
University of Waterloo at TREC 2015 Microblog Track

Luchen Tan Adam Roegiest Charles L.A. Clarke
School of Computer Science

University of Waterloo, Canada
{luchen.tan, aroegies, claclark}@uwaterloo.ca

ABSTRACT
Given a topic with title, narrative and description, we start
by building a language model for the topic. The top 1000
tweets were retrieved from Twitter commercial search en-
gine by applying the title of the topic as a query. We exploit
pseudo relevance feedback technologies to estimate probabil-
ity distributions of each term in the topic, then comparing
these probabilities with a background distribution model.
We select the highest different terms as our expanded query
terms. We then generate a vector for each topic, the features
of the vector are non-stop word title terms, selected narra-
tive terms and query expansion terms. Different weights
are assigned to the different types of terms. Since we are
allowed to deliver at most 10 tweets every day, and the la-
tency time can not exceed 100 minutes, we solve the tweet
notification scenario as a multiple-choice secretary problem.
Two different solutions were tested.

1. INTRODUCTION
TREC 2015 Microblog Track included a completely different
task from previous years, which was the real-time filtering
task. The goal of this task was to monitor the real Twitter
streaming data and determine whether or not to push each
tweet to a user. Each user’s interest profile was given in the
format of a traditional TREC topic; below is an example:

<top>
<num> Number: MB10001
<title> crossword puzzle tournaments
<desc> Description:
Return announcements of and commentary
regarding crossword puzzle tournaments.
<narr> Narrative:
The user likes to do crossword puzzles
and intends to participate in upcoming
crossword puzzle tournaments. She wants
to see any Tweets that relate to a
tournament: Tweets that announce a
tournament or give logistical information;
Tweets about a tournament from its
participants including Tweets that express

anticipation of the tournament or
travelling to/from the tournament;
Tweets that comment on the quality
of a tournament; etc.
</top>

Two task models were provided:

• Scenario A: Push notifications on a mobile phone.
Participating systems should identify interesting tweets
based on the user’s interest profile(topic), and deter-
mine whether or not to push a notification to the user’s
mobile phone. Such notification is expected to be trig-
gered within 100 minutes after the tweet is created. A
maximum of 10 tweets is allowed to be pushed by a
system to a single user per day.

• Scenario B: Periodic email digest. Participating Sys-
tems should identify tweets based on the user’s interest
profile, and aggregate them into an email. The email
should be periodically sent (i.e. every day) to the user.

Scenario A is a real-time filtering task, but it does not re-
quire an on-line decision. It means that participating sys-
tems do not need to decide whether or not push notification
for a tweet before seeing the subsequent tweets. A 100-
minute latency time is permitted. Thus, in addition to the
normal retrieval processes, the choice of pushing strategy is
also significant. However, Scenario B is more like a retrieval
task based on a one-day tweet collection.

In this report, we describe our algorithm, decision and strate-
gies of solving these two tasks.

2. PRE-PROCESSING TWEETS
Tweets are relative short and informally written. To better
understand tweets, a tokenizer that was designed for En-
glish Twitter text was used. We applied a simple method to
remove non-English tweets and partially kept retweets. No
stemming or stop word removal was utilized on tweets, but
tweet quality was considered.

2.1 Language detection and Retweets
Tweets written in a language other than English would be
judged as not relevant based on guidelines of Microblog
Track. To obtain only English tweets, we read the language
tag for each tweet feed by the streaming API, and only kept

the English ones. In addition, we remove all NON-ASCII
characters from the tweets, which also helps remove non-
English tweets. The treatment of retweets is different from
previous years. The retweets returned will be replaced by
the original tweets that were retweeted. In this case, all
additional commentary in the tweets will be ignored, and
created time will be considered as the original tweets’ time.
Thus, there will still be high risk to return a retweet given
the original tweets are posted older than the retweets. In
our submitted runs, we ignore all retweets in Scenario A
and keep them in Scenario B.

2.2 Tokenizer
Our tokenizer was based on Twokenize, which is a tok-
enizer designed specific for English tweet text. It is part
of CMU’s Tweet NLP project1. For the hashtags, we kept
the base term without the ’#’ symbol as a token, as well as
the hashtags themselves. Since tweets are short, the tokens
were treated as token set, which means each token was only
counted once in each tweet.

2.3 Tweet Quality
With a tweet quality filter, we can filter out low quality
tweets and some of junk tweets. Although tweets are at
most 140 characters, short tweets are hard to extract topics
from. We set an arbitrary threshold to detect high quality
tweets, such that, any tweet that has fewer than 5 tokens,
or tweets with more than three hashtags are treated as low
quality tweets. These low quality tweets will be ignored.

3. USER PROFILES
User profiles are made up of three fields: titles, descrip-
tions and narratives. Titles contain several key words or
key phrases; descriptions are one-sentence statements of the
users’ information needs; narratives are paragraph-length
descriptions of the tweets that the users want to receive. To
implement the filtering tasks, we built a term vector for each
user profile, and assigned different weights to different types
of terms.

3.1 Feature Vector
Titles were tokenized by space and punctuation. The stop
words were removed from these tokens. Additionally, for
noun tokens, derived both singular and plural forms of these
noun tokens. We processed the title of each user profile, and
added processed tokens to the feature vectors of this user
profile. To extract important words from descriptions and
narratives. we applied a pointwise K-L divergence method [2,
3], which was also applied later in the process to generate
expansion terms. We took all the 225 user profiles as a
background model. For each user profile, description and
narrative sentences were combined together as a foreground
model of the profile. To discover the most significant tokens
in each user profile, we calculated pointwise K-L divergence
and ranked the scores for each token in the profile:

pt log(pt/qt), (1)

where pt is the relative frequency of term t in the profile
foreground model and qt is the relative frequency of term t
in the overall background model. We took the top-10 terms

1http://www.ark.cs.cmu.edu/TweetNLP

from this ranking to form a set important narrative and
description terms. In the runs that used narratives and de-
scriptions, these terms were added to the feature vectors.

3.2 Pseudo-Relevance Feedback
We utilized the same idea of pointwise K-L divergence to
generate expansion terms from pseudo-relevance feedback.
We took a large collection of historical tweets as our back-
ground model. The collection was collected through the
Twitter Streaming API from November 2013 to March 2015.
We restricted the collection to English-language tweets on
the basis of the language field associated with each tweet.
There are in total approximately 291 million tweets in the
collection. To build a foreground model for each user profile,
we took the title terms as query, and searched the query in
Twitter search engine. The top 1000 tweets were crawled
on the search result pages as our foreground model. In the
top retrieved tweets, URLs in each tweet were replaced by
their web page titles, if the <title> tag existed in the HTML
source of the web pages. To keep the foreground models up-
to-date, we re-built the foreground models every day during
the evaluation period. A ranking of terms can be generated
by the scores for each term in each foreground model. We
took the top-10 normal terms and top-5 hashtags from the
ranking and added them to the feature vector of each profile.

4. RELEVANCE SCORING
A simple vector space model was applied to calculate rele-
vance score between each incoming tweet and each user pro-
file. We set arbitrary weights to different types of feature
terms based on our previous experience. There were three
types of feature terms: title, narrative+description, expan-
sion. We denote types of feature terms by i = {t, n, e},
where t stands for title, n stands for narrative+description
and e stands for expansion.

rel =

∑
i={t,n,e} wi ∗Ni

Nt
|T |

(2)

Here, wi denotes the weight for type i and Ni stands for
the number of times type i feature terms appeared in the
tweet. In the denominator, we normalized the score by ra-
tio of title terms appeared in the tweet, where |T | denotes
the total number of title terms of the user profile. We as-
sumed that the more title terms appeared in the tweet, the
more relevant the tweet would be. A naive and arbitrary
method of deduplicating tweets was applied, which simply
the unigram token overlap between candidate and previously
pushed tweets. Two tweets with over sixty percent of over-
lapping unigrams would be counted as similar tweets.

5. PUSH NOTIFICATION STRATEGIES
The secretary problem is a famous optimal stopping prob-
lem. The basic form is described as hiring the best secretary
out of n rankable applicants for a position. The applicants
are interviewed one by one and the employee has to make im-
mediate decision after each interview. An applicant cannot
be recalled once rejected. A variation problem of multiple-
choice secretary problem [1, 4] is that up to k secretaries
are allowed to be hired during the interview period. A de-
cision need not be made immediately after each interview.
But it’s better to be as fast as possible. We determined

Strategy RunID ELG nCG
Title only+Dynamic Emission UWaterlooATDK 0.3150 (0.2366 - 0.3933) 0.2679 (0.1864 - 0.3494)

Title only+Fix time UWaterlooATEK 0.2654† (0.1892 - 0.3415) 0.2365† (0.1576 - 0.3154)
Title+Narrative+Description+Fix time UWaterlooATNDEK 0.2470† (0.1796 - 0.3144) 0.2170† (0.1474 - 0.2865)

Table 1: Results for Scenario A (push notification) for submitted runs with 95% confidence intervals. †
denotes p < 0.01 in a paired t-test with run UWaterlooATDK.

Strategy RunID nDCG
Title only UWaterlooBT 0.2200 (0.1684 - 0.2716)

Title+Narrative+Description UWaterlooBTND 0.2196 (0.1682 - 0.2710)

Table 2: Results for Scenarion B (email digest) for submitted runs with 95% Confidence Intervals.

the Scenario A is a instance of the multiple-choice secretary
problem. Two different strategies were tested by our system.

5.1 Strategy #1: Fix Time Window
Under this algorithm, we returned tweets periodically. A
threshold based on historical results was set for each user
profile, which was the score of the top 50th ranked tweet re-
turned in the previous day. Every day during the evalusation
period, we updated the threshold. We selected the highest
score in tweet that was also higher than the threshold in
every k minutes, where k was smaller than 100 minutes.
Pushed tweets not be redundant were those that were not
previously returned nor were they redundant. If there was
not any tweet returned during a k minute window, the slot
would be carried to the next k minute window. Whenever
we had returned 10 tweets of the profile one day, we would
stop returning for that day.

5.2 Strategy #2: Dynamic Emission
Our second algorithm used two thresholds for each user pro-
file: k0, and k1, where k0 6 k1. k0 was the lower bound of
relevant scores for the profile. Here we made several assump-
tions: any tweet that had score higher than k1 was relevant
to the user’s information need; tweets that were scored lower
than k0 was not relevant; tweets with scores between k0 and
k1 were considered potentially relevant. The value of k0 and
k1 were based on the scores of returned tweet in the pre-
vious day, and would be updated every night. A dynamic
k minute window was used for this algorithm. Algorithm 1
shows the strategy we applied.

6. RESULTS
For Scenario A, Table 1 reports the performance of our three
submitted runs with 95% confidence intervals and the results
of conducting pairwise t-tests (where p < 0.01) between all
runs2. As it turns out, UWaterlooATEK significantly out-
performs both other runs, indicating that the dynamic emis-
sion strategy was successful in identifying relevant tweets.
The results for Scenario A also indicates that using all parts
of the information profile may not be of benefit and their
inclusion may in fact negatively impact performance. Al-
though, this impact was not significant between UWater-
looATEK and UWaterlooATNDEK.

Table 2 reports our results for Scenario B, which simulated
an email digest of interesting tweets. The results for Scenario

2No multiple hypothesis correction was performed.

B are not all that surprising and are inline with what we
observed for Scenario A. That is, inclusing of the narrative
and description fields did not aid performance. Furthermore,
our approach for Scenario B of returning tweets for the sake
of returning tweets was likely less than ideal and we should
have likely adopted a more conservative strategy as we did
in Scenario A.

7. CONCLUSIONS
In this work we presented a method for doing dynamic tweet
emission in a real-time scenario based upon infomration pro-
files. We have observed that making use of all pieces of an
information profile may not be of much benefit over just
using the title alone. In addition, using this dynamic tweet
emission algorithm was significantly better than either other
simple fixed emission solution. In spite of its relatively sim-
ple nature, the good performance of the dynamic emission
strategy bodes well for future work that explores the pa-
rameter space better than we were able to do for TREC this
year.

8. REFERENCES
[1] R. Kleinberg. A multiple-choice secretary algorithm

with applications to online auctions. In Proceedings of
the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 630–631. Society for
Industrial and Applied Mathematics, 2005.

[2] L. Tan and C. L. Clarke. Succinct queries for linking
and tracking news in social media. In Proceedings of the
23rd ACM International Conference on Conference on
Information and Knowledge Management, pages
1883–1886. ACM, 2014.

[3] T. Tomokiyo and M. Hurst. A language model
approach to keyphrase extraction. In Proceedings of the
ACL 2003 workshop on Multiword expressions:
analysis, acquisition and treatment-Volume 18, pages
33–40. Association for Computational Linguistics, 2003.

[4] X. Zhao and K. Tajima. Online retweet
recommendation with item count limits. In Web
Intelligence (WI) and Intelligent Agent Technologies
(IAT), 2014 IEEE/WIC/ACM International Joint
Conferences on, volume 1, pages 282–289. IEEE, 2014.

Data: Streaming of tweets
Result: Relevant tweets to the user profile
begin

max waiting ←− k mins
cur time←− now
last time←− cur time−max waiting
time out←− 0
k0 ←− score of top10 tweet yesterday
k1 ←− score of top5 tweet yesterday
candidate←− highest score tweet between cur time and last time with score > k0
while True do

curr ←− highest score tweet between now and last time with score > k0
curr time←− time of curr
/* If a tweet has score greater than k1, report it immediately, and restart the waiting

window. */
if curr > k1 then

Report curr
last time←− curr time
time out←− 0

end
/* If a tweet is better than the candidate tweet, replace the candidate with the

current tweet, and restart the waiting window. */
else if curr > candidate then

candidate←− curr
last time←− curr time
time out←− 0

end
/* If a tweet is worse than the candidate tweet. */
else

/* Have not reached maximum waiting time, keep waiting */
if time out < max waiting then

time out←− now − curr time
end
/* Report the candidate, which is the best one during the waiting window. Then

restart the waiting window. */
else

Report candidate
last time←− now
time out←− 0

end

end

end

end

Algorithm 1: Dynamic Tweet Emission Algorithm

