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Abstract 

The goal of Temporal Summarization task is to develop systems which can detect 
useful, new, and timely sentence-length updates about a developing event. This paper 
describes our participation in Temporal Summarization track of TREC2015. 

 Based on the word embedding technique, we submitted two runs for the 
summarization task. The query expanding technique is used for the first run and 
relevant sentences are retrieved by computing the distance between the expanded 
query and the sentence. The processing of second run is the same with the first run 
except for the query expanding stage. Using the KBA Stream Corpus 2014, the 
experimental results show the effectiveness of our approach. 

1 Introduction 

As the Temporal Summarization 2015 Guidelines[1] describes, the goal of the TS 
track is to develop systems which can detect useful, new, and timely sentence-length 
updates about a developing event. There are three sub-tasks in TREC 2015, however, 
we only participate in the third sub-task because of the time limit, i.e. Task 3: 
Summarization Only. During the task, participants will be provided low-volume 
streams of on-topic documents for a set of topic events and it requires each participant 
to process those streams in time order, that is to say, the participant needs pick up 
relative sentences from the documents contained within each stream as updates over 
time.  

2 Our Approach 

The way to select relative sentences from the data stream is inspired by WMD 
distance[2] which use a new metric for the distance between text documents. Similarly, 
we measure the document distance by the cumulative amount of distance that the 
embedded query words of the topic event match the embedded words of the candidate 
sentence. The difference between our proposed approach and the WMD lies in the 
specific function of distance computation between sentences, details are described in 
the following part .  

Our approach leverages recent results by Mikolov[3],i.e. word2vec model which we 
use to generate high-quality vector representations of words considering that it can 



capture precise syntactic and semantic word relationships. A particular 
implementation of neural network based algorithm for training the word vectors is 
available at code.google.com/p/word2vec. After the training converges, words with 
semantic relevance are mapped into a similar space in the vector space and therefore   
we use the distributed representation of words to compute the distance between the 
query and the sentence. 

In addition, it is necessary to preprocess the data stream to the format we would 
like to use. 

2.1 Preliminaries 

The corpus we use is the KBA Stream Corpus 2014, i.e. the second filtered set 
TREC-TS-2015F-RelOnly[4] that consists of a manually selected set of relevant 
documents for each event because we only participate Task 3. As the data inside each 
corpus file is encrypted and serialized with thrift format. So it is necessary to 
preprocess the corpus into the data format that is easy to deal with before we use it.  

Firstly, decrypting the files uses the authorized key and converts the .GPG file 
format to .SC file format; 

Secondly, deserialize the data into the sentence lists on demand by ways of 
interacting with stream corpus chunks using the tools provided by the streamcorpus 
project in github[6]. The preprocessing stage produces the processed corpus which is 
to be used in the next stage. The output format of the processed data is in the 
following tab-separated format: 

Table 1: the format of the processed corpus 
1358355262-78a6fa3abc32368d90f701cf69fbb885 1358355262 5 Helicopter Crash In Vauxhall : Pilot Named  

1358355262-78a6fa3abc32368d90f701cf69fbb885 1358355262 6 He died after the aircraft hit a crane on St George Wharf Tower , in Vauxhall , amid heavy fog . 

358355262-78a6fa3abc32368d90f701cf69fbb885 1358355262 7 It cartwheeled out of the sky , smashed into two cars as it hit the ground and exploded into flames .  
where the columns are defined as, 
The first column: document identifier 
The second column: decision timestamp 
The third column: sentence identifier  
The fourth column: sentence content 

2.2 Algorithm 

We submitted two runs for the Task 3. The difference of the two runs lies in the 
ways of processing the query items. The first run is runvec1, parts of the query items 
are expanded and the second is runvec2, same with runvec1 except for the query 
expanding part. 

The key point of expanding phase is to obtain a query item list by adding top k 
words to the query items according to the semantic distance computed from the word 
vectors. Next, remove the stop words from the list with high frequency. In the end, 
add the event type to the newly query items due to its discriminate feature. Except for 



the expanding stage, the processing progress of runvec2 is exactly the same with 
runvec1. The common processing parts of the two runs can be described as follows: 

First, compute the cumulative similarity distance between the newly query items 
and the sentence items for every topic event. 

Second, check whether the value of the distance is greater than the specified 
threshhold, if so, then check to see if the result sets contains the sentence, if not, add 
the sentence to the result sets. 

 The following is the pseudocode of algorithm: 
 

Algorithm 1: 
Input: stream of processed corpus 
Input: topic queries 
Output: list of sentence identifiers 
1:   Initialize: RESULT={} 
2:   for each query q do 
3:     expand the query q as q’ 
4:     for each sentence s in processed corpus do  
5:        compute the dist(q’,s) 
6:        if dist(q’,s)>threshhold and s is not contained in RESULT 
7:        add s to RESULT 
8:        end if 
9:      end for 
10:   end for 
14:   return RESULT 
 
Where dist(q’,s) is defined as: 
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m is length of the query, n is length of sentence and simሺ ௜ܹ, ௝ܹሻ is the similarity 
metric of the two words separately in query and sentence. The similarity can be 
obtained by computing the dot product of the corresponding two word vectors. 
Formerly, the distance between two words is defined as : 

simሺ ௜ܹ, ௝ܹሻൌ ௜ܹ. ௝ܹ,                                      (2) 
Where 	 ௜ܹ is one word vector from query items and ௝ܹ is one word vector from the 
sentence items. 

Intuitively, the similarity between the query and the sentence can be represented by 
the matching degree of the corresponding sentences. The matching is measured by the 
cumulative distance that all word items in query match the words in the sentence. 
Furthermore, word matching is defined as the dot distance of the two word vectors.  

As to sentence de-duplication, to avoid redundancy in updates and to improve the 
quality, duplicate sentences are forbidden to go into the result sets. We check whether 
the sentence exists in the result sets first, if so, delete the sentence and process next 
one.  



3 Evaluation & Results 

According the TREC authority, there are several metrics, such as (normalized) 
Expected Gain, Comprehensiveness and HM metric[5]  and etc.. 

Expected Gain metric. It is the way to evaluate the relevance or precision of the 
summarization with respect to the event topic, something like the precision in 
traditional information retrieval. 

Comprehensiveness metric. It is the way to measure the coverage of the 
summarization with respect to all the essential information contained in the corpus, 
similar to tradition concept of recall in information retrieval evaluation. 

HM metric. A combined way to incorporate Expected Gain and 
Comprehensiveness with Latency included. 

We submitted totally two runs for Task 3: runvec1 and runvec2. The results based 
on these metrics are as follows. 

Table 2. The comparison of runvec1 and runvec2 for Task 3 
 nE[LG] Latency Comp. HM 

Topic 

ID runvec1 runvec2 runvec1 runvec2 runvec1 runvec2 
26 0.0096 0.0104 0.7116 0.7448 0.0190 0.0206 
27 0.0098 0.0176 0.2796 0.8049 0.0189 0.0345 
28 0.0038 0.0046 0.0046 0.2435 0.0075 0.0090 
29 0.0278 0.0299 0.5152 0.4701 0.0528 0.0563 
30 0.0166 0.0227 0.6154 0.5200 0.0323 0.0436 
31 0.0001 0.0108 0.0046 0.3372 0.0003 0.0208 
32 0.0153 0.0128 0.1740 0.1004 0.0281 0.0228 
33 0.0077 0.0078 0.3780 0.5093 0.0150 0.0153 
34 0.0134 0.0134 0.8969 0.8969 0.0263 0.0263 
35 0.0093 0.0093 0.6923 0.6923 0.0183 0.0183 
36 0.0104 0.0104 0.7750 0.7750 0.0205 0.0205 
37 0.0234 0.0223 0.5155 0.5461 0.0448 0.0429 
38 0.0138 0.0156 0.7012 0.7012 0.0271 0.0306 
39 0.0057 0.0067 0.7693 0.7693 0.0114 0.0134 
40 0.0078 0.0106 0.7288 0.6547 0.0154 0.0208 
41 0.0044 0.0041 0.2995 0.3619 0.0086 0.0080 
42 0.0077 0.0109 0.6020 0.5877 0.0151 0.0213 
43 0.0088 0.0082 0.7822 0.7822 0.0174 0.0162 
44 0.0202 0.0239 0.7690 0.7690 0.0394 0.0463 
45 0.0117 0.0137 0.6987 0.6987 0.0229 0.0269 
46 0.0050 0.0055 0.2426 0.2426 0.0099 0.0107 

 
The table 2 above shows the detail on three metrics with latency of each topic and 

the table 3 shows the extended comparison of our two submitted runs: runvec1 and 
runvec2. 



 
Table 3. The extended comparison of runvec1 and runvec2 for Task 3 

Run ID  nE[Gain] nE[Latency 

Gain] 

Comp. Latency Comp. HM 

runvec1 STD 0.0100 0.0066 0.1962 0.2457 0.0125 
MIN 0.0033 0.0001 0.1163 0.0046 0.0003 
MAX 0.0421 0.0278 0.9844 0.8969 0.0528 
AVG 0.0174 0.0111 0.7852 0.5409 0.0215 

runvec2 STD 0.0112 0.0067 0.1649 0.2139 0.0128 
MIN 0.0076 0.0041 0.3767 0.1004 0.0080 
MAX 0.0520 0.0299 0.9793 0.8969 0.0563 
AVG 0.0190 0.0129 0.7881 0.5813 0.0250 

ALL AVG 0.0595 0.0319 0.5627 0.3603 0.0472 
 
From the table, we can conclude that the results show the effectiveness of our 

method in terms of recall and that we manage to retrieve most of the relevant updates 
covering the important nuggets, but the precision is lower than average. Furthermore, 
the expanding technique on the query items does not improve the precision and recall. 
Besides, the values of metrics fluctuate violently between the minimum and 
maximum for different event topics on which should be improved in the future.  

4 Conclusion 

This paper reports a word embedding-based framework and technical scheme for 
Task 3 in TREC 2015 Temporal Summarization Track. The soul of method is to get 
the distributed representation of words first and use it later to get the relative 
sentences with respect to the topic event. In addition, filtering out duplicate sentences 
is important too. This year, we do research on the existed word embedding only. In 
the future, we will take consider in more information on the embedding ways of 
sentences and Knowledge Base. 
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