net-
work for training on this collection, which we implement in
Keras.3 Each text field is represented with an embedding
layer of 200 dimensions, followed by an LSTM layer of 100
dimensions (the choice of LSTM was inspired by last year’s
best performing system [7]). Each of the user features is
normalized to a value between 0 and 1, where the scaling

3https://keras.io



parameters are inferred from training. The three text layers
and the user layer are, then, concatenated, forming a layer
of 307 dimensions, which we connect to a stack of three fully
connected layers of dimensions 100, 50 and 100, respectively,
followed by the output layer (i.e., label of the answer). The
sigmoid activation is applied between every pair of layers,
as well as within the LSTM layer.

At prediction time, this network returns, for the title and
body of the new question, and the content and the user of
candidate answers, a score that we use in the rescoring stage
(Section 2.1.3).

2.1.3 Rescoring with LiveQA 2015 Qrels
The process in Section 2.1.2 is useful for scoring old an-

swers with respect to a new question. However, it does not
use the similarity between the old and new questions. By
crawling the URLs of the answers that last year’s partic-
ipants returned from Y!A, we construct a training corpus
that contains, for each instance, the new question, the old
question, the answer returned, and the annotated label. For
each instance, we extract:

• Old question features: number of follows and answers.

• Old asker features: asker level (divided by 7), the ratio
of the best answers that the asker has to all his an-
swers, and the logarithms of one plus the asker points,
questions, answers, friends and followers.

• Old answer features: whether the answer is a best an-
swer, the number of thumb-ups and thumb-downs, the
rating of the answer (a value provided by the asker
between 0 and 5), and the count of comments that
answer received.

• Similarity between the old and new questions: TF-
IDF, BM25 and embedding-based similarities between
the title, the body, their concatenation and the answer
for the old question from one side, and the title and the
body and their concatenation of the new question from
the other side (i.e., 3× 4× 3 = 36 similarity values).

With the SVMrank software [3], we train a learning-to-
rank classifier using the features above, in addition to the
score returned from the neural network.

2.1.4 Answer Generation
The TREC LiveQA guidelines limit the answer length to

a maximum of 1,000 characters. We summarize each candi-
date answer exceeding 1,000 characters in the following way.
We split it into sentences based on periods and retain the
first and last sentence, and as many of the sentences with
the highest Jaccard similarity to the title of the question as
possible until the 1,000-character limit would be exceeded
by adding an additional sentence.

For candidate answers that contain less than 1,000 charac-
ters we take a different approach. Last year’s best perform-
ing system often combined multiple answers into a single
one [7]. This has motivated us to create a synthetic answer
in the following way. We start with the first summary and
then concatenate the subsequent summaries in the ranked
list that have at least 100 characters, and for which, the con-
catenation would not violate the 1,000-character limit. This
synthetic answer is what we return as a final answer.

2.2 Answering from Twitter
Answers might also be present in a platform different from

the one where the questions were posted. As an illustrative
example, we build a system that attempts to answer LiveQA
questions from Twitter. In this section, we describe our
approach for collecting a large number of tweets that are
likely to contain answers to the seven categories of the track,
we describe a method for ranking the tweets using a model
trained on a the qrels of a different task, and we explain how
multiple tweets were combined to form a single answer.

2.2.1 Collection
We want to construct a repository of tweets that contains

a substantial number of tweets that are likely to be useful
for answering LiveQA questions. Both of our Twitter based
systems performed poorly last year, but we learned several
lessons that guided our redesign of the Twitter based system
for this year’s participation.

Similarly to last year [2], we continued to use two major
sources of tweets, which are (1) the tweets published through
Twitter’s sample stream (i.e., 1% of all public tweets) for
over four years,4 and (2) a selected set of tweets collected by
tracking the terms of the core vocabulary of each category.
Hoping to cover questions about current events, we add, this
year, (3) a third source of tweets. From the title and body
of the question, we extract word bi- and tri-grams. Using
Twitter’s search API, we issue a series of queries using those
n-grams (starting with tri-grams first), requesting up to 100
tweets for each query. We stop when the total time spent in
communicating with Twitter reaches 40 seconds.

We had found that searching in tweets that are detected to
be not questions (system CLIP-TW-A of our participation
in TREC 2015 LiveQA) yields an average performance bet-
ter than that we get when we search in tweets detected to be
questions and return their replies (system CLIP-TW-Q).
Hence, our system this year (CLIP-TW), is based entirely
on tweets detected to be not questions.

We had also found that, for system CLIP-TW-A, the
average score of the 24 tweets retrieved from the small cor-
pus of selected tweets (collected over a period of 3 weeks),
was substantially better than the average score of the 781
tweets collected from Twitter’s sample stream (0.46 and
0.19, respectively). Thus, we decided to collect more se-
lected tweets. We did so over a period of 55 days.

We observed last year that, although the performance
of our Twitter based system was substantially lower than
that of our Y!A based system, the average score of the an-
swers of the Travel category was comparable betweenCLIP-
YA (2015) and CLIP-TW-A (0.29 and 0.25, respectively).
Moreover, this category appears to be the most difficult one
for the former, and the easiest for the latter. We, therefore,
decided to give more attention to this category, and gath-
ered more selected tweets. We did so by collecting the tweets
using the terms of the 27 sub-categories of travel defined by
Yahoo! Answers, in addition to the main travel category.

2.2.2 Rescoring with TREC 2015 Microblog Models
Our reliance only on the BM25 score last year might have

contributed to the low performance of our Twitter based sys-
tems. This year, we enhance our scoring with a learning-to-
rank (L2R) model. With a limited number of good Twitter-

4From http://archive.org/details/twitterstream.



Table 1: Performance of participating systems in the LiveQA task. This year, the average of all runs include manual runs.

Year System score (0-3) succ@2+ succ@3+ succ@4+ prec@2+ prec@3+ prec@4+

2016 CLIP-YA 0.850 0.400 0.298 0.153 0.632 0.470 0.241
2016 CLIP-YA* 1.344 0.632 0.470 0.241 0.632 0.470 0.241
2016 CLIP-TW - - - - - - -
2016 Average of all runs 0.643 0.329 0.212 0.104 0.422 0.271 0.131

2015 CLIP-YA (2015) 0.615 0.326 0.204 0.086 0.328 0.206 0.086
2015 CLIP-TW-Q 0.081 0.065 0.019 0.007 0.067 0.020 0.008
2015 CLIP-TW-A 0.144 0.102 0.034 0.008 0.138 0.046 0.011
2015 CMUOAQA 1.081 0.532 0.359 0.190 0.543 0.367 0.195
2015 Average of all runs 0.465 0.262 0.146 0.060 0.284 0.159 0.065

based answers, the TREC 2015 LiveQA qrels might be in-
sufficient to train a useful L2R model. For this reason, we
use a surrogate training corpus: the TREC 2015 Microblog
Track. The topics of that track contain three fields: a short
query (usually two to three terms), a description (in the or-
der of a sentence), and a narrative (in the order of a short
paragraph). For every <topic, tweet> pair, we extract the
following features:

• Tweet features: word and stem counts and their ra-
tio; the number of characters in the stemmed tweet;
the presence of URLs, hashtags and mentions; and the
logarithm of the ratio of number of followers to the
number of friends.

• Topic - tweet similarity features: similarity value be-
tween the stemmed tweet on one side, and the stemmed
topic description and narrative on the other side, using
TF-IDF, BM25, Jaccard similarity and doc2vec simi-
larity (where the document vector is the mean of the
vectors of its terms, trained with word2vec [5]).

We apply the trained model to each LiveQA question by
substituting the topic description with the question title,
and the topic narrative with the question body. This pro-
duces a ranked list of the candidate tweets.

2.2.3 Answer Generation
One of the possible explanations for the poor performance

of our Twitter based system last year is the length of the
tweet. In fact, we might have been penalized by restrict-
ing ourselves to a maximum of 140 characters, while 1,000
characters could have been used. For this reason, we con-
sider returning a concatenation of several tweets, instead of
only one. First, we remove near-duplicate tweets by running
a single-link clustering algorithm using Jaccard similarity
with a threshold of 0.6 (which was the best threshold we
had obtained in our TREC 2015 Microblog participation).
With the remaining ranked tweets, we create a synthetic an-
swer, starting with the first tweet, and then concatenating
the subsequent tweets that have at least six words, without
exceeding the 1,000 characters limit.

2.3 Results
Similarly to last year’s scoring measure, each answer was

given a score of -2 by NIST annotators if the answer is un-
readable. Otherwise, the annotators assigned a score be-
tween 1 (bad) and 4 (excellent). The following performance
measures are reported:

• score (0-3) is the average score over all questions after
transferring 1-4 level scores to 0-3, and giving unread-
able answers a score of 0.

• succ@i+ is the number of questions with a score of at
least i, divided by the total number of answered and
unanswered questions.

• prec@i+ is the number of questions with a score of at
least i, divided by the number of answered questions.

Unfortunately, we had a couple of bad surprises regarding
the annotation of our answers. Although our internal logs
show that CLIP-YA answered all of the 1,015 questions,
each in less than one minute, the TREC 2016 LiveQA orga-
nizers reported having received only 642 answers. The case
with CLIP-TW is even worse. We timed out in only 5 out
of 1,015 questions, but all of the answers were missed from
the annotation pipeline. We have no clue about the cause of
the missed CLIP-YA answers. However, for CLIP-TW,
we found that the Java default XML parser has a known
bug prohibiting it from loading XML files with emojis.5

Since emojis are present in the answers we have returned,
we speculate that they raised an error that removed all of
the Twitter-based answers from the annotation pipeline.

Table 1 shows the official scores of our CLIP-YA system,
as well as the scores that we would have expected to see if all
of our answers had been annotated, and if the unannotated
questions had been of comparable difficulty to those that
were annotated6 (CLIP-YA*). For reference, we show the
average scores over all systems that have participated this
year. We also show the scores of our three systems from
our previous participation, the score of the best performing
system over all teams (CMUOAQA) that year, as well as the
corresponding average scores over all participating systems.

Looking at the score and prec@2+ columns, we see that
if we were to assume that the questions are of comparable
difficulty across years, our CLIP-YA system has improved
substantially when compared to CLIP-YA (2015). Com-
paring with our old selves, the evaluation results doubled
(compare 0.615 vs. 1.344 and 0.632 vs. 0.328). Compared to
the best performing system of last year, our score is higher
by 24.3% (compare 1.081 vs. 1.344), and our prec@2+ is

5http://stackoverflow.com/questions/31867818
6We are not aware of any systematic difference in question
difficulty between the annotated and the unannotated set.
The expected score is computed by multiplying the official
score by the ratio of the total number of answers to the
number of answers that were annotated: 1.58 = 1015/642.



Table 2: Improvement of CLIP-YA between 2015 and 2016.

Category 2015 2016 Improvement

Beauty & Style 0.50 1.60 +220%
Pets 0.65 1.55 +138%
Health 0.77 1.50 +114%
Arts & Humanities 0.64 1.37 +114%
Sports 0.51 0.98 + 92%
Home & Garden 0.60 0.96 + 60%
Travel 0.29 0.63 +117%

Health
39%

Beauty & Style
13%

Arts & 
Humanities

13%

Sports
10%

Pets
9%

Travel
8%

Home & 
Garden

8%

Figure 2: Distribution of questions over seven categories.

higher by 16.4% (compare 0.543 vs. 0.632). Finally, we ob-
serve that about two thirds of our answers (0.632) are at
least fair, every second answer (0.470) is at least good, and
one out of four answers (0.241) is excellent.

The improvement in the evaluation results of our CLIP-
YA system between last year and this year is consistent
across all categories, as can be seen in Table 2. We tripled
our score for the Beauty & Style category, making it our best
one (while last year it was second to the last). We doubled
our score in Pets, Health, Art & Humanities, and Travel.
But the latter is, still, the most difficult category suffering,
perhaps, from a low prevalence in training (Figure 2).

3. REAL-TIME SUMMARIZATION
We participated in the push notifications task (a.k.a Sce-

nario A), and the email digest task (a.k.a Scenario B) with
automated systems similar to those we had developed last
year for the Microblog Real-Time Filtering Track. The main
differences, this year, are (1) we trained our reranker with
the TREC 2015 Microblog qrels instead of the 2014 qrels,
(2) we used the narrative field for the first time, and (3) we
tried a new method for deciding whether a candidate tweet
should be returned.

3.1 Tweet Scoring
A topic is represented as a triple of a title that contains a

few keywords, a description that summarizes the topic in one
sentence, and a narrative that consists of a paragraph that
gives more details. We stem the topic fields with the Porter
stemmer as implemented in Lucene 6.0 using its default list
of stopwords. We use regular expressions to normalize all
the tweets before stemming by removing emoticons, user
mentions, URLs, retweet (RT) indicators, and punctuation.

Table 3: Performance of participating systems in Scenario
B of the RTS task.

System nDCG1 nDCG0

CLIP-B-0.6-2015 0.0718 0.0718
CLIP-B-0.6-MAX 0.1244 0.0173
CLIP-B-0.3-MIN 0.0312 0.0312

Similarly to last year, we expand the title field of the
profile with the most similar terms using word-embeddings
trained on a corpus of tweets downloaded from Twitter’s
sample stream and a probabilistic structured query scoring
scheme based on Okapi BM25. Terms from longer fields (i.e.,
description and narrative) were not expanded. Instead, we
used BM25, Jaccard similarity and a cosine similarity based
on a doc2vec representation (where the document vector is
the mean of the embedding vectors of its terms). Those
query-tweet similarity scores, as well as tweet-specific fea-
tures (count of stems, count of stems that are not stopwords,
ratio of the previous two features, count of characters in the
stemmed tweet, count of URLs, count of hashtags, and count
of user mentions), and a sender feature (log of the ratio of
the number of followers to the number of friends) are used
to train a learning-to-rank classifier with SVMrank software
[3] using TREC 2015 Microblog qrels.

3.2 Near-Duplicate Detection
Our near-duplicate detection algorithm is identical to last

year’s. We limit ourselves to tweets that have a score above a
manually selected score threshold (described below). Then,
we apply single-link clustering with Jaccard similarity and
some manually selected clustering threshold (described be-
low) to group near-duplicate tweets. A new cluster is cre-
ated whenever a new tweet has a similarity value below the
clustering threshold with all of the previously seen tweets.

3.3 Deciding when to Answer
Deciding when to set the cutoff point for returning can-

didate tweets is a difficult task. We tried to estimate that
cutoff point in the following way. Given the title of a pro-
file, we issue all of its terms as a query to Twitter.7 If no
tweet is returned, we consider the union of tweets returned
from issuing subqueries in which one term of the title was
removed, and so on. We score all of the returned tweets as
explained in Section 3.1. We compute the minimum, mean
and maximum scores, which give us three possible relevance
thresholds to be used to decide whether a tweet should be
returned during the evaluation period.

3.4 Results
Table 3 shows the performance of our three systems that

participated in Scenario B. CLIP-B-0.6-2015 is the best
system we had used in our TREC 2015 Microblog track,
which had a clustering threshold of 0.6, and always returned
100 tweets per day. CLIP-B-0.6-MAX is our 2016 system
with a manually selected clustering threshold of 0.6 that
uses the maximum relevance threshold for deciding when to
return a tweet. CLIP-B-0.3-MIN is our 2016 system with

7Instead of using Twitter’s search API, which is limited to
tweets posted in the last two weeks, we scrape the web page
https://twitter.com/i/search/timeline?q=[QUERY].



Table 4: Performance of participating systems in Scenario A of the RTS task.

System relevant redundant not relevant unjudged length P(strict) P(lenient)

CLIP-A-0.7-MAX 91 1 89 507 679 0.5028 0.5083
CLIP-A-0.5-MEAN 158 7 171 911 1,227 0.4702 0.4911
CLIP-A-0.5-0 170 7 189 1,071 1,418 0.4645 0.4836

Table 5: Performance of participating systems in Scenario A of the RTS task.

System EG1 EG0 nCG1 nCG0 GMP.33 GMP.5 GMP.66 mean latency median latency

CLIP-A-0.7-MAX 0.2366 0.0206 0.2254 0.0093 -0.0950 -0.0629 -0.0328 227,092 178,997
CLIP-A-0.5-MEAN 0.2407 0.0354 0.2382 0.0328 -0.2556 -0.1656 -0.0809 121,940 12,090
CLIP-A-0.5-0 0.2397 0.0361 0.2415 0.0380 -0.3149 -0.2085 -0.1083 122,959 3,346

a manually selected clustering threshold of 0.3 that uses the
minimum relevance threshold for deciding when to return a
tweet. After the results were disseminated, we found a bug
in the doc2vec similarity component that caused the scores
to be very low.8

Tables 4 and 5 show the performance of our three systems
that participated in Scenario A. CLIP-A-0.7-MAX has
a manually selected clustering threshold of 0.7; it uses the
maximum relevance threshold for deciding when to return
a tweet. CLIP-A-0.5-MEAN and CLIP-A-0.5-0 both
have a manually selected clustering threshold of 0.5. The
former uses the mean relevance threshold for deciding when
to return a tweet, while the latter uses a fixed relevance
threshold of 0, shared between all topics.

The scores of Table 4 are based on assessments made by
mobile assessors (i.e., volunteer users who installed an appli-
cation on their smartphone, and were actually receiving the
notifications in real time). In this realistic setup, our three
systems scored among the top four automatic systems, with
system CLIP-A-0.7-MAX scoring the highest among all
automatic systems. Thanks to its high clustering and rele-
vance thresholds, it attained high precision.

Our three systems ranked lower (between 6th and 9th,
among 34 automatic systems) based on NIST assessors (Ta-
ble 5). But interestingly, the system that did best in the first
evaluation setup performed the worst in the second evalua-
tion framework. This, perhaps, suggests that factors other
than topical relevance (e.g., time of the day, fatigue) also
affected the mobile assessors.

4. CONCLUSION
We have presented the general architecture and the im-

plementation details for the six runs we submitted for the
Real-Time Summarization (RTS) task, and the two systems
we built for the LiveQA task. The results suggest that a
per-topic rescoring threshold and a high clustering similar-
ity threshold can, each, improve the performance of our RTS
systems. We are satisfied with the performance of our Sce-
nario A systems, both in terms of recall and precision. We

8Due to a multi-threading concurrency error, we were com-
puting the average vector representation of a tweet using
words different than the ones that constituted that tweet.
This problem did not arise in Scenario A because the tweets
were processed sequentially.

plan to fix the bug we have in our Scenario B systems and
evaluate their performance using the released annotations.

The lessons we have learned from our participation in the
LiveQA track of last year proved to be useful. In particular,
search using most of the content both in the live question
and in the indexed corpus, the deep neural network, and the
combination of multiple answers, all participated in the high
performance of our system based on old Yahoo! Answers.
With respect to the answers that have not been annotated
(i.e., one third of the answers returned by the system based
on old Yahoo! Answers, and all of the answers returned by
our Twitter-based system), we will use the similarity of their
content with the annotated answers to estimate our perfor-
mance. To avoid those silent exceptions, we recommend that
the next edition of the LiveQA track returns an acknowledg-
ment message for each incoming answer.

ACKNOWLEDGMENT
This work was made possible by NPRP grant# NPRP 6-
1377-1-257 from the Qatar National Research Fund (a mem-
ber of Qatar Foundation). The statements made herein are
solely the responsibility of the authors.

5. REFERENCES
[1] E. Agichtein, D. Carmel, D. Pelleg, Y. Pinter, and

D. Harman. Overview of the TREC 2016 LiveQA track.
In TREC, Gaithersburg, MD, USA, 2016.

[2] M. Bagdouri and D. W. Oard. CLIP at TREC 2015:
Microblog and LiveQA. In TREC, Gaithersburg, MD,
USA, 2015.

[3] T. Joachims. Training linear SVMs in linear time. In
KDD ’06, pages 217–226, 2006.

[4] J. Lin, A. Roegiest, L. Tan, R. McCreadie, E. Voorhees,
and F. Diaz. Overview of the TREC 2016 real-time
summarization track. In TREC, Gaithersburg, MD,
USA, 2016.

[5] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. In Workshop at ICLR, 2013.

[6] M. F. Porter. Readings in information retrieval. chapter
An Algorithm for Suffix Stripping, pages 313–316. 1997.

[7] D. Wang and E. Nyberg. CMU OAQA at TREC 2015
LiveQA: Discovering the right answer with clues. In
TREC, 2015.


