
Query-expansion Approaches for Microblog Retrieval

Sandeep Avula
School of Information & Library Science

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

asandeep@live.unc.edu

Jaime Arguello
School of Information & Library Science

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA
jarguello@unc.edu

1. INTRODUCTION
The School of Information and Library Science at the Uni-

versity of North Carolina at Chapel Hill submitted three
runs to the “Scenario B” task of the TREC 2015 Microblog
Track. The task simulates a scenario where a user speci-
fies a topic of interest in the form of a keyword query and
the system produces daily updates with at most 100 tweets
about the topic of interest. Systems were responsible for
monitoring a stream of tweets and making daily predictions
for a set of 250 interest profiles. Each interest profile was in
the form of a short keyword query. Systems were asked to
produce a ranking of at most 100 tweets per interest profile
at the end of each day (shortly after midnight). The evalu-
ation period extended a 10-day period from July 20 to July
29, 2015. All tweets published between 00:00:00 to 23:59:59
UTC were valid candidates for each day of the evaluation
period.

Our team submitted three runs for “Scenario B”. All runs
were automatic runs and used the interest profile title field
as the input query. We explored three di↵erent ways of en-
riching the query representation through query expansion.
In two of our runs (UNCSILS WRM and UNCSILS TRM),
we scored tweets proportional to the negative KL-divergence
between a relevance model generated from an external col-
lection and the tweet language model. These two runs mainly
di↵er by the external collection used to generate a relevance
model for interest profile query. In our UNCSILS WRM
run, we used an external Wikipedia corpus, and in our UNC-
SILS TRM run, we used a corpus of tweets collected during
a three-week period prior to the evaluation period. In our
third run (UNCSILS HRM), we aimed to expand the query
with related hashtags.

2. SYSTEM OVERVIEW
We developed a system to run continuously throughout

the 10-day evaluation period. We used the infrastructure
provided by the Track organizers to sample the public Twit-
ter stream1, and we used Lucene2 to implement the indexing
and retrieval components.

The system operated on a daily cycle. At the start of each
day, a new index was created and tweets sampled during
the day were written to this index. Then at 23:59:59 UTC,
the system closed the index and sequentially executed our
three runs for all 250 profiles. Finally, after completing all
three runs, the system created a new daily index and began

1
https://github.com/lintool/twitter-tools

2
https://lucene.apache.org/

writing tweets to this new index. We did not store any of
the tweets that were sampled while the system executed our
three runs. However, our runs only took about 10 minutes
to complete, so it is unlikely that we missed indexing many
relevant tweets due to this gap. Queries and documents were
stemmed using the Porter stemmer [2] and stopped using the
SMART stopword list.3

During indexing, we used the following heuristics to filter
tweets not likely to be relevant to any interest profile:

• non-English tweets based on the Twitter API’s lan-
guage field;

• tweets with one or more swear words;
• tweets with more than three hashtags;
• tweets with more than one URL;
• tweets with more than one user mention;
• tweets without at a hashtag or URL;
• tweets that were more than 70% stopwords; and
• tweets with fewer than four tokens that were not URLs,

hashtags, and user mentions.

3. ALGORITHMS
Our three runs considered di↵erent external corpora for

query expansion. We first describe the base scoring func-
tion in Section 3.1 and our three query-expansion runs in
Sections 3.2-3.4.

3.1 Base Retrieval
For our“base”retrieval, we scored documents proportional

the negative KL-divergence between the query and docu-
ment language models:

score(Q,D) =
Y

w2V

P (w|✓̂D)P (w|✓Q).

Query language models were estimated using maximum like-
lihood:

P (w|✓Q) =
#(w,Q)

|Q| .

Document language models were estimated using Dirichlet
smoothing:

P (w|✓̂D) =
#(w,D) + µP (w|✓C)

|D|+ µ
,

where P (w|✓C) = #(w,C)
|C| .

3
ftp://ftp.cs.cornell.edu/pub/smart/english.stop

3.2 Wikipedia Relevance Model
For this run (UNCSILS WRM), we scored tweets propor-

tional to the negative KL-divergence between a relevance
model generated from Wikipedia and the tweet language
model:

score(Q,D) =
Y

w2V

P (w|✓̂D)P (w|✓̂wiki
Q). (1)

Tweet language models were Dirichlet-smoothed as described
in Section 3.1 and the Wikipedia relevance model was esti-
mated using Lavrenko’s Relevance Model RM3 [1].

Our implementation of Lavrenko’s Relevance Model RM3
proceeded in two steps. In the first step, we generated a
relevance model from the top-t Wikipedia results produced
using our base retrieval function from Section 3.1. We es-
timated the probability of word w in this relevance model
according to:

P (w|✓wiki
Q) =

1
Z

X

D2Rt

score(Q,D)⇥ P (w|✓̂D), (2)

where Rt denotes the top-t Wikipedia results and Z is a
normalizing constant:

Z =
X

D2Rt

score(Q,D).

In the second step, we interpolated this relevance model
(✓wiki

Q) with the original query language model (✓Q):

P (w|✓̂wiki
Q) = �P (w|✓Q) + (1� �)P (w|✓wiki

Q). (3)

We used the following parameter values. All document
language models were smoothed using Dirichlet smoothing
with µ = 1000. When generating the original relevance
model from Wikipedia (Equation 2), we set t = 10. More-
over, we used only the top-10 terms with the highest prob-
ability and re-normalized their probabilities. Finally, we in-
terpolated the Wikipedia relevance model with the original
query model (Equation 3) using � = 0.50.

3.3 Twitter Relevance Model
For this run (UNCSILS TRM), we build a relevance model

from a corpus of tweets gathered during a three-week pe-
riod before the evaluation period (from June 18 to July 12,
2015). Similar to the Wikipedia Relevance Model approach,
we scored tweets proportional to the negative KL-divergence
between a relevance model generated from our Twitter cor-
pus and the tweet language model:

score(Q,D) =
Y

w2V

P (w|✓̂D)P (w|✓̂tweet
Q). (4)

Our implementation of Lavrenko’s Relevance Model RM3
proceeded as described in Section 3.2. That is, we first esti-
mated a relevance model from our corpus of tweets (similar
to Equation 2) and then interpolated this relevance model
with the original query model (similar to Equation 3).

There was only one main di↵erence. Our corpus of tweets
had a large number of duplicates, which resulted in relevance
models with only a few terms. In order to discover a greater
number of terms related to the original query, we removed
duplicates from Rt by going down the ranking and filtering
tweets with a Jaccard coe�cient greater than or equal to
0.70 compared to a higher ranked tweet.

We used the same parameter values used in the previ-
ous run. All document language models were Dirichlet-
smoothed with µ = 1000. Furthermore, when generating
the relevance model from our corpus of tweets, we only used
the top-10 unfiltered tweets (t = 10) and the top-10 terms
(after re-normalizing their probabilities). We interpolated
the relevance model with the original query model using
� = 0.50.

3.4 Hashtag Expansion
In this approach (UNCSILS HRM), we aimed to expand

the original query with relevant hashtags. We used the same
corpus of tweets used in our Twitter Relevance Model ap-
proach.

The approach proceeded as follows. Our first goal was to
score hashtags based on their relevance to the original query.
To this end, we constructed an index of hashtag pseudo-
documents, where the text associated with each hashtag
pseudo-document was gathered from all tweets containing
the hashtag. Then, we built a relevance model of hashtags
based on the normalized query-likelihood score from each
hashtag’s language model. The probability of hashtag h in
this relevance model is given by:

P (h|✓hashQ) =
1
Z

Y

q2Q

#(q,H) + µP (q|✓CH)

|H|+ µ
.

Here, H denotes the pseudo-document associated with h,
CH denotes the collection of hashtag pseudo-documents, and
Z is a normalizing constant. In practice, we only considered
the top-10 hashtags and assigned to other hashtags a zero
probability.

Similar to the previous approaches, we then interpolated
our hashtag relevance model with the original query model:

P (w|✓̂hashQ) = �P (w|✓Q) + (1� �)P (w|✓hashQ), (5)

and scored tweets proportional to the negative KL diver-
gence between this interpolated model and the tweet lan-
guage model:

score(Q,D) =
Y

w2V

P (w|✓̂D)P (w|✓̂hashQ). (6)

3.5 Redundancy Filtering
The Track guidelines specified that the evaluation would

punish redundant tweets. To address this, for each runs’
daily output, we proceeded down the ranking and filtered
tweets with a Jaccard coe�cient greater than or equal to
0.70 compared to a higher-ranked tweet. For each run, the
system returned the top-100 unfiltered tweets.

4. RESULTS
The results for our three “Scenario B” runs are presented

in Table 1 in terms of NDCG. The results are averaged across
the 51 topics that were included in the evaluation. We tested
statistical significance using the approximation of Fisher’s
randomization test described in Smucker et al. [3]. Our
Wikipedia Relevance Model approach (UNCSILS WRM) out-
performed our other two runs by a statistically significant
margin. The other two runs (UNCSILS TRM and UNC-
SILS HRM) were statistically equal.

Table 1: Results in terms of NDCG. Symbols N and
M denote a statistically significant improvement over
UNCSILS TRM and UNCSILS HRM, respectively
(p < .05)

UNCSILS TRM 0.189
UNCSILS HRM 0.190
UNCSILS WRM 0.205NM

Results also show that all three runs were far from the
best-performing run for most interest profiles. Figures 1.a-
1.c show NDCG performance for each run compared to the
best-performing run per interest profile. For each run, in-
terest profiles are sorted in descending order of NDCG per-
formance. As the Figures clearly show, for most interest
profiles, all three runs underperformed the best run by a
wide margin.

5. ACKNOWLEDGMENTS
This work was supported in part by NSF grant IIS-1451668.

Any opinions, findings, conclusions, and recommendations
expressed in this paper are the authors and do not necessar-
ily reflect those of the sponsor.

6. REFERENCES
[1] V. Lavrenko and W. B. Croft. Relevance based

language models. In Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and

Development in Information Retrieval, SIGIR ’01,
pages 120–127. ACM, 2001.

[2] M. F. Porter. Readings in information retrieval. chapter
An Algorithm for Su�x Stripping, pages 313–316.
Morgan Kaufmann Publishers Inc., 1997.

[3] M. D. Smucker, J. Allan, and B. Carterette. A
comparison of statistical significance tests for
information retrieval evaluation. In Proceedings of the

Sixteenth ACM Conference on Conference on

Information and Knowledge Management, CIKM ’07,
pages 623–632. ACM, 2007.

0.00

0.20

0.40

0.60

0.80

1.00

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"52"

UNCSILS_WRM BEST

(a) UNCSILS WRM

0.00

0.20

0.40

0.60

0.80

1.00

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"

UNCSILS_TRM BEST

(b) UNCSILS TRM

0.00

0.20

0.40

0.60

0.80

1.00

1" 2" 3" 4" 5" 6" 7" 8" 9" 10"11"12"13"14"15"16"17"18"19"20"21"22"23"24"25"26"27"28"29"30"31"32"33"34"35"36"37"38"39"40"41"42"43"44"45"46"47"48"49"50"51"

UNCSILS_HRM BEST

(c) UNCSILS HRM

Figure 1: NDCG performance per interest profile
compared to the best-performing run for that pro-
file. For each run, profiles are sorted in descending
order of NDCG performance.

