
ISCASIR	at	TREC	2015	Temporal	Summarization	Track		

Peixia Wang, Wenbo Li*
The National Engineering Research Center of Fundamental Software

The Institute of Software, Chinese Academy of Sciences (ISCAS)
Beijing, China

{peixia, wenbo}@.nfs.iscas.ac.cn

Abstract

The goal of Temporal Summarization task is to develop systems which can detect
useful, new, and timely sentence-length updates about a developing event. This paper
describes our participation in Temporal Summarization track of TREC2015.

 Based on the word embedding technique, we submitted two runs for the
summarization task. The query expanding technique is used for the first run and
relevant sentences are retrieved by computing the distance between the expanded
query and the sentence. The processing of second run is the same with the first run
except for the query expanding stage. Using the KBA Stream Corpus 2014, the
experimental results show the effectiveness of our approach.

1 Introduction

As the Temporal Summarization 2015 Guidelines[1] describes, the goal of the TS
track is to develop systems which can detect useful, new, and timely sentence-length
updates about a developing event. There are three sub-tasks in TREC 2015, however,
we only participate in the third sub-task because of the time limit, i.e. Task 3:
Summarization Only. During the task, participants will be provided low-volume
streams of on-topic documents for a set of topic events and it requires each participant
to process those streams in time order, that is to say, the participant needs pick up
relative sentences from the documents contained within each stream as updates over
time.

2 Our Approach

The way to select relative sentences from the data stream is inspired by WMD
distance[2] which use a new metric for the distance between text documents. Similarly,
we measure the document distance by the cumulative amount of distance that the
embedded query words of the topic event match the embedded words of the candidate
sentence. The difference between our proposed approach and the WMD lies in the
specific function of distance computation between sentences, details are described in
the following part .

Our approach leverages recent results by Mikolov[3],i.e. word2vec model which we
use to generate high-quality vector representations of words considering that it can

capture precise syntactic and semantic word relationships. A particular
implementation of neural network based algorithm for training the word vectors is
available at code.google.com/p/word2vec. After the training converges, words with
semantic relevance are mapped into a similar space in the vector space and therefore
we use the distributed representation of words to compute the distance between the
query and the sentence.

In addition, it is necessary to preprocess the data stream to the format we would
like to use.

2.1 Preliminaries

The corpus we use is the KBA Stream Corpus 2014, i.e. the second filtered set
TREC-TS-2015F-RelOnly[4] that consists of a manually selected set of relevant
documents for each event because we only participate Task 3. As the data inside each
corpus file is encrypted and serialized with thrift format. So it is necessary to
preprocess the corpus into the data format that is easy to deal with before we use it.

Firstly, decrypting the files uses the authorized key and converts the .GPG file
format to .SC file format;

Secondly, deserialize the data into the sentence lists on demand by ways of
interacting with stream corpus chunks using the tools provided by the streamcorpus
project in github[6]. The preprocessing stage produces the processed corpus which is
to be used in the next stage. The output format of the processed data is in the
following tab-separated format:

Table 1: the format of the processed corpus
1358355262-78a6fa3abc32368d90f701cf69fbb885 1358355262 5 Helicopter Crash In Vauxhall : Pilot Named

1358355262-78a6fa3abc32368d90f701cf69fbb885 1358355262 6 He died after the aircraft hit a crane on St George Wharf Tower , in Vauxhall , amid heavy fog .

358355262-78a6fa3abc32368d90f701cf69fbb885 1358355262 7 It cartwheeled out of the sky , smashed into two cars as it hit the ground and exploded into flames .
where the columns are defined as,
The first column: document identifier
The second column: decision timestamp
The third column: sentence identifier
The fourth column: sentence content

2.2 Algorithm

We submitted two runs for the Task 3. The difference of the two runs lies in the
ways of processing the query items. The first run is runvec1, parts of the query items
are expanded and the second is runvec2, same with runvec1 except for the query
expanding part.

The key point of expanding phase is to obtain a query item list by adding top k
words to the query items according to the semantic distance computed from the word
vectors. Next, remove the stop words from the list with high frequency. In the end,
add the event type to the newly query items due to its discriminate feature. Except for

the expanding stage, the processing progress of runvec2 is exactly the same with
runvec1. The common processing parts of the two runs can be described as follows:

First, compute the cumulative similarity distance between the newly query items
and the sentence items for every topic event.

Second, check whether the value of the distance is greater than the specified
threshhold, if so, then check to see if the result sets contains the sentence, if not, add
the sentence to the result sets.

 The following is the pseudocode of algorithm:

Algorithm 1:
Input: stream of processed corpus
Input: topic queries
Output: list of sentence identifiers
1: Initialize: RESULT={}
2: for each query q do
3: expand the query q as q’
4: for each sentence s in processed corpus do
5: compute the dist(q’,s)
6: if dist(q’,s)>threshhold and s is not contained in RESULT
7: add s to RESULT
8: end if
9: end for
10: end for
14: return RESULT

Where dist(q’,s) is defined as:

∑ ∑ ௦௜௠ሺௐ೔,ௐೕሻ೙

ೕసభ
೘
೔సభ

√௡ , (1)

m is length of the query, n is length of sentence and simሺ ௜ܹ, ௝ܹሻ is the similarity
metric of the two words separately in query and sentence. The similarity can be
obtained by computing the dot product of the corresponding two word vectors.
Formerly, the distance between two words is defined as :

simሺ ௜ܹ, ௝ܹሻൌ ௜ܹ. ௝ܹ, (2)
Where 	 ௜ܹ is one word vector from query items and ௝ܹ is one word vector from the
sentence items.

Intuitively, the similarity between the query and the sentence can be represented by
the matching degree of the corresponding sentences. The matching is measured by the
cumulative distance that all word items in query match the words in the sentence.
Furthermore, word matching is defined as the dot distance of the two word vectors.

As to sentence de-duplication, to avoid redundancy in updates and to improve the
quality, duplicate sentences are forbidden to go into the result sets. We check whether
the sentence exists in the result sets first, if so, delete the sentence and process next
one.

3 Evaluation & Results

According the TREC authority, there are several metrics, such as (normalized)
Expected Gain, Comprehensiveness and HM metric[5] and etc..

Expected Gain metric. It is the way to evaluate the relevance or precision of the
summarization with respect to the event topic, something like the precision in
traditional information retrieval.

Comprehensiveness metric. It is the way to measure the coverage of the
summarization with respect to all the essential information contained in the corpus,
similar to tradition concept of recall in information retrieval evaluation.

HM metric. A combined way to incorporate Expected Gain and
Comprehensiveness with Latency included.

We submitted totally two runs for Task 3: runvec1 and runvec2. The results based
on these metrics are as follows.

Table 2. The comparison of runvec1 and runvec2 for Task 3
 nE[LG] Latency Comp. HM

Topic

ID runvec1 runvec2 runvec1 runvec2 runvec1 runvec2
26 0.0096 0.0104 0.7116 0.7448 0.0190 0.0206
27 0.0098 0.0176 0.2796 0.8049 0.0189 0.0345
28 0.0038 0.0046 0.0046 0.2435 0.0075 0.0090
29 0.0278 0.0299 0.5152 0.4701 0.0528 0.0563
30 0.0166 0.0227 0.6154 0.5200 0.0323 0.0436
31 0.0001 0.0108 0.0046 0.3372 0.0003 0.0208
32 0.0153 0.0128 0.1740 0.1004 0.0281 0.0228
33 0.0077 0.0078 0.3780 0.5093 0.0150 0.0153
34 0.0134 0.0134 0.8969 0.8969 0.0263 0.0263
35 0.0093 0.0093 0.6923 0.6923 0.0183 0.0183
36 0.0104 0.0104 0.7750 0.7750 0.0205 0.0205
37 0.0234 0.0223 0.5155 0.5461 0.0448 0.0429
38 0.0138 0.0156 0.7012 0.7012 0.0271 0.0306
39 0.0057 0.0067 0.7693 0.7693 0.0114 0.0134
40 0.0078 0.0106 0.7288 0.6547 0.0154 0.0208
41 0.0044 0.0041 0.2995 0.3619 0.0086 0.0080
42 0.0077 0.0109 0.6020 0.5877 0.0151 0.0213
43 0.0088 0.0082 0.7822 0.7822 0.0174 0.0162
44 0.0202 0.0239 0.7690 0.7690 0.0394 0.0463
45 0.0117 0.0137 0.6987 0.6987 0.0229 0.0269
46 0.0050 0.0055 0.2426 0.2426 0.0099 0.0107

The table 2 above shows the detail on three metrics with latency of each topic and

the table 3 shows the extended comparison of our two submitted runs: runvec1 and
runvec2.

Table 3. The extended comparison of runvec1 and runvec2 for Task 3

Run ID nE[Gain] nE[Latency

Gain]

Comp. Latency Comp. HM

runvec1 STD 0.0100 0.0066 0.1962 0.2457 0.0125
MIN 0.0033 0.0001 0.1163 0.0046 0.0003
MAX 0.0421 0.0278 0.9844 0.8969 0.0528
AVG 0.0174 0.0111 0.7852 0.5409 0.0215

runvec2 STD 0.0112 0.0067 0.1649 0.2139 0.0128
MIN 0.0076 0.0041 0.3767 0.1004 0.0080
MAX 0.0520 0.0299 0.9793 0.8969 0.0563
AVG 0.0190 0.0129 0.7881 0.5813 0.0250

ALL AVG 0.0595 0.0319 0.5627 0.3603 0.0472

From the table, we can conclude that the results show the effectiveness of our

method in terms of recall and that we manage to retrieve most of the relevant updates
covering the important nuggets, but the precision is lower than average. Furthermore,
the expanding technique on the query items does not improve the precision and recall.
Besides, the values of metrics fluctuate violently between the minimum and
maximum for different event topics on which should be improved in the future.

4 Conclusion

This paper reports a word embedding-based framework and technical scheme for
Task 3 in TREC 2015 Temporal Summarization Track. The soul of method is to get
the distributed representation of words first and use it later to get the relative
sentences with respect to the topic event. In addition, filtering out duplicate sentences
is important too. This year, we do research on the existed word embedding only. In
the future, we will take consider in more information on the embedding ways of
sentences and Knowledge Base.

5 Acknowledgements

We would like to thank all organizers and assessors of TREC and NIST. This work
was supported by the National High Technology Research and Development 863
Program of China under Grants no. 2013AA01A603.

6 Reference

[1] Aslam, Diaz, Ekstrand-Abueg, McCreadie, Pavlu, Sakai.Temporal Summarization.
Available:
https://38309103-a-62cb3a1a-s-sites.googlegroups.com/site/temporalsummarization/tr
ec2015-ts-guidelines-updated.pdf.
[2] Matt J. Kusner , Sun Y. , Nicholas I. Kolkin , Kilian Q. Weinberger .From Word
Embeddings to Document Distances. Proceedings of the 32nd International

Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37.
[3]Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S.,and Dean, J. Distributed
representations of words and phrases and their compositionality. In NIPS, pp. 3111–
3119, 2013b.
[4] TREC-TS-2015F-RelOnly dataset. Available:
http://dcs.gla.ac.uk/~richardm/TREC-TS-2015RelOnly.aws.list
[5] streamcorpus project. Available:https://github.com/trec-kba/streamcorpus/
[6] Aslam, Diaz, Ekstrand-Abueg, Pavlu, Sakai. Metrics.

