
WaterlooClarke: TREC 2015 Contextual Suggestion Track

Hella Hoffmann
University of Waterloo

hrhoffmann@uwaterloo.ca

Pragnya Addala
University of Waterloo

paddala@uwaterloo.ca

Charles L. A. Clarke
University of Waterloo

claclark@uwaterloo.ca

November 2015

1 Introduction

In this work we present a first attempt at developing a live system to solve the problem presented in the
TREC 2015 contextual suggestion task1. The goal of this task is to tailor point-of-interest suggestions
to users according to their preferences [3]. We present how we gathered data for the candidate points-
of-interest, filtered some of the candidates and built a live system to return suggestions that would most
likely interest the specific user.

As part of TREC 2015, the contextual suggestion track is running for the fourth time [3, 4, 2]
and this is the first time that the participants were required to build a live suggestion system. The
general idea is to be able to make real-time suggestions for a particular person (based upon their profile)
with a particular context. Unlike the previous years where the participants were asked to build their
own candidate list of suggestions, this year the organizers themselves released a fixed set of candidate
suggestions for 272 contexts, each context representing a city in the United States. Participants were
required to set up a server that could listen to requests from users and respond with relevant suggestions.
For each request, which is a profile-context pairing, a ranked list of up to 50 ranked suggestions was to
be returned.

• Input: Context including a location id i, latitude and longitude of the location associated with i,
a user profile with a list of user preferences P(u) for a user u and additional information such as
trip length and time of travel.

• Wanted: A ranked list of up to 50 suggested attractions to visit during the stay.

User profiles that are part of the input resquest correspond to the stated preferences of real individuals,
primarily recruited through crowdsourcing sites, who also judge the returned suggestions. These users
are asked to give a rating to the suggested points of interests. A rating could be any of the following:
strongly interested (4), interested (3), neither interested nor uninterested (2), uninterested (1), strongly
uninterested (0) or no rating (-1). P@5 is the main metric used for evaluation of the systems [1]. Mean
reciprocal rank and modified version of time-based gain are other metrics used.

2 Setting Up the Server

To receive requests from users and to respond to these requests, a simple server was set up in python. To
ensure that we could make changes to the server at any point during the live experiment without losing
any requests we had two servers running with two different run IDs - WaterlooRunA and WaterlooRunB.
However, the two runs had exactly similar scripts and the second one was created only for backup and
for updating servers at any point if necessary.

1https://sites.google.com/site/treccontext/trec-2015/trec-2015-contextual-suggestion-track-guidelines

1

3 Gathering Data for Candidate Suggestions

The track organizers had released a total collection of approximately 1.2 million candidate points of
interests for all the 272 context cities put together. Each candidate point of interest had an attraction
ID, a context city ID, a title, and a URL. Collection of information for each of these candidate points of
interest and techniques used for filtering out some of these candidates are discussed in this section.

3.1 Crawling Provided URLs

The home page of an attraction is expected to contain content that is highly relevant to the attraction.
Further more, a large number of URLs from the provided collection were from standard tourist APIs
such as Yelp2, Foursquare3 and Tripadvisor4. In such cases in particular, all the relevant information
about the attraction is found at the given URL and any information on linked pages may not be relevant
at all. Thus, we only gather content directly from the webpage pointed to by the provided URLs without
downloading any content from linked pages. This downloaded content was used for extracting some key
information (see Section 3.2) and also for filtering out some of the candidate suggestions (see Section
3.4).

3.2 Crawling Yelp, Foursquare and Tripadvisor

The majority of the URLs in the candidate suggestions belonged to either of these sources - Yelp,
Foursquare or Tripadvisor. Web pages retrieved from these sources contain valuable information about
each attraction such as a list of category, average user rating, tips, reviews etc. For each of the candidate
attractions, we parsed the downloaded content to extract a set of category tags Ca and an average user
rating ra.

3.3 Additional Crawls

For those points of interests whose URLs were not from sources such as Yelp, Foursquare or Tripadvisor,
we extracted relevant Foursquare URLs by searching against Bing5. The key phrase for this search
included the title of the attraction followed by the keyword “Foursquare”. Once the relevant Foursquare
pages were retrieved, category tags Ca and average user rating ra for each of the attractions were
extracted (similar to Section 3.2).

3.4 Candidate Suggestions Filtering

Prior to the start of the live session, participants of the track were allowed to register their system for
a test period to ensure that their system was working as required and to get some reliable feedback
from the users to improve the design of the suggestion system if desired. From the responses that we
received during the testing period, we had observed that a small number of the suggestions made by our
system were rated -1. These suggestions mainly involved points of interests whose associated URLs were
in Spanish, French and other non-English languages. These URLs and consequently the related points
of interest were filtered out by using the python language detection package - langdetect6. Downloaded
content from the URLs was used for this language detection, helping retain only those with English
content.

The collection also included several duplicates. These were filtered out by searching for duplicate attrac-
tion titles and also duplicate URLs within the same context city.

2www.yelp.com
3www.foursquare.com
4www.tripadvisor.com
5https://www.bing.com/
6https://pypi.python.org/pypi/langdetect

2

4 Contextual Suggestions

Based on the information collected for each of the possible location IDs, the task requires us to construct a
ranked list of attractions. For this, we designed a scoring function to quantify the likelihood that a specific
user would rate a specific attraction highly and then ranked the candidates accordingly. We define our
ranking in Section 4.1 and describe its offline and online computation components in Sections 4.2 and 4.3,
respectively.

4.1 Ranking Definition

To compute a suitable ranking of the attractions for the suggestion, we use the following three pieces of
information:

• the user’s preferences P(u) given in the request, as well as

• the average online rating ra and

• the set of category tags Ca associated with each attraction.

The ranking process consists of following two steps which we explain in more detail in the following
subsections.

1. Construct a user profile for u from the list his/her preferences P(u).

2. Use the profile to compute a scoring function σ(u, a, t) hat quantifies the likelihood of user u would
rate a specific attraction highly and use it to construct a candidate ranking.

4.1.1 User Profile

Recall that every request contains user preferences in form of ratings (-1,0,1,2,3,4) for a subset of A.
For each incoming request, we divide the set of all rated attractions into those like (rating 3 or 4) and
disliked (rating less than 2) by the user and store their ids as A+(u) and A−(u), respectively. We define
C+(u) (C−(u)) as the set of all categories included in at least one of the attractions liked (disliked) by
u. In other words:

C+(u) :=
⋃

a∈A+(u)

Ca.

Liked categories C+(u) and disliked C−(u) together build the user profile.

4.1.2 Scoring Function and Ranking

We define σ(u, a, a) s the number of category tags that are both considered to be descriptive of attraction
a and liked by user u, i.e.:

σ(u, a) = |C+(u) ∩ Ca|
The output ranking consists of the top 50 elements in the list resulting from sorting all candidate
attractions Ai for location id i lexicographically by (σ(u, a), ra).

4.2 Offline Computation: Data Preparation

The contextual suggestion task required us to respond to a request within 60 seconds. Due to this time
constraint, we chose to implement a very simple ranking procedure and pre-processed the collected data
sets as follows.

4.2.1 Fast Information Access

In order to have quick access to the information required for the ranking, we created the following two
dictionaries and stored them in json format:

1. A dictionary containing all category tags Ca for each attraction a in A indexed by its id, and

2. a dictionary containing the average online user rating ra for each attraction a in A indexed by its
id.

3

4.2.2 Candidate Selection

The list of all possible attraction ids to choose from for the suggestions contains over 1.2 Million elements.
As a result, online computation of the above defined score and ranking of all possible candidates was
intractable. Instead, for every possible location id i, we pre-compiled the list Ai of all attractions
associated with location i and restricted our attraction suggestions to this list. In addition, we pre-
sorted the attractions a in Ai by their average rating ra and stored the top 100 attractions in a sorted
list called Ranked Cand(i).

Note that Ranked Cand(i) can be used as a default ranking for the suggestion. In fact, if the list of
user prefences P(u) is empty, the desired ranking contains exactly the top 50 elements of Ranked Cand(i)
.

4.3 Online Computation: Personalized Ranking

The part of the ranking that cannot be computed in a pre-processing is the personalization component.
When receiving a request including location id i and user id u, we computed the output ranking as
follows.

1. We used the category dictionaries to Compute C+(u) for user u.

2. We computed σ(u, a) as defined above for all candidates in Ai.

3. We sorted the pre-ranked set of candidates Ranked Cand(i) by σ(u, a), which gave use the desired
lexicographical ordering.

4. Output the top 50 elements in the resulting ranking.

5 Ideas for the Future

In the previous sections we described the components implemented by our contextual suggestion system.
We believe that the proposed ranking strategy suffices to produce adequate personalized recommenda-
tions in an online setting. However, there are many ways to improve the system. In the following list we
propose possible improvements, which could be explored and incorporated in future work.

• In addition to the specific user profiles built for an online request, one could compute average
user profiles based on data available from previously completed TREC runs. These profiles can
be used to estimate the likelihood that an average person likes an attraction associated with a
specific category. We recommend taking this likelihood into account when constructing contextual
suggestions. As an example, consider the observation that most Americans like going to American
Restaurants. Even if we do not know much about a specific user for which we want to make a
suggestions (i.e. the user’s preference list is sparse), then suggesting an American Restaurant is
still likely going to be a good choice. On the other hand, if the categories associated with a certain
attraction a are not very popular among an average user, then we should include a in the list of
suggestions for user u only if the user’s preferences reflect a liking for these categories. For instance,
recommending a tatoo parlour to an average person might not be a good idea even if the tatoo
parlour received exceptionally high online ratings.

• Another way to improve the ranking results could be to refine the primary scoring function σ(u, a).
So far we only compute the size of the overlap (#categories) between the categories liked by the
user u and the categories associated with attraction a. Instead, one could explore the effectiveness
of the following ranking method:

1. For each category c, let `(c, u) be the number of times that user u liked an attraction associated
with c in their preferences, i.e. `(c, u) := |{a ∈ P+(u) : c ∈ Ca}|.

2. Use σ̄(u, a) =
∏

c∈Ca

`c
|P+(u)| instead of σ(u, a) as the primary score for the ranking.

Note that there are many similar variants of this method that also take the frequency of category
overlap into account, which might be worth exploring.

4

• One could also use additional context information such as the season in which the request is made to
pre-filter the candidate lists. For example, a ski resort should only be suggested for a trip that takes
place in the winter. Since this filtering requires the availability of additional information about
when each attraction is available, we decided to leave this step as future work. Note however, that
a subset of the data we crawled already includes this kind of information. We suggest incorporating
these facts into the offline candidate selection step where possible.

References

[1] A. Dean-Hall, C. L. Clarke, J. Kamps, and P. Thomas. Evaluating contextual suggestion.

[2] A. Dean-Hall, C. L. A. Clarke, J. Kamps, P. Thomas, and E. M. Voorhees. Overview of the TREC
2012 contextual suggestion track. In E. M. Voorhees and L. P. Buckland, editors, Proceedings of The
Twenty-First Text REtrieval Conference, TREC 2012, Gaithersburg, Maryland, USA, November 6-9,
2012, volume Special Publication 500-298. National Institute of Standards and Technology (NIST),
2012.

[3] A. Dean-Hall, C. L. A. Clarke, J. Kamps, P. Thomas, and E. M. Voorhees. Overview of the TREC
2014 contextual suggestion track. In E. M. Voorhees and A. Ellis, editors, Proceedings of The Twenty-
Third Text REtrieval Conference, TREC 2014, Gaithersburg, Maryland, USA, November 19-21, 2014,
volume Special Publication 500-308. National Institute of Standards and Technology (NIST), 2014.

[4] A. Dean-Hall, C. L. A. Clarke, N. Simone, J. Kamps, P. Thomas, and E. M. Voorhees. Overview of
the TREC 2013 contextual suggestion track. In E. M. Voorhees, editor, Proceedings of The Twenty-
Second Text REtrieval Conference, TREC 2013, Gaithersburg, Maryland, USA, November 19-22,
2013, volume Special Publication 500-302. National Institute of Standards and Technology (NIST),
2013.

5

