
PKUICST at TREC 2015 Microblog Track:
Query-biased Adaptive Filtering in Real-time Microblog Stream

Feifan Fan Yue Fei Chao Lv Lili Yao Jianwu Yang⇤ Dongyan Zhao
{fanff, feiyue, lvchao, yaolili, yangjw, zhaody}@pku.edu.cn

Institute of Computer Science and Technology
Peking University, Beijing 100871, China

Abstract
This paper describes our approaches to real-time filter-
ing task including push notifications on a mobile phone
scenario and periodic email digest scenario in the TREC
2015 Microblog track. In the push notifications on a
mobile phone scenario, we apply an adaptive timely
query-biased filtering framework which utilizes two ef-
fective scores to estimate the relevance of tweets. Ex-
ternal evidences are well incorporated in our approach
with Web-based query expansion technique. In the peri-
odic email digest scenario, we apply pseudo-relevance
feedback using language model and similarly we adopt
an adaptive dynamic query-biased filtering method to
choose the novel representative tweets. Besides, the re-
sults of scenario periodic email digest can promote the
performance of scenario push notifications since we uti-
lize shared global relevance threshold. Experimental re-
sults show that our adaptive query-biased filtering meth-
ods achieve good performance with respect to ELG and
nCG metrics for push notifications scenario. In addition,
our systems for scenario periodic email digest also ob-
tain convincing nDCG scores.

Introduction
Information retrieval in microblogging environment has at-
tracted increasing attention with the growing popularity of
microblog. To boost the user experience in the real-time
environment, the retrieval results should consist of non-
redundant representative tweets during the evolution of a
given topic. TREC first introduced Tweet Timeline Gener-
ation (TTG) task in 2014 (Lin et al. 2014). The putative user
model is given as follows: “I have an information need ex-
pressed by a query Q at time t and I would like a summary
that captures relevant information.”. The system should de-
tect and eliminate redundant tweets and then form a list
of non-redundant, chronologically ordered tweets that oc-
cur before time t. Follow the idea of TTG, real-time filtering
task is proposed in this year’s Microblog track to explore
technologies for monitoring a stream of social media posts
with respect to user’s interest profile. The task is compos-
ing of two scenarios, namely push notifications on a mobile
phone and periodic email digest.

In the scenario of periodic email digest, we apply a lan-
guage model framework to estimate the relevance between
*Corresponding author.

given interest profile with candidate tweets. In the query
side, aside from the traditional pseudo relevance feedback
based on top ranked tweets, external evidences from the
Google search results are also utilized in our retrieval model
to better understand the user intent. For each interest profile,
we rank the candidate tweets of every day by integrating two
retrieval scores which adopt two different smooth methods
(i.e. Dirichlet Smooth and JM Smooth) through simple lin-
ear combination. We utilize a query-biased adaptive thresh-
old � to choose top K tweets as smaller candidate collec-
tion � to generate the email digest. For each interest profile
Q, the initial threshold � is set as the integrated score of the
tenth relevant tweet from the previous day. Meanwhile, we
update the threshold of each interest profile everyday with
the same way from previous day. For each candidate tweet
in collection �, we calculate the relevance scores between
the candidate tweet with each tweet that has been pushed
previously, a tuned novel threshold � is used to determine
whether the candidate tweet is included in the email digest.

In the scenario of push notifications on a mobile phone,
different from the other scenario, for each interest profile,
when a candidate tweet comes, we immediately determine
whether to push the tweet to the interest profile. We first
estimate the relevance score between the tweet and interest
profile using the normalized KL-divergence distance. For in-
terest profile Q in day D, we utilize the adaptive threshold �

in the previous scenario to decide whether the tweet is rele-
vant to Q. Then we compare the tweet with previous pushed
tweet in this scenario of Q. Similarly, we use a tuned novel
threshold � to decide whether to push the tweet to the inter-
est profile.

The rest of the paper is structured as follows: We first
presents the preliminaries of both scenarios in Section 2. and
then we introduce our approaches for periodic email digest
scenario in Section 3. In Section 4, we describe our push
notifications system in detail. Section 5 present our experi-
mental evaluation. At last, we conclude the paper in Section
6.

Preliminaries
In this section, we first introduce the preliminaries for both
scenarios. In the first step, we preprocess the interest profiles
and tweet streams.

In the query side, We first obtain external resources for

each user interest profile. Using the Google search API, we
obtain the top five items which is consisting of titles and
snippets for each interest profile, then we combine the titles
and snippets to generate a background context document for
each interest profile. In addition, we incorporate the context
document with original interest profile through linear inter-
polation.

In the tweet stream side, our system will monitor the Twit-
ter’s live tweet sample stream continuously using the offi-
cial API. As soon as the system obtains the json data of
tweets, the system will preprocess the tweet text and filter
non-English tweets or words. To boost the speed of identify-
ing candidate tweets for each user’s interest profile, for each
interest profile q, we simply filter tweets that do not contain
keywords for q, and the rest tweets are chosen as candidate
tweet collection � for q.

In the following step, we will utilize a query-biased fil-
tering method to choose pushed tweets from the candidate
tweet collection � for each interest profile every day. In or-
der to push novel tweets for each topic in different days, we
maintain a collection consisting of tweets which have been
pushed in previous time for each interest profile. Besides, we
make a binary classifier to judge the tweets’ novelty against
the corresponding collection.

Preprocessing
The preprocessing we adopt on the queries and tweet stream
is described as follows:

• Non-English Filtering: We discard the non-English
tweets according to the result of twitter’s language detec-
tor.

• Non-English Words: We simply filter the words which
contain non-ASCII characters.

• Simple Retweet Additional Commentary Elimination:
We eliminate the additional commentary of tweets that
contains ’RT @’ with the consideration that all retweets
should be normalized to the underlying tweets according
to the guideline.

• Porter Stemming and Stopword Filtering: Stopwords
are removed from these tweets using InQuery stopwords
list. These tweets are stemmed using the Porter Algo-
rithm.

Query Expansion
As microblog retrieval suffers severely from the vocabu-
lary mismatch problem (i.e. term overlap between query and
tweet is relatively small), query expansion techniques can
be leveraged to improve the retrieval effectiveness (Zhai and
Lafferty 2001). In this section, we introduce the method on
the basis of query expansion.

To better describe the query expansion, we first name
the original user interest profile (namely query) offered by
TREC’2015 OriginQuery. Here we only use the topic key-
words of each interest profile since we utilize external web
resources to depict the background information of the given
profile. For a certain OriginQuery, we submit the query to

Google Search Engine API. Non and verb terms from the ti-
tles and snippets of returned top five documents to generate
a new query (i.e. WebQuery). Then we generate the Merge-
Query by interpolating the OriginQuery and WebQuery.

MergeQuery = ↵ ·OriginQuery+(1�↵) ·WebQuery (1)

Then we utilize the updated query to represent original
interest profile and then estimate the relevance between the
query and tweets.

Interest
Profiles

Tweet
Stream

Pushed Tweet
Pool

Relevance
Estimation

Novelty
Verification

Fast Filter Threshold
Update

Web
Resource

Push
Results

Query
Expansion

Preprocess

Online

Offline

Figure 1: Scenario A System Framework.

Scenario A: push notifications on a mobile
phone

System Overview
As noted above, the scenario A push notifications on a mo-
bile phone aims to push relevant and novel tweets to users
and such tweets are triggered a relatively short time after
the content is generated. In this section, we mainly discuss
the architecture of our system, which is shown in 1. From
the figure, we can see that our system mainly contains two
components:
• Offline Module: We utilize the external web resources to

obtain context words about each interest profile. Using the
Google Web Search API, we obtain top five relevant doc-
uments consisting of titles and snippets. Then we prepro-
cess the documents and incorporate with original query
to generate a merged query document which has a more
comprehensive word distribution.

• Online Module: We monitor and preprocess the tweet
stream continuously, and we utilize a fast filter module
to obtain more possible relevant tweets for each profile.
In order to decrease the time delay, as soon as the sys-
tem gets a possible relevant tweet, the system will im-
mediately estimate the relevance between expanded query

and the tweet. We will update the query-biased relevance
threshold every day instead of using a time window. If
the system judges a tweet as relevant tweet of a inter-
est profile, the module of Novelty Verification will uti-
lize a greedy clustering algorithm to decide whether the
tweet can be regarded a new cluster compared with pre-
vious pushed Tweet pool. Once the tweet is regarded as
novel tweet, the tweet will be pushed and appended into
the pushed Tweet pool.

Fast Filter
In order to boost the speed of identifying possible relevant
tweets for each profile, we simply filter tweets that do not
contain any keywords for each profile, and the rest tweets
are chosen as candidate tweet collection.

Relevance Estimation
We utilize the KL-divergence language model based re-
trieval method to measure the relevance between query
language model b

✓Q and tweet language model b
✓T . The

smoothing methods we use for language model are: (a) DIR
(Bayesian Smoothing with Dirichlet Priors) smoothing, (b)
JM (Jelinek-Mercer method) smoothing.

LMScore(T,Q) =
X

w2Q

P (w|b✓Q) · logP (w|b✓T) (2)

We incorporate the two scores using different smooth
methods by linear interpolation.

Score(T,Q) = � · LMScoreDir(T,Q)

+(1� �) · LMScoreJM (T,Q)
(3)

Here we empirically set � as 0.5.

Adaptive Query-biased Filtering
Considering the fact that different topics can affect differ-
ent attentation to varying degrees, thus the count of rele-
vant tweets are quite distinct. Thus we utilize two strategies
to estimate the query-biased relevance threshold �, namely
empirical setting and human assist selection. (1) empirical
setting method tries to utilize the popularity and relevance
threshold in previous day of each query. Taking advantage
of the ranked tweet list in scenario B, in our experiments,
we utilize the relevance score of the tweet ranked at top ten
as the relevance threshold � in scenario A of next day. (2)
Human assist selection also utilizes the ranked tweet list in
scenario B, while here human will involve and quickly scan
the top 100 tweets (we think top 100 is enough) and decide
which one’s score is the lower bound. In other words, we
will quickly scan the ranked list from top to bottom, once
we find one tweet is not relevant, we choose the relevance
score of the tweet as the relevance threshold � of the query
in the next day.

Since the pushed tweets in the total evaluation period
should be non-redundant, we adaptively update the thresh-
old of each interest profile. Here we maintain a pushed tweet
pool and utilize a greedy algorithm to determine whether a
coming relevant tweet is novel or not (Fei, Hong, and Yang

2015; Albakour, Macdonald, and Ounis 2013). We will cal-
culate the relevance score between coming tweet and all the
pushed tweets using the language model described in Rele-
vance Estimation, then we greedily choose the pushed tweet
that has highest relevance score with the coming tweet as
reference. Once the highest relevance score is less than em-
pirical novel threshold �, we regard the coming tweet as
novel tweet and push the tweet. Finally we append the com-
ing tweet into the pushed tweet pool for estimating novelty
of subsequent tweets.

Scenario B: periodic email digest
System Overview
Our approach for this scenario also mainly contains two
components:

• Offline Module: Similar with Scenario A, we utilize the
expanded query to represent the interest profile.

• Online Module: We monitor and preprocess the tweet
stream continuously, and we utilize a fast filter module
to obtain more possible relevant tweets for each profile.
Different from scenario A, we maintain a candidate tweet
collection for each profile every day. At the end of each
day, we will re-rank the candidate tweet collection for
each profile which incorporates with pseudo relevance
feedback. Once we obtain the ranked tweet list, we have
two strategies to determine the query-biased relevance
threshold � of next day, thus we can adaptively update the
relevance threshold as time goes on. Similarly, we adopt a
module of novel verification along with pushed tweet pool
to ensure the novelty of recommended tweets as possible.

Interest
Profiles

Tweet
Stream

Tweet
CandidatesFast Filter

Web
Resource

Query
Expansion

Preprocess

Offline

Relevance
Ranking

PRF Query
Expansion

Pushed Tweet
Pool

Novelty
Verification

Push
Results

Online

Figure 2: Scenario B System Framework.

The modules of Fast Filter, Relevance Estimation and
Adaptive Query-biased Filtering are similar with scenario
A.

PRF query expansion
We utilize pseudo relevance feedback to improve the re-
trieval performance which is widely used in microblog
search (Lv and Zhai 2009). Here we directly follow (Liang,
Qiang, and Yang 2012) work to incorporate the module in
the ranking process.

Result Analysis
Table 1 show the performance of our submitted three runs
for scenario A push notifications on a mobile phone. The
primary evaluation metric for scenario A is ELG (expected
latency-discounted gain) and nCG (normalized cumulative
gain) is the second metric. The run PKUICSTRunA1 adopts
an adaptive relevance threshold � according to the relevance
score at top K in scenario B of previous day. Here we set K
as 10. Both PKUICSTRunA1 and PKUICSTRunA2 adopt
a empirically uniform novel threshold � = 0.67, while
PKUICSTRunA2 utilizes an adaptive relevance threshold
according to manual selected top position K (K <= 10)
in scenario B of previous day. Different from PKUIC-
STRunA2, the run PKUICSTRunA3 uses a empirically uni-
form novel threshold � = 0.72.

From Table 1, we can observe that PKUICSTRunA2
achieves the best performances against ELG and nCG, since
the manual relevance threshold and the empirical uniform
threshold � = 0.67 is effective to depict the needs of
non-redundant and relevant tweets. Manual selected top K

(K <= 10) can increase the precision as it limits the
maximum returned tweets of each day, and empirical novel
threshold � = 0.67 is more suitable that � = 0.72.

Table 1: Performance of submitted runs for scenario A
Run ID ELG nCG
PKUICSTRunA1 0.1415 0.1566
PKUICSTRunA2 0.3175 0.3127
PKUICSTRunA3 0.1382 0.1711

Table 2 shows the performance of our submitted three
runs for scenario B periodic email digest. The primary
evaluation metric is nDCG@K. Among all the three runs,
PKUICSTRunB1 utilizes an adaptive relevance threshold
� according to the relevance score at position K of the
ranked tweet list in scenario B of previous day. Both PKUIC-
STRunB1 and PKUICSTRunB2 adopt a empirically uni-
form novel threshold � = 0.67, while PKUICSTRunB2
utilizes an adaptive relevance threshold according to man-
ual selected top position K (K <= 10) in scenario B
of previous day. Different from PKUICSTRunB2, the run
PKUICSTRunA3 uses a empirically uniform novel thresh-
old � = 0.72.

From Table 2, we can see that PKUICSTRunB3 achieves
the slightly better performances than other runs, while all
of them do not obtain optimal performances against metric
nDCG@K due to the uncertainty of K during the experi-
ments. Since we do not know K during the evaluation period
and up to 100 tweets can be returned for each interest pro-
file. However, the returned tweets in a specific day can affect

whether some candidate tweets to return due to the redun-
dancy settings. Thus we empirically return relevant and non-
redundant tweets according to adaptive novel threshold but
we cannot effectively control the returned count of each day.
Further investigation and experiments are needed to solve
this issue.

Table 2: Performance of submitted runs for scenario A
Run ID nDCG
PKUICSTRunB1 0.2226
PKUICSTRunB2 0.2228
PKUICSTRunB3 0.2343

Conclusion
In this paper, we present our systems for TREC 2015 Mi-
croblog track. In the push notification on a mobile phone
scenario, we apply an adaptive timely query-biased filtering
framework which monitors and estimates the twitter stream
with given interest profiles continuously and immediately.
In the periodic email digest scenario, We apply pseudo-
relevance feedback using language model to rank candidate
tweets and then we adopt an adaptive dynamic query-biased
filtering method to choose the novel representative tweets
every day. Many further investigations and experiments are
needed to estimate the sensitivity of relevance threshold and
novel threshold, besides, the setting of K is also needed to
discuss in the future as soon as we get the ground truth and
evaluation scripts.

Acknowledgments
The work reported in this paper is supported by the National
Natural Science Foundation of China Grant 61370116.

References
Albakour, M.-D.; Macdonald, C.; and Ounis, I. 2013. On
sparsity and drift for effective real-time filtering in mi-
croblogs. In CIKM, 419–428.
Fei, Y.; Hong, Y.; and Yang, J. 2015. Handling topic drift
for topic tracking in microblogs. In Advances in Information
Retrieval. Springer. 477–488.
Liang, F.; Qiang, R.; and Yang, J. 2012. Exploiting real-time
information retrieval in the microblogosphere. In Proceed-
ings of the 12th ACM/IEEE-CS joint conference on Digital
Libraries, 267–276. ACM.
Lin, J.; Efron, M.; Wang, Y.; and Sherman, G. 2014.
Overview of the trec-2014 microblog track. In Proceedings
of the TREC 2014.
Lv, Y., and Zhai, C. 2009. A comparative study of methods
for estimating query language models with pseudo feedback.
In CIKM, 1895–1898.
Zhai, C., and Lafferty, J. D. 2001. Model-based feedback in
the language modeling approach to information retrieval. In
CIKM, 403–410.

