
 
 

1 

  
Abstract— This paper describes the joint submission by Laval 

University and Lakehead University to the TREC 2015 Dynamic 
Domain track. We submitted four runs for the main track and 
one run for the judged-only track. In our view, the Dynamic 
Domain process can be separated into two phases: a traditional 
static information retrieval phase to generate an initial set of 
documents, followed by a dynamic information retrieval phase 
which takes user feedback into account to improve the results. 
We developed an algorithm that combines keyword search, 
Latent Dirichlet Allocation, and K-Means clustering to take 
advantage of each technique to generate the best subset of results 
for the user. Our systems performed mostly over the median of 
the group of participants and our system for the “judged-only” 
task had the best score for a wide range of queries. 
 

Index Terms—Dynamic Domain, Information Retrieval, Topic 
Modelling 
 

I. INTRODUCTION 

The Dynamic Domain track challenge (Yang, Frank & 

Soboroff, 2016) consists in performing information retrieval 
(IR) in a domain (such as Ebola, Local Politics, and Illicit 
Goods) using a dynamic process guided by the input of a 
simulated user. The aim is to return a diversified set of 
documents that both explores the full range of topics within 
the subject and researches in greater depth topics the user 
shows interest in. 
 We submitted systems for both “main” and “judged-only” 
tasks. For the first one, we run the system on the whole dataset 
with some un-judged documents, i.e. documents that can be 
relevant but we won’t have a positive feedback. For the 
second one, the system only uses judged documents. 
 In this article, we use the words subtopic as an equivalent to 
the user’s interests in an area. The topic is considered as the 
initial query. For example the initial query can be “Facebook 
Accounts” and the subtopics would be “What is the price of a 
stolen Facebook account” and “Who sells Facebook 
accounts”. Subtopics are hidden in the process and we can 
only discover them by exploiting the user’s feedback. 
 

 

We investigated multiple approaches in order to retrieve a 
set of documents that is sufficiently diversified to cover 
different subtopics. In this paper, we present a method that 
combines classical information retrieval techniques (using 
Solr as a search engine framework) with a query reformulation 
step (in order to construct automatically new queries from the 
initial search results). We use LDA topic modelling and K-
means clustering to select documents and keywords to 
generate new queries based on the user’s interests and original 
query. By using these unsupervised learning techniques, we 
aim to create a query that will return both documents in new 
interesting topics and new documents related to known 
interesting topics. 

In this paper, we will describe how we take user’s feedback 
into account to refine search results, and how we handle the 
“false start” situation where no relevant documents are 
returned. We will report on various techniques we used to 
improve our result set. This includes established algorithms 
such as Named Entity Recognition (NER) functions and the 
Rocchio’s relevance feedback to extract important keywords. 
We also report on novel ideas such as alternating between 
giving positive or negative weight boosts to known keywords 
in the new queries the system generated. The aim of our 
system was to allow our algorithm to strike a good balance 
between exploring the document space of the domain to 
potentially discover interesting new topics, and exploiting the 
space of similar documents to potentially discover better 
documents to represent known topics. Each component of our 
search algorithm was evaluated, both individually and 
combined together in a weighted average. Our experiments 
indicate that a combination of techniques returns the best 
search results on the training set that was made available for 
the TREC competition. 

II. RELATED WORKS 

Dynamic Domain is a new TREC track, and thus the 
process is relatively unexplored in the literature. However, the 
challenge of diversifying IR results taking into account user’s 
feedback has been studied in different forms. One popular 
technique is to use Rocchio’s algorithm (Manning, Raghavan, 
& Schütze, 2008) which considers the query as a vector with a 
weight assigned to each word. Then the algorithm updates the 
weights of the query with words from positives and negatives 

Laval University and Lakehead University at 
TREC Dynamic Domain 2015:  

Combination of Techniques for Subtopics 
Coverage 

 

Robin Joganah, Richard Khoury and Luc Lamontagne 



 
 

2 

documents, words from positives documents having a boost in 
the vector model, and words from negative documents getting 
a penalty. Other techniques studied in the literature include 
clustering (Cohn, Caruana, & McCallum, 2003) and topic 
modeling (Andrzejewski & Buttler, 2011) to capture 
diversification in the information retrieval process. Clustering 
is mostly used to be able to group documents in a fixed 
number of categories. Topic modelling has been used to find 
the most probable words for each topic and be able to 
formulate a new query from these words. 

III. GLOBAL VIEW OF THE SYSTEM 
 
We can separate our system in two phases. In the initial 

search phase, the system only has the original query and the 
IR process returns five documents for this query. The second 
phase is the dynamic refinement phase, during which the 
user’s feedback about the documents is used to reformulate the 
query, and this new query is used to return more documents. 
These two phases are illustrated in Figure 1. 

The Dynamic Domain challenge can be considered a low-
recall task because of the important amount of irrelevant or 
un-judged documents. In order to get useful feedback from the 
user, it is important to generate a good set of initial documents 
in the initial phase. 

A. Initial Search Phase & Information Retrieval Process 
The first phase consists in an information retrieval process 

to obtain an initial set of five documents based on the user’s 
original query. This information retrieval process uses the 
popular Solr search engine to retrieve a set of 20 documents 
from the dataset. A classic IR system like Solr can retrieve the 
top documents by keywords, but it doesn’t provide the 
diversification of results needed for the Dynamic Domain 
challenge; for this, it is necessary to discover topics present 
within the result set and to return one representative document 
per topic. We experimented with two algorithms for this 
purpose: we used a K-means clustering to discover clusters of 
topics within the search results  (Steinbach, Karypis, & 
Kumar, 2000), and a Latent Dirichlet Allocation (LDA) 
algorithm (Andrzejewski & Buttler, 2011) for topic modelling. 
These additional algorithms allow us to re-rank the documents 
and select the five best results to return to the user. 

B. Dynamic Refinement Phase 
The dynamic refinement phase starts with a set of five 

documents provided to the user, either from the initial search 
phase or from a previous iteration of this refinement phase. 
The user provides feedback to the system, by indicating which 
documents and which passages they find interesting. This 
information, along with the topic’s title, allows our system to 
reformulate the query to find additional relevant documents 
given the user’s interests. We used Rocchio’s algorithm to 
extract keywords for query reformulation, given its 
demonstrated capability to improve information retrieval 
results (Salton & Buckley, 1997) and to work on the query-
vector model (Manning et al., 2008). To further help the 
algorithm recognize the most potentially informative 
keywords, we paired it with a Named Entity Recognition 
(NER) algorithm. 

 

 
Fig. 1.  Global System Overview  

C. Halting Condition 
As illustrated in Figure 1, phase 2 of our system is an 

endless loop. The system has to decide when to halt the search 
and break out of this loop, when an additional iteration will no 
longer yield useful refinement of the search results. We 
experimented with three different halting strategies. The first 
one consists in hard-coding a two-iteration limit, which means 
that the system would only consider the feedback from the 
user for one iteration of the loop. The second strategy consists 
in hard-coding a three-iteration limit. Finally, the last strategy 
is to use at least 2 and up to 10 iterations, and to have the 
algorithm stop if it found no relevant documents during the 
last iteration. We will compare these strategies experimentally 
in Table 1. 

IV. INFORMATION RETRIEVAL PROCESS 
The information retrieval process occurs at two moments in 

our system. The first time is during the initial search phase, 
discussed previously, where it must generate an initial set of 
five documents based on the user’s original query. It then 
occurs during each iteration of the dynamic refinement phase 
of the system, to obtain a new set of five documents using the 
generated query. This IR process has an impact on the 
performance of our entire system, since the Cube Test (CT) 
and µ-ERR metrics used to evaluate the TREC track penalize 
sessions with irrelevant documents as a waste of user’s time. 

In order to get the best set of five documents for a query, we 
have to get a balance between topic diversification and 
specialization (determined by search engine scoring). 
Diversification is very important for this task because a lot of 
documents are redundant copies from web pages and news 
articles; as a result, the five most relevant documents for a 
query could all contain exactly the same information. We 
implemented diversification by using a K-means algorithm 
and an LDA algorithm for topic modeling. Nonetheless, the 
Solr search engine scoring provides documents that are the 
most relevant to the initial query and thus to the user’s needs. 
For the final set of results, we thus take a weighted average of 
these three algorithms’ results. The complete IR process is 
illustrated in Figure 2. 



 
 

3 

A. Solr 
We use the Solr search engine as our IR baseline. We 

used it to retrieve documents given a query, either the user’s 
original query or the reformulated queries generated by our 
dynamic refinement stage. The top five documents returned 
are kept as the Solr recommendation, the five most relevant 
documents given the query. Meanwhile, the top 20 
documents returned by Solr are used as a corpus for the 
LDA and K-means topic modeling algorithms. These two 
algorithms implement the complementary diversification of 
the results. 

B. Latent Dirichlet Allocation (LDA) 
LDA is an algorithm that takes in a distribution of words 

and discovers the groupings of topics it implies. In our 
system, we set LDA to the task of discovering five different 
topic groups from the top 20 documents returned by Solr 
from the current query. Next, the system builds five 
expanded queries, one for each of the five topics groups, by 
adding the five most probable words in the distribution of 
each topic group to the current query. It then runs a new 
Solr search with each of the five new queries, and keeps the 
top document of each one as the set of five LDA 
recommendations. 

C. K-Means 
K-Means is an unsupervised clustering algorithm. In our 

system, we use it to create five clusters of documents from 
the corpus of 20 documents returned by Solr, using the 
documents’ word vectors and cosine distance for similarity. 
The system keeps the document closest to each cluster 
centroid to create the set of five K-means recommendations. 

D. Combination 
After these steps, our system has generated three sets of five 

recommended documents given a query. Moreover, these sets 
can contain some documents in common. We thus decided to 
create a weighted combination of these three sets. For the 
“main” task of the TREC competition we used a repartition of 
weights of 49%, 25.5%, and 25.5% for Solr, LDA and K-
Means results respectively. This gives more importance to a 
document selected by Solr as relevant to the query over 
documents selected by either one of the diversification 
techniques, but more importance to documents selected by 
both diversification techniques simultaneously as a good 
representative of an additional topic. For the “judged-only” 
task of the TREC competition, we found that LDA produced 
better results than either Solr or K-means individually. 
Consequently, we changed the weights to 30%, 45%, and 25% 
for the Solr, LDA and K-means results respectively. 

 

 
Fig. 2.  Information Retrieval Process 

V. DYNAMIC REFINEMENT PROCESS 
The dynamic refinement process of our system takes in 

the user’s feedback on the set of five documents retrieved 
and uses that feedback to improve the results. There are two 
possible situations the system could be in. The first is if the 
user marked at least one document as relevant; we can 
consider that we are in the good area of the domain to 
search. The second situation is the “false start” situation, 
when there are zero relevant documents in the set of five 
results.  

 

 
Fig. 3. Feedback processing 
   

In the first situation, our dynamic refinement algorithm 
will take advantage of the positive feedback information to 
generate a new query.  Our algorithm has access to different 
sources of information, including the topic title and the 
passage of the document marked as relevant by the user. 

We used the extraction of title’s words as we considered 
as a high informative part of the feedback. Because of the 
important difference between passages length, taking the 
whole passage can’t be an option in most situations.  



 
 

4 

In order to focus on the most informative parts from the 
passage, we decided to use Named Entity Recognition from 
NLTK to capture named entities on it. We considered that if 
something is named in the passage, it means that this entity 
can have a relative importance or meaning for the author for 
the related subtopic.  

We also extracted words with Rocchio’s algorithm 
applied on our five whole documents. This algorithm works 
by applying a negative weight for terms present in negative 
documents and boosting words from positive ones. With a 
TF-IDF vector model we can extract common and 
informative words from positive documents. With these 
new words we can compute a new query, which will be 
used on our static process as the initial query to provide five 
new documents to the user. 

 
Fig. 4. False-Start 
 

In the second or “false start” situation, the user has marked 
none of the five documents previously returned as relevant. 
This situation is difficult for two reasons. The first one is that 
we are in a bad area, and it might be difficult to find a relevant 
document. The second one is that we didn’t found document 
and we lost some time in the process of retrieving documents. 
The CubeTest metric take time into account and, as a 
consequence, we have to find relevant documents quickly to 
perform better. The false-start means the algorithm has found 
itself in a bad area of the domain space, as illustrated in Figure 
4, and it is critical to jump to a different area. This is 
implemented by using Rocchio’s relevance feedback 
algorithm on all five documents to extract their most common 
keywords. These keywords are given a negative boost in a 
new Solr query, in order to retrieve very different documents 
in the next IR process. We found that this approach yields 
better results than simply taking the lower ranked documents 
of the previous query. 

VI. EXPERIMENTAL RESULTS 

A. Data 
The dataset proposed for this competition is separated in 
three domains. 

1) Ebola 
The Ebola dataset is related to the Ebola outbreak in 2014-
2015, it contains 497,362 web pages. 

2) Local Politics 
The Local Politics dataset is related to related to local 
politic from Pacific Northwest. It contains 6,831,397 web 
pages from October 2011 to February 2013. 

3) Illicit goods 
The last dataset is related to how illicit goods are sold and 
advertised on the web. It contains around 3 millions post 
and 526,717 threads from hacking forums. 

B. Data Pre-Processing 
We pre-processed the corpus by using the porter stemmer 

algorithm over the whole corpus with the library NLTK and 
we used the lemmatization from WordNet. We also cleaned 
the html tags and punctuation with NLTK. 

C. Metrics 
1) Cube Test (CT) 

The Cube Test metric (Luo, Wing, Yang, & Hearst, 2013) 
uses the analogy of a empty cube to fill with information on 
each subtopic. This metric has a maximum of 1 as the height 
of the cube. It is defined as: 

!" #, % = 	()*+ #, % /"*-. % (1) 
where Q is the information need and D the list of document. 
The metrics works as the measure of the changing volume 
during a period of time. The higher the Cube Test is, the better 
the system is. 
 The fact that the Cube Test take into account the period of 
time indicates that if we take multiple “turns” to find 
documents, the score will be penalized instead of finding early 
documents and stopping the search in the early turns. 
 
2) µ-Expected Reciprocal Rank (µ-ERR)  
 
µ-ERR is a variant of Expected Reciprocal Rank (Chapelle, 

Metlzer, Zhang, & Grinspan, 2009) which calculates the ERR 
for each topic and averages the scores across subtopics 
arithmetically.  
It is defined as:  

233 ∶= 	 1
5

6

789
	:(;<.5	<=>?<	)=	?><*=*>+	5) 

where n is the number of documents in the ranking. 

D. Training Results 
1) Results for Main and Judged-only Tasks  

We used the TREC data provided in order to train and fine-
tune our system. We compared each IR algorithm alone and in 
combination to see which one performed better in the main 
task and in the judged-only task. The results are presented in 
Figures 5 and 6. 

In both cases, it can be seen that LDA performs better than 
the other algorithms for the CubeTest metric, while Solr 
performs better for the µ-ERR metric. This illustrates the need 
for a combination of all three algorithms as we have used, to 
match up the strengths of each and compensate for their 
weaknesses. Indeed, our results show that the combination of 
algorithms yields, in the main task, a performance almost 
equal to LDA on the Cube Test metric and almost equal to 
Solr on the µ-ERR metric. In the judged-only task, the 
combination of algorithms actually yields the best 
performance on the Cube Test metric, but at the cost of a 
lower second-best performance on the µ-ERR metric. This 
improvement in the results comes from the additional 



 
 

5 

information available to the combination algorithm. A 
document retrieved by all three algorithms has a better chance 
of being relevant than a document retrieved by two 
algorithms, and that one still has a better chance of being 
relevant than a document retrieved by one algorithm alone. 

 

 
Fig. 5. Results for “main” task 

 
Fig. 6. Results for “Judged-Only” task 
 

 
2) Feedback Analysis 
 

We have different options when we want to use the 
feedback, we can use words from relevant documents to 
exploit our knowledge of discovered subtopics to find other 

relevant documents for related subtopics. Or we can make the 
assumption that we want documents that have different words 
from already discovered subtopics and try to give a negative 
boost to words from our feedback. 

To study how to use the user’s feedback in the dynamic 
refinement phase of our system, we start by separating the 
feedback into two groups of words: (1) the words extracted 
from portions of the text (text passage with NER algorithm 
and topic Title), and (2) the words extracted with Rocchio’s 
algorithm from whole documents. We gave each group 
alternatively a positive (+) or negative (-) boost in the new 
Solr query. The goal is to see how these differences affect the 
results (Figure 7).  

 
Fig. 7. Results of comparison between positive and negative feedback 
processing 
 

We can see that giving a positive boost to the text-portion 
keywords yields better results for the Cube Test metric than 
using a negative boost. We can explain this result by the fact 
that words from topic’s title and text passage’s can be shared 
between different topics. Therefore, excluding them can lead 
to a loss of information. However, giving these words a 
negative boost has a positive impact on µ-ERR metric, which 
means the ranking of the documents becomes more accurate. 

 

 
TABLE I 

SUBMISSIONS RESULTS

ID Submission Task Algorithm Weight Best results 
(ct@10) % 
(of topics) 

Over Median 
(ct@10) % 

Best results 
(µ-ERR) % 
 

Over Median 
(µ-ERR) % 

ul_lda_roc.2 Main LDA only None 2.5 58.5 2.5 20.3 
ul_combi_roc.2 Main LDA + K-means 

+ Solr 
0.255 + 
0.255 + 
0.49 

0.8 60.2 4.2 18.6 

ul_lda.roc.3 Main LDA only None 0 53.4 1.7 22.0 
ul_lda.roc.10 Main LDA only None 0 6.8 2.5 21.2 
ul_combi_roc_j
udged 

Judged-
Only 

LDA + K-means 
+ Solr 

0.45 + 
0.25 + 
0.30 

39.8 98.3 20.3 76.3 



 
 

6 

VII. TREC SUBMISSIONS RESULTS ANALYSIS 
The “main” task and the “judged-only” task have to be 

analyzed separately. One part of the competition involved 6 
million documents, while the other part was performed only 
with 25,000 documents. The first corpus includes un-judged 
documents, which appears to have no feedback but could be 
relevant to a topic. As a consequence, it adds an important 
amount of noise for the algorithms. The second corpus only 
have judged-documents. The information provided by the 
feedback is more reliable, because we can not have false-
negatives documents. 
 For the “main” task, we evaluated four different system 
configurations. We submitted three evaluations with it, using 
the three halting conditions described previously with LDA. 
However, a system comprising a combination of techniques 
was able to perform better in some way with more balanced 
results between CubeTest and µ-ERR metrics. As we can see 
on the first and second row of Table 1, LDA can provide 
better results for the Cube Test and lower results over the 
median than the combination system. On the contrary, the 
combination of techniques has more results over the median 
and lower percentage of best results. For the µ-ERR this result 
is exactly at the opposite. 

These results can be explained by the ability of LDA to do 
topic modelling and to be able to capture more topics. By 
doing a good diversification, the topic modeling process is 
also able to avoid more false starts. However, the 
diversification of documents retrieved by Solr only is not 
enough. As we saw previously, K-means alone performed 
poorly. Instead of only diversifying documents retrieved by 
Solr, the topic modelling allows to create a new query with 
extra new words and to submit a new request to the index. 
This supplementary step might give to LDA an advantage. 
Some documents overlooked by a normal keyword search can 
appear very relevant once the results are broken down into 
topics. However, LDA does not provide a ranking of topics 
nor of documents, which costs our system in µ-ERR 
performance and let the combination of techniques have a 
better balance between the two metrics with only a little loss 
over the CubeTest metric. 
 The two last rows of Table 1 for the main task show 
systems that use more than two iterations of results (more than 
one feedback from user). Ul_lda.roc.3 uses three iterations and 
Ul_lda.roc.10 uses two to ten iterations to explore results. As 
we can see, this lengthier exploration has been strongly 
penalized by the Cube Test metric. Since many of the later 
iterations were “false starts”, the metric penalized them as a 
waste of user time.  
 For the “judged-only” task, we submitted only one run of 
our algorithm to complete the limit of five runs. Our 
experiments indicated previously that the combination of 
algorithms is the best system from the point of view of the 
Cube Test metric. Results indicate that it performs well 
compared to other systems from this point of view too. Indeed, 
this system provides the best results for nearly 40% of the 
topics and has a result over the median of the group of 
participants for 98.3% of the topics. 

 

VIII. CONCLUSION 
In this paper, we presented the user-feedback-based 

iterative search system we implemented to solve the TREC 
Dynamic Domain track. We evaluated different algorithms to 
try to diversify our results and cover a maximum of interesting 
topics. We also tried different strategies to re-orient our search 
based on user feedback to. During our experiments, we had to 
cope with various difficulties such as the important amount of 
irrelevant or un-judged documents, the difficulty to re-orient 
the search after a “false-start” situation, and the importance of 
quickly finding results to avoid important time penalty. The 
final combination of techniques we selected provides a system 
capable of balancing exploration and exploitation. Our 
experimental results indicate that this system performed as the 
best system for both CubeTest and µ-ERR. 

In future work, and possibly for TREC 2016, we plan to 
handle the “false-start” by using active learning to train a 
classifier that could predict if a document will be relevant or 
not. We will also try a different basic search engine instead of 
Solr, to see how it impacts the results. 

IX. REFERENCES 
Andrzejewski, D., & Buttler, D. (2011). Latent topic 

feedback for information retrieval. Paper presented at the 
Proceedings of the 17th ACM SIGKDD international 
conference on Knowledge discovery and data mining. 

Chapelle, O., Metlzer, D., Zhang, Y., & Grinspan, P. 
(2009). Expected reciprocal rank for graded relevance. Paper 
presented at the Proceedings of the 18th ACM conference on 
Information and knowledge management. 

Cohn, D., Caruana, R., & McCallum, A. (2003). Semi-
supervised clustering with user feedback. Constrained 
Clustering: Advances in Algorithms, Theory, and 
Applications, 4(1), 17-32.  

Luo, J., Wing, C., Yang, H., & Hearst, M. (2013). The 
water filling model and the cube test: multi-dimensional 
evaluation for professional search. Paper presented at the 
Proceedings of the 22nd ACM international conference on 
Conference on information & knowledge management. 

Manning, C. D., Raghavan, P., & Schütze, H. (2008). 
Introduction to information retrieval (Vol. 1): Cambridge 
university press Cambridge. 

Salton, G., & Buckley, C. (1997). Improving retrieval 
performance by relevance feedback. Readings in information 
retrieval, 24(5), 355-363.  

Steinbach, M., Karypis, G., & Kumar, V. (2000). A 
comparison of document clustering techniques. Paper 
presented at the KDD workshop on text mining. 

Yang, H., Frank, J. & Soboroff I. (2016). TREC 2015 
Dynamic Domain Track Overview 

 
 
  

 


