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ABSTRACT
This technical report presents the work of the University of
Lugano at TREC 2015 Contextual Suggestion and Tempo-
ral Summarization tracks. The first track that we report on,
is the Contextual Suggestion. The goal of the Contextual
Suggestion track is to develop systems that could generate
user-specific suggestions that a user might potentially like.
Our proposed method attempts to model the users’ behav-
ior and interest using a classifier, and enrich the basic model
using additional data sources. Our results illustrate that our
proposed method performed very well in terms of all used
evaluation metrics. The second track that we report on, is
the Temporal Summarization that aims to develop systems
that can detect useful, new, and timely updates about a cer-
tain event. Our proposed method selects sentences that are
relevant and novel to a specific event with the aim to cre-
ate a summary for this event. The results showed that the
proposed method is very e↵ective in terms of Latency Com-
prehensiveness (LC). However, the approach did not manage
to obtain a good performance in terms of Expected Latency
Gain (ELG).

Keywords: contextual suggestion, user modeling, SVM,
temporal summarization, TREC, DFR

1. INTRODUCTION
This paper describes the participation of the University of
Lugano (USI) at TREC 2015 Contextual Suggestion1[3] as
well as the Temporal Summarization 2 track. This year’s
Contextual Suggestion track consisted of two tasks, namely,
Task 1: Live Experiment and Task 2: Batch Experiment.
We participated in the later task. In this task, for each
user contexts and profiles are defined. Each profile consists
of 60 places and the user’s opinion regarding them. Addi-
tionally, We were provided with a list of 30 candidate sug-

1
https://sites.google.com/site/treccontext/

2
http://www.trec-ts.org/

gestions and our task was to rank them. To address this
task, we crawled all the main sources of information (i.e.
Yelp, Foursquare, and TripAdvisor) to possibly build the
most comprehensive dataset of attractions. We then built
user model using machine learning classification. Further-
more, we enriched the basic model by combining simple yet
e↵ective additional measures with the base user model.

For this year’s Temporal Summarization track, two tasks
were defined: Task 1: Filtering and Summarization and
Task 2: Summarization Only. We participated in the first
task. For this task we were provided with high-volume
streams of news articles and blog posts crawled from the
Web regarding a set of specific events. The aim of the task
was to process the streams in time order, filter out irrelevant
content and then select the appropriate sentences that could
summarize each event over time. The sentences were to be
selected on the basis of being relevant, novel and important
regarding a given event [2]. To address the task, we ap-
plied the Divergence From Randomness (DFR) Framework
and particular InL2 model proposed by Amati and Van Ri-
jsbergen [1] to calculate the relevance of a sentence given a
topic. We also used query expansion to address the problem
of word mismatch. To calculate the novelty of a candidate
sentence, we leveraged the number of unique terms between
the sentence and the summary already produced. We also
considered di↵erent approaches to determine the number of
sentences selected each time. We explored three di↵erent ap-
proaches: increasing the number of sentences as time passes,
decreasing the number of sentences as time passes and se-
lecting a stable number of sentences as time passes.

2. CONTEXTUAL SUGGESTION
In this task we modeled users with making use of Yelp data
and we further enriched these models using data from other
data sources. We used classifiers to model users’ behavior
and we enriched user models by combining other measures.
Our system generally consists of four modules:

• Information gathering

• User modeling

• User model enrichment

• Suggestion ranking

Our system execution cycle starts with the data collection
module. This module collects data such that data from the



most important data sources, namely, Yelp, Foursquare, and
TripAdvisor are gathered. Using the gathered data, the user
modeling module, creates a basic user model per user. Fur-
thermore, the model enrichment module aims at improving
the user models by fusing additional measures such as user
category profile and Foursquare taste tag models with the
basic models. Subsequently, by using the enriched models
the suggestion ranking module ranks all candidate places. In
the following subsections we elaborate on each component
in greater detail.

2.1 Information Gathering
Considering that we participated in the batch experiments,
we were provided with users’ history and the attractions to
be ranked. Thus, the number of links presenting attractions
that we had to process was reduced to virtually 9000. Since,
the task of suggesting places per each given user was limited
to 30 attractions, it was crucial not to miss any information
relevant to the target attractions. Additionally, although al-
most half of the URLs was from known sources such as Yelp
and Foursquare, another half of the URLs we were provided,
was from less known websites (e.g. the places’ o�cial web
pages). Consequently, e↵ort was made to find the corre-
sponding profiles of these places on Yelp, Foursquare, and
TripAdvisor. To collect data we performed the following
steps:

1. We discard the attractions that users assigned them
a score of ’�1’ or ’2’. This is due to the fact that
these places either weren’t assigned any ratings or their
rating was neutral, thus insignificant.

2. We detect and discard broken links.

3. We download the links from the known sources, namely,
Yelp, Foursquare, and TripAdvisor.

4. For each attraction on each of the above-mentioned
sources we find the corresponding profiles on the other
two sources. (e.g. for a given Yelp profile, we find
its corresponding profiles on Foursquare and TripAd-
visor).

5. For the other attractions with unknown links, we down-
load the web pages, analyze their contents to find their
corresponding profiles on the three above-mentioned
websites.

Following the above steps, we crawled homogeneous data for
virtually all given attractions from the three websites. The
final layout of our dataset is as follows:

• Yelp

– Name

– Yelp URL

– Overall rating

– Categories

– Subcategories

– Reviews

⇤ Rating

⇤ Comment

⇤ Date

⇤ . . .

– . . .

• Foursquare

– . . .

– Tips

– Visits

– Visitors

– . . .

• TripAdvisor

– . . .

– Dining options

– Rating summary

– Attraction ranking

– . . .

2.2 User Modeling
We model each user by training a classifier using example
suggestions. Our intuition is that a user’s opinion regarding
an attraction could be learned based on the opinions of other
users who gave the same rating as the target user to the same
attraction. To train a classifier per user we extract negative
and positive samples as explained in the following:

• Positive samples: We elicit the positive reviews of
positive example suggestions.

• Negative samples: Likewise, we elicit the negative
reviews of negative example suggestions.

We define positive example suggestions as the attractions
which a user rated 3 or 4. Positive reviews are the reviews
whose corresponding ratings are 3 or 4. Analogously, neg-
ative example suggestions and reviews are defined, taking
ratings of 0 and 1 as negative.

We use Support Vector Machine (SVM) and Naive Bayes
(NB) as the classifiers of our choice. We train these classifiers
using TF-IDF measures as feature vectors.

2.3 User Model Enrichment
This module takes as input the created user model and fur-
ther enriches them using the following algorithm:

1. For each user and for each place we create an index of
all the categories (e.g. Italian Restaurant), based on
Yelp data, he/she has referred to as positive or nega-
tive.

2. Then we compute the normalized count per category
and add it to positive or negative user models.



3. By having all normalized counts per category for both
the positive and negative models for all places, we com-
pute two negative and positive vectors which represent
the user’s interests in various categories.

4. Finally, for a given place in which we would like to
predict the level of user’s interest, we sum up all the
normalized scores for all the existing categories for the
place (UI). The result would be a score between ’�1’
and ’+1’

We follow the above procedure to compute a similar inter-
est score based on the taste tags regarding each place on
Foursquare (UF ). Likewise, a third score is computed based
on the categories of TripAdvisor (UT ).

Foursquare taste tags are special terms extracted from users’
tips3 and are very informative. For example, ’Central Park’
in ’New York’ is described by these taste terms: picnics,
biking, trails, park, scenic views, etc. These terms are very
informative and often express characteristics of an attrac-
tion. Therefore, they can be considered as categories.

2.4 Suggestion Ranking
We estimate the similarity between each user and a candi-
date suggestion using the equation below:

Similarity(u, p) = !1UC(u, p) + !2UI(u, p)+

!3UF (u, p) + !4UT (u, p)
(1)

Where !1...4 are the weights assigned to these scores, u is
a given user, p is a given attraction, and UC is the confi-
dence score of the classifier which models a user. To find the
optimum setting for the weights associated with each score,
we conducted a 5-fold cross validation, for which the best
setting is:

!1 = 1 !2 = 1 !3 = 0.3 !4 = 0.3

We rank the candidate suggestions according to the simi-
larity measure computed by this module. The higher the
similarity score, the higher the rank would be.

2.5 Experimental Results
By applying our method to our gathered dataset, we sub-
mitted two runs: ’11 ’ and ’22 ’. The two runs di↵er from
one another merely in that, run ’11 ’ utilizes an SVM classi-
fier while ’22 ’ is based on a NB classifier. The best sets of
configuration parameters for the classifiers and equation (1)
were obtained based on a 5-fold cross validation.

In this year’s task, we were given 211 profile/context pairs.
For each pair a user’s history was 60 places and the number
of candidate suggestions to be ranked were 30. How interest-
ing a website is, has a scale from ’0’ up to ’4’, with ’0’ being
the least interesting, ’2’ neutral, and ’4’ the most interest-
ing. Track organizers evaluated all submitted runs using two
evaluation metrics, namely, P@5 (precision at 5) and MRR
(mean reciprocal rank). In this evaluation, a suggestion is
relevant if it is rated 3 or 4 by user.

3Tips on Foursquare are short reviews written by users.

Table 1: Overall Average Performances
Runs P@5 MRR
11 0.5858 0.7404
22 0.5450 0.6991
TREC Median 0.5090 0.6716

Table 1 demonstrates the overall average performances of
our runs. It could be seen that both of our runs outperform
the median performance of all submitted runs by other con-
testants, which confirms the e↵ectiveness of the user model-
ing and enrichment method we proposed in this work. How-
ever, our run ’11’ performs better than the other, which
proves that in this task, an SVM classifier is a more power-
ful tool for building the basic user model.

Furthermore, the optimal parameter set, !1...4 indicates that
in our system the basic user model (UC) and category model
(UI) are more important, since their corresponding weights
are higher.

3. TEMPORAL SUMMARIZATION
In recent years, temporal summarizing received a lot of at-
tention in the research community. To address this problem,
a method should address three sub-problems: (a) relevance
of sentences by selecting those that are the most relevant
given an event, (b) novelty by selecting the sentences that
contain novel content and (b) importance by selecting the
sentences that a person would put into a summary. In terms
of relevance towards a given event, any IR relevance model
can be used. Previous studies have applied di↵erent tech-
niques including BM25 and vector space model [8]. To cal-
culate the novelty of a sentence, researchers usually measure
the text similarity between the candidate sentence and the
summary already produced and remove those that are too
similar [4]. Calculating importance is more challenging than
calculating relevance and novelty. In terms of importance,
Xu et al. [7] proposed a language model from named entities
to measure the sentence’s topical salience.

Another important challenge in the temporal summarization
is the number of sentences to select from each time interval.
Most of the approaches in the literature, select a stable num-
ber of sentences as time passes. Instead, McCreadie et al. [5]
considered to adjust the number of the selected sentences as
time passes. This idea is based to the fact that as time
passes, the need for new sentences is not the same. The
results showed that this approach performs well.

3.1 Methodology
When a user submits a query to a temporal summarization
system, it aims to identify the most relevant, novel and im-
portant sentences. In this section, we present our method-
ology.

3.1.1 Relevance

In order to rank the sentences by relevance, we applied the
Divergence From Randomness (DFR) Framework proposed
by Amati and Van Rijsbergen [1]. In particular, we applied
InL2 model since this model is e↵ective for tasks that require
early precision. DFR models are based on the idea that the



term-weight is inversely related to the probability of term-
frequency within the document d. In our case, we consider
each sentence s as a document. Therefore:

weight(t|s) =/ �logProbInL2(t 2 s|Collection) (2)

Based on the equation 2 we can then calculate the relevance
of the whole sentence s as follows:

Relevance(s) =
X

t2s

weight(t|s) (3)

When a term that is rare in the collection appears a lot in a
sentence, then this term has high probability to be informa-
tive for the topic discussed in the sentence. In other words,
if a term frequency is high, then the risk of not being in-
formative is low. In this case, equation 2 gives a high value
but a minimal risk provides a small information gain. Equa-
tion 2 is smoothed to consider the portion of weight which
represents the information gained with the term:

gain(t|s) = Prisk ⇤ (�logProbInL2(t 2 s|Collection)) (4)

In the equation 4 ProbInL2 represents the model of random-
ness and is calculated as:

�logProbInL2(t 2 s|Collection) = �log2
N + 1
nt + 0.5

where nt is the term frequency of the term t in the collection
and N is the number of documents in the collection.

To compute the information gain with a term within a sen-
tence, we use the Laplace model:

Prisk =
1

tf + 1

where tf is the term frequency of the term t in the sentence
s.

Before using the equation 4, the sentence length dl is nor-
malised to a standard length sl. The term frequencies are
calculated with respect to the standard sentence length, as:

tfn = tf ⇤ log(1 + c ⇤ sl

dl

)

3.1.2 Query Expansion

One frequent problem that hurts the performance of a re-
trieval system when returning relevant documents given a
query is word mismatch. This problem occurs because users
do not use the same words to form the query as those used
in relevant documents. To address this problem, we used
query expansion through which the query is expanded with
new terms and this possibly helps to retrieve more relevant
documents. For our experiments, we expanded the query
using the 5 most appeared words in the summary having
been already produced.

3.1.3 Novelty

Selecting the most relevant sentences is not enough for a
temporal summarization system. In addition to the rele-
vance, the system should also select the most novel sen-
tences. In order to measure the novelty of a sentence, we
computed the similarities between a candidate sentence and
the summary that was already produced (until the specific
timestamp). We applied a simple method that was based
on the number of unique terms of the candidate sentence
when compared to the generated summary. To present the
method more formally, we introduce some notation. Let Si

represent the summary produced until the timestamp ti and
si+1 a candidate sentence with a timestamp ti+1.

Novelty(s) = Novelty(si+1) =
NT (Si, si+1)

|si+1|

where NT (Si, si+1) is the number of unique terms in the
sentence si+1 when it is compared with the summary Si

already generated until the timestamp ti and |si+1| is the
length of the sentence si+1.

3.1.4 Combine Relevance and Novelty

As a last step, we need to combine the relevance and the
novelty of the sentences to produce the final ranking. We
factorize relevance and novelty as follows:

Score(d) = (�) ⇤Relevance(s) + (1� �) ⇤Novelty(s)

where Relevance(s) denotes the relevance of the sentence,
Novelty(si+1) denotes the amount of novelty in the sentence
si+1 compared to the summary Si and � 2 [0, 1].

Because of the lack of training data, it is not possible to
find the best parameter for �. Therefore, � is set to 0.5 so
relevance and novelty contribute equally to the final ranking.

3.2 Experiments
In this section, we present more details for our experiments.

3.2.1 Dataset

This year’s temporal summarization track was based on the
TREC KBA 2014 Stream Corpus. The corpus contains a set
of timestamped documents crawled from a variety of news
and social media sources. The documents in the corpus span
from October 2011 until April 2013. Each document in the
collection comprises of a set of sentences. Each sentence has
a unique identifier. Due to the size of the KBA 2014 corpus,
two smaller datasets were released: the TREC-TS-2015F
and the TREC-TS-2015F-RelOnly. The TREC-TS-2015F is
a pre-filtered dataset and contains for each event the top
documents from a high precision retrieval process. This
dataset is high-volume and contains a lot of irrelevant doc-
uments. The TREC-TS-2015F-RelOnly collection contains
manually selected documents for each event and therefore
does not need any filtering to remove the irrelevant content.

For our experiments we used the TREC-TS-2015F dataset
and participated in the filtering and summarization task.

This year’s task included 21 events, each of which repre-
sented by a set of features including title, description, start



time, end time, query and type. In this year’s task, the type
of the events could be any of bombing, accident, earthquake,
protest, storm, conflict.

3.2.2 Preprocessing

The TREC-TS-2015F corpus is about 38GB and needs pre-
processing. The overall process is as follows:

• Decrypt the file: After having downloaded the files, we
need to decrypt them. To decrypt the files, we use the
authorized key provided by the organizers. This step
converts the GPG file format to SC.

• Parsing: The SC files are then converted to TXT files.
We use the streamcorpus toolbox4 to parse the files.

• Index: The last step is to build the index. We index
the collection with the Terrier IR system5. Our prepro-
cessing also involves stop-word removal and stemming
using the Porter stemmer [6]. We consider each sen-
tence as a document and create separate indexes for
each timestamp.

3.2.3 Submitted Runs

We submitted seven runs for the filtering and summarization
task. For all the runs, we used the same approach to cal-
culate relevance and novelty in order to generate the final
ranking. For the relevance, we have used DFRInL2. The
novelty score is based on the number of novel terms that
each sentence has compared to the terms of the summary
that was already produced until the specific timestamp. The
runs di↵er in terms of how the number of sentences was de-
cided at each timestamp and the way that the first sentence
of the summary was selected. After having selected the first
sentence of the summary, we use query expansion for the
rest of the blocks. For the query expansion, we use the top
5 most frequent terms of the summary already produced.
Here we present details of our pooled runs:

• InL2DecrQE1ID1: For this run the number of sen-
tences selected each hour decreases as time passes.
The first sentence of a summary should contain all the
query terms.

• InL2DecrQE2ID2: For this run the number of sen-
tences selected each hour decreases as time passes. The
first sentence of a summary may contain any of the
query terms.

• InL2StabQE2ID3: For this run the number of sen-
tences selected each hour is the same for every block
and depends on the number of time blocks per event.
The first sentence of a summary may contain any of
the query terms.

• InL2IncrQE2ID4: For this run the number of sentences
selected each hour increases as time passes. The first
sentence of a summary may contain any of the query
terms.

4http://streamcorpus.org/
5Available at: http://terrier.org/

3.2.4 Evaluation Metrics

To evaluate the e↵ectiveness of the systems, track organizers
define two metrics: the Expected Latency Gain (ELG) and
the Latency Comprehensiveness (LC) which are similar to
the traditional IR metrics Precision and Recall respectively.
ELG measures the sum of latency-discounted relevance of
he nuggets for which that update is the earliest issued. LC
measures the nugget recall over all updates issued, where
the score for a nugget is not considered if it is reported late.
Systems are ranked based on the harmonic mean between
ELG and LC, denoted as H.

3.2.5 Results

Table 2 reports the performance of our pooled runs for the
Filtering and Summarization task in terms of ELG, LC and
H for the task filtering and summarization.

Table 2: Results of our runs
ELG LC H

InL2DecrQE1ID1 0.0185 0.3203 0.0184
InL2DecrQE2ID2 0.0089 0.3284 0.0172
InL2StabQE2ID3 0.0082 0.3225 0.0159
InL2IncrQE2ID4 0.0053 0.1848 0.0101
ALL submitted runs 0.0483 0.2381 0.0612

The results show that all our submitted runs submitted very
well in terms of LC. That means that we manage to detect
a good number of sentences that should be included in the
summary. However, we do not perform well in terms of
ELG. This suggests that our produced summaries include a
lot sentences that should not be part of the summary. We
believe that one reason for that is that we did not consider
importance at all. Trying better techniques to filter out the
irrelevant documents and measuring the importance of the
sentences are two directions we want to explore in the future.

4. CONCLUSIONS
In this technical report, we presented the methodology fol-
lowed for our participation in the 2015 Contextual Sugges-
tion and Temporal Summarization tracks. In the Contex-
tual Suggestion track, we showed that our method in rec-
ommending places to users based on their profiles is very
e↵ective. The approach we followed for the Temporal Sum-
marization track performed very well in respect to latency
comprehensiveness. However, it did not perform well in
terms of the expected latency gain. The results suggest that
we should modify our approach in a way that the expected
latency gain can be improved. One possible way is to also
consider the importance of the sentences.
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