
Mining Tasks from the Web Anchor Text Graph:
MSR Notebook Paper for the TREC 2015 Tasks Track

Paul N. Bennett
Microsoft Research

Redmond, USA
pauben@microsoft.com

Ryen W. White
Microsoft Research

Redmond, USA
ryenw@microsoft.com

January 31, 2016

1 Introduction

Users may have a variety of tasks that give rise to issuing
a particular query. The goal of the Tasks Track at TREC
2015 was to identify all aspects or subtasks of a user’s task
as well as the documents relevant to the entire task. This
was broken into two parts: (1) Task Understanding which
judged relevance of key phrases or queries to the original
query (relative to a likely task that would have given rise
to both); (2) Task Completion which performed document
retrieval and measured usefulness to any task a user with
the query might be peforming through either a completion
measure that uses both relevance and usefulness criteria or
more simply through an ad hoc retrieval measure of rele-
vance alone. We submitted a run in the Task Understanding
track. In particular, since the anchor text graph has proven
useful in the general realm of query reformulation [2], we
sought to quantify the value of extracting key phrases from
anchor text in the broader setting of the task understanding
track.

Given a query, our approach considers a simple method
for identifying a relevant and diverse set of key phrases re-
lated to the possible tasks that might have given rise to the
query. In particular, given the effectiveness of sessions for
producing query suggestions as well as the fact that sessions
tend to be both topically coherent and cohesive with respect
to a task, we investigated the effectiveness of mining session
co-occurrence data. For a search engine log, session bound-
aries can be defined in the typical way but to operate over the
anchor text graph, we need some notion of a “session”. We
adopt the suggestion of Dang & Croft [2] and treat differ-
ent links pointing to the same document as belonging to the
same “session”. The basic assumption is that the anchor text
of two links pointing to the same document are related via
the common reference. Note that this assumption is based
on the destination URL of the link being the same.

Given a query, we then find matching seed candidates (link
text from the web graph or queries over search logs) and
expand to related candidate key phrases via this session as-
sumption. The final ranking is based on a combination of

session count and the similarity of a link to the query. Ad-
ditionally we perform several types of filtering that prevent
over-expanding the set of related queries. We refer to the
method as “having coverage” if the method was able to find
a matching seed – since this is a necessary step to producing
any candidates based on co-occurrence.

Empirical results demonstrate generally good perfor-
mance for the method when it finds a matching seed. In par-
ticular, of the 34 topics judged for the Query Understanding
track, our method had coverage 62% of the time (21 topics).
When the method has coverage, the suggested key phrases
are above the mean performance (by nearly every measure
reported) 2/3 times and the best performer 1/3 times. Given
it’s simplicity and availability to nearly all participants as
well as the fact that coverage can be detected before sub-
mission, it is a promsing candidate for future investigation
in the track. We now describe the method and results more
fully before summarizing.

2 Query Understanding Task
This section deals with the problem investigated in the Query
Understanding task of the track. That is, how can we effec-
tively identify all key phrases or alternate queries that might
be involved in any task a user might have which would give
rise to the observed query for a topic?

2.1 Approach Overview
To provide a brief overview, we remind the reader that our
goal is to investigate the effectiveness of basic session co-
occurrence for the task understanding task. For search logs,
taking the commonly accepted session boundaries of a pe-
riod of user activity demarcated by 30 minutes of inactivity
is straightforward, but to apply the same approach to anchor
text we need a notion of session. Like others [2] for the an-
chor text graph, we define the text of two links to co-occur
in a “session” if the links point to the same destination URL.
Given a query, we find matching seed candidates (link text

1



from the web graph or queries over search logs) using a soft
matching. These seed candidates are further expanded to all
queries/links co-occurring in a session. The candidates are
pruned to filter out any globally frequent queries across all
sessions, extremely long queries, or candidates that do not
provide a minimum similarity to the original query. The final
ranking is a simple product of the session count in matched
sessions and a similarity of the candidate with the original
query. We now describe the method in more detail.

2.1.1 ClueWeb12 Anchor Text Graph

For most interested participants an extraction of the an-
chor text graph of ClueWeb12 is easily available at http:
//wwwhome.ewi.utwente.nl/

˜

hiemstra/2013/

anchor-text-for-clueweb12.html [3], however
we chose1 to produce an anchor text graph directly from the
ClueWeb12 dataset.2

In particular, we used the publically available HTM-
LAgilityPack3 v. 1.4.9.0. Similar to Hiemstra & Hauff [3]
we only process documents whose html size was less than
50K bytes and we discard “javascript” or “mailto” links.
Additionally, we attempt to retain4 only links where the
destination is to an external site. We do this since inter-
nal links are often either navigational or assume context.
That is, anchor text of “bothell campus” on a “University
of Washington” page is likely pointing at the home page
for the “University of Washington at Bothell” but the sim-
ple descriptor “bothell campus” would not be a high quality
keyphrase suggestion absent the context. Additionally, we
also only retain links whose destination URL resolves to a
document in ClueWeb12 (i.e. we discard links pointing out
of ClueWeb12). This was done under the assumption that
documents within ClueWeb12 may have better crawl cover-
age across multiple incoming links.

2.1.2 Normalizing Queries to Filter Phrases

For the text in each of the query fields in the topic xml file,
queries were first normalized by removing multiple whites-
paces and converting all characters to lower case. After this,
we removed stopwords from each of the query text. Rather
than stopword lists that are developed based on frequency
alone, we used a list of English function words, e.g., “a”,
“about”, “the”, “to”, “who”, etc. While function words are
correlated with frequency, anecdotally we found other pub-
lished stopword lists developed by frequency alone or by
taking the most frequent words in our corpora to be too ag-
gressive. Investigating the impact of this choice is an inter-
esting direction for future work.

1Unfortunately the anchor text distribution is via peer-to-peer software
the use of which is procedurally complicated at our organization.

2See http://www.lemurproject.org/clueweb12.php/ for
more on ClueWeb12.

3
http://htmlagilitypack.codeplex.com/

4Many types of relative links might not be detected as well as sites which
appear to be different by the URL but are owned by the same organization.

As our list of English function words, we took the list of
221 words published by Cook [1] and available for download
at http://homepage.ntlworld.com/vivian.c/
Words/StructureWordsList.htm. For a topic, t,
with a particular query qt, we refer to the output after query
normalization and stopword removal as a filter phrase, ft.

2.1.3 Compute Globally Frequent Candidates

For any query suggestion method, any co-occurrence ap-
proach has to deal with globally frequent items that co-occur
independently. To deal with this, we compute the top 1K
most frequent texts based on the input. For example, for the
ClueWeb12 anchor text graph, the top four most common
anchor texts are: “next”, “permalink”, “prev”, and “read
more”. These top 1K globally frequent candidates will be
pruned out later.

2.1.4 Matching Filter Phrases to Seed Candidates

After normalizing queries to filter phrases as described in
Section 2.1.2, for each topic a filter phrase ft is considered
to match a candidate seed, ct, if the candidate is a superset
of ft. That is the candidate seed, ct contains at least all of
the words in ft. Because the filter phrase, ft, is never bigger
than the original query, qt. This means the filter phrase will
match seeds that exactly match the query, partially overlap
with the query (as long as all non-function words overlap),
and are supersets of the query. The intuition behind adding
supersets is since the goal is to identify all possible tasks that
might lead to the query, users’ queries or anchor text links
often contain extra words that are specific to some particu-
lar task. An interesting line of future work is to separate the
contribution of exact matching seeds (with and without or-
der), overlapping matching seeds, and superset seeds. This
set of matching sessions St, which contain a candidate seed
match, is the basis for the remainder of our computation for
a topic t.

2.1.5 Expanding to Related Candidates

From the matching sessions containing a matching seed, we
expand to related candidates by removing all globally fre-
quent candidates and simply counting the number of ses-
sions in St each remaining query occurs in. As in the query
suggestion literature, future work could consider multiple
rounds of expansion or a weighted random walk.

2.1.6 Filtering and Similarity Weighting

The expansion to related candidates based on co-occurrence
has several types of common failures. To be conservative
and attempt to eliminate these failures, we require a candi-
date to have overlap with the filter phrase for a topic and
meet a length restriction (very long texts will tend to match



spuriously). In particular, for every topic t and candidate
keyphrase kt and filter phrase ft:

1. kt is discarded if cos(kt, ft)  0 (i.e. there must be at
least one word overlap).

2. kt is discarded if its length is longer than a multiple of
ft, i.e. if kt > ftL. We choose L = 4 to allow a
generous but not extreme upper bound. This condition
gets rid of extremely long candidates – usually pastes
in search logs or bad tag closures in anchor text.

To produce the final score, it’s intuitive that not only
should the frequency of occurrence in a matching session
matter, but the candidate’s similarity to the query is likely
important. To account for this, we weight the count of oc-
currences in matching sessions, skt , by the similarity to the
filter phrase before normalization. More precisely, we first

1. Scale the matching session occurrence count for
the keyphrase by the similarity to the filter phrase:
sunnormkt

= cos(kt, ft) · skt .

2. Normalize the final score by the max in the topic:
sfinalkt

= sunnormkt
/maxkt s

unnorm

kt
. This simply scales

the final score to the [0, 1] range and does not alter the
final ranking.

2.2 Evaluation
Table 1 reports the mean across all topics differences from
the per topic mean by each performance measure (i.e. pos-
itive means above mean overall and negative below mean).
Table 2 reports similar values but only over the 21 of the
34 judged topics where the method had coverage. In the re-
maining 13 a matching seed was not found. Table 3 reports
of the 21 times when the method had coverage, the num-
ber of topics where the method the best performer or above
average.

As can be seen, overall the method falls below the mean
across all topics, but when taking Table 2 into account, this
is because the method sometimes lacks coverage. Since this
can be easily detected, the potential of this method for use
in combination with other techniques is represented by its
performance when it has coverage. In those cases, the mean
across topics is quite positive with (as seen in Table 3) the
method performing above the mean 2/3 times and obtaining
the best performance 1/3 times that it has coverage. Overall,
this speaks well to the potential for combining this method
with techniques used by other participants.

3 Conclusions
We described a simple approach that can be equally applied
to either search logs or the anchor text graph for finding
keyphrases for related tasks to a query. The method relies on
a simple matching procedure to find starting seeds and uses

either common destinations in the anchor text graph or ses-
sion co-occurrence in a search log to find related candidates.
Simple steps of filtering are applied to remove globally fre-
quent candidates as well as candidate keyphrases that have
no similarity to the core of the original query.

Overall, empirical results demonstrate generally good per-
formance for the method when it finds a matching seed.
In particular, of the 34 topics judged for the Query Under-
standing track, our method had coverage 62% of the time
(21 topics). When the method has coverage, the suggested
key phrases are above the mean performance (by nearly ev-
ery measure reported) 2/3 times and the best performer 1/3
times. Given its simplicity and availability to nearly all par-
ticipants as well as the fact that coverage can be detected
before submission, it is a promising candidate for future in-
vestigation in the track.

References
[1] V. Cook. Designing a basic parser for call.

CALICO Journal, 6(1):50–67, 1988. http:

//homepage.ntlworld.com/vivian.c/

Writings/Papers/CalicoPaper88.htm.

[2] V. Dang and W. Croft. Query reformulation using an-
chor text. In WSDM 2010, pages 41–50, 2010.

[3] D. Hiemstra and C. Hauff. Mirex: Mapreduce infor-
mation retrieval experiments. Technical Report CTIT
Technical Report TR-CTIT-10-15, Centre for Telemat-
ics and Information Technology, University of Twente,
2010. ISSN 1381-3625.



ERR-IA@10 ERR-IA@20 ERR-IA@1000 ↵-nDCG@10 ↵-nDCG@20 ↵-nDCG@1000
-0.0154 -0.0219 -0.0232 -0.0177 -0.0446 -0.0681

Table 1: Overall Average of Difference from Mean Topic.

ERR-IA@10 ERR-IA@20 ERR-IA@1000 ↵-nDCG@10 ↵-nDCG@20 ↵-nDCG@1000
0.0959 0.0894 0.0882 0.1126 0.0871 0.0632

Table 2: Overall Average of Difference from Mean Topic when Coverage.

ERR-IA@10 ERR-IA@20 ERR-IA@1000 ↵-nDCG@10 ↵-nDCG@20 ↵-nDCG@1000
Max 7 7 7 7 6 6

> Mean 15 15 15 15 15 14

Table 3: Times best and better than mean when coverage.


