
Learning from Medical Summaries: The University of
Michigan at TREC 2015 Clinical Decision Support Track

Fengmin Hu1, Danny T.Y. Wu1, Qiaozhu Mei1,2, V.G.Vinod Vydiswaran3,1

1School of Information 2Department of Electrical Engineering and Computer Science
3Department of Learning Health Sciences

University of Michigan
{hufm, tzuyu, qmei, vgvinodv}@umich.edu

ABSTRACT
The goal of TREC 2015 Clinical Decision Support Track was
to retrieve biomedical articles relevant for answering three
kinds of generic clinical questions, namely diagnosis, test,
and treatment. In order to achieve this purpose, we investi-
gated three approaches to improve the retrieval of relevant
articles: modifying queries, improving indexes, and rank-
ing with ensembles. Our final submissions were a combina-
tion of several different configurations of these approaches.
Our system mainly focused on the summary fields of med-
ical reports. We built two different kinds of indexes – an
inverted index on the free text and a second kind of in-
dexes on the Unified Medical Language System (UMLS)
concepts within the entire articles that were recognized by
MetaMap. We studied the variations of including UMLS
concepts at paragraph and sentence level and experimented
with different thresholds of MetaMap matching scores to fil-
ter UMLS concepts. The query modification process in our
system involved automatic query construction, pseudo rel-
evance feedback, and manual inputs from domain experts.
Furthermore, we trained a re-ranking sub-system based on
the results of TREC 2014 Clinical Decision Support track
using Indri’s Learning to Rank package, RankLib. Our ex-
periments showed that the ensemble approach could improve
the overall results by boosting the ranking of articles that
are near the top of several single ranked lists.

1. INTRODUCTION
Recent years have seen significant advances in the field of
healthcare, with smarter computerized clinical decision sup-
port platforms, better personalized healthcare plans, and
availability of large data sets for research and quality im-
provement studies. According to Accenture’s report of health-
care IT Vision of 2015 [9] and the survey of doctor’s attitudes
towards to healthcare IT functions [10], the digital channels
are dramatically influencing the healthcare industry and are
expected to do so in near future.

While making clinical decisions, physicians often seek out

Text REtrieval Conference TREC 2015 Clinical Decision Support Track

additional information to provide the best care for their pa-
tients. There is a growing interest among medical informat-
ics researchers on clinical decision support (CDS) systems
that are designed to assist physicians and other health pro-
fessionals with clinical decision-making tasks. The TREC
Clinical Decision Support Track aims to help develop tech-
niques to address these tasks and link medical cases to in-
formation relevant to patient care. The track, in its second
year, continued to focus on retrieving biomedical articles rel-
evant for answering generic clinical questions about medical
records. There were two tasks in TREC 2015 Clinical De-
cision Support track. Task A was identical to the TREC
2014 CDS track, while in Task B, participants were addi-
tionally provided with the diagnosis information for the test
and treatment related queries.

The target document collection for this track was a snap-
shot of the Open Access Subset of PubMed Central. Par-
ticipants were also provided a set of case reports, such as
those published in biomedical articles, as idealized represen-
tations of actual medical records. There were two formats
of the case narratives – a long paragraph “description” nar-
rative of the complete account of a patient’s visit, including
details such as their vital statistics, drug dosage, etc.; and
a simplified “summary” narrative that contained less irrele-
vant information. Participants were challenged with retriev-
ing relevant biomedical articles for those specific case reports
to answer questions belonging to one of three generic clin-
ical categories; namely “What is the patient’s diagnosis?”,
“What tests should the patient receive?”, and “How should
the patient be treated?”.

We reviewed the main approaches following by numerous re-
search teams that participated in the first TREC CDS track
in 2014. After reviewing the papers and results from the pre-
vious year, we found that there was no clear choice between
two versions of case narratives. “Summary” narratives were
considered as the first choice by most groups since they con-
tained less irrelevant information and were easier for query
modification than “description” narrative. However, several
groups got slightly better performance by using the“descrip-
tion” narrative. In [14], Xu et al. concluded that using sum-
maries as queries and applying the standard bag-of-words
retrieval function, BM25, with pseudo-relevance feedback,
could provide a satisfactory baseline performance. Teams
also investigated various query modification and reformula-
tion techniques. Some groups applied query reduction ap-
proaches by filtering terms with the help of external medi-

Figure 1: System Architecture

cal knowledge resources or domain experts [11, 12]. Other
participating teams employed query expansion approaches,
such as pseudo-relevance feedback [3, 8, 11, 14] and syn-
onyms expansion [12]. Those techniques mostly appeared
effective and they improved the overall retrieval performance
by boosting articles which were more similar to the top ar-
ticles. However, they were also prone to query drifting.

Besides traditional information retrieval methods, re-ranking
methods were also widely studied in [3, 4, 8, 11]. Soldaini
et al. [11] proposed several re-rankers including biographical
re-ranker, MetaMap similarity re-ranker, etc. that respec-
tively took features such as the biographic characteristics
and the number of concepts in Unified Medical Language
System (UMLS) recognized by MetaMap into consideration
to generate a final article score. Fusion-based re-ranking ap-
proach also proved to be an effective approach and improved
the performance significantly [3, 8, 11]. Soldaini et al. [11]
also developed a voting-based fusion algorithm to compute
the final ranking as an average of four other rankers. André
Mourão et al. [8] applied Reciprocal Rank Fusion (RRF) al-
gorithm to combine different retrieval functions. In [3], Choi
and Choi trained two kinds of task-specific classifiers and
combined the relevance ranking with task-specific ranking
using the Borda-fuse algorithm [1].

Though many traditional and state-of-the-art information
retrieval approaches have been investigated last year, the
mean retrieval scores were relatively poor and lower than
expected in general. Most participants only focused on the
free text of target document collection and employed the
basic pseudo-relevance feedback model as well as straight-
forward re-ranking strategies. In our system, we focused on
two kinds of information: free text information and UMLS
concept information recognized by MetaMap. To achieve
this, we built two indexes – an inverted index on the free
text and a second index on the UMLS concepts recognized
by MetaMap in the entire article. Queries were mostly based

on the “summary” narrative, and were modified either auto-
matically or with the help of a domain expert. Two versions
of queries were presented, a free-text version for the first in-
verted index and a UMLS Concept Unique Identifier (CUI)
version for the second UMLS concept index. We also con-
sidered multiple variations of including UMLS concept in-
formation at paragraph or sentence level and experimented
with different thresholds to filter UMLS concepts based on
their MetaMap scores. Finally, we designed and trained a re-
ranking sub-system using the Random Forest algorithm [2]
to combine the ensemble of single ranked lists into a final
ranked list.

In the following sections, we will describe in more detail
how we deployed the three major approaches we studied,
viz. improving indexes, modifying queries, and re-ranking
with ensemble, and how these approaches impacted the re-
trieval performance of our system.

2. SYSTEM ARCHITECTURE
First, we provide a high-level overview of our system ar-
chitecture and describe the key components briefly. The
system architecture is shown in Figure 1. In the figure, blue
and yellow colors represent the components that work with
free-text information and UMLS concepts, respectively.

The primary components of our approach are as follows:
1. Building Indexes: We built two kinds of indexes.

First, we built an inverted index over the Target Doc-
ument Collection provided to all TREC-CDS partici-
pants. Next, we processed the title and abstracts of all
documents through MetaMap. This let us identify all
medical concepts mentioned in the title and abstract
sections. The MetaMap matching scores were used
to retain only those concepts that were scored higher
than a preset threshold. The second set of indexes were
built over the unique identifiers assigned by MetaMap
to the filtered concepts.

2. Query Modification: We processed the “summary”
narratives through MetaMap to identify medical con-
cepts mentioned in the narratives. Two kinds of queries
were formulated: one consisting of the concept words
themselves, and the other consisting of the unique iden-
tifiers for the concepts (CUIs). The final queries were
constructed by either expanding the queries automat-
ically or using inputs from a domain expert.

3. Retrieval: The free-text queries and the UMLS CUI
queries were submitted to appropriate indexes to get
an ensemble of single ranked list results.

4. Re-ranking with ensembles: We designed and de-
veloped a re-ranking sub-system to combine the ranked
results from individual queries. This sub-system con-
sidered the rank orders (scores) for articles from indi-
vidual ranked lists as features and trained a re-ranking
model. We used the Random Forest algorithm [2] to
learn the weights of individual rankers and combine
them to get the final ranked list.

Since the setup for the Task A of TREC-CDS 2015 was
identical to the task in the previous year’s TREC-CDS task,
we could train over models on the queries and results from
the previous year. On the other hand, the Task B of TREC-
CDS 2015 was a new task. So, we could not train new models
for Task B. Instead, we adopted the model learned in Task
A by adding additional information about the diagnosis that
was available for Task B.

3. IMPLEMENTATION
We now describe the detailed implementation of our system
for TREC-CDS 2015 track.

3.1 Preprocessing
Our original goal was to parse the entire collection through
MetaMap to identify all medical concepts in the documents.
However, since MetaMap is quite time-consuming to run
over the full-text articles in the target document collection,
we decided to focus only on the titles and abstracts of the
articles. We first checked the MetaMapped Medline Base-
line results1, provided by the National Library of Medicine
(NLM). The Medline articles processed by NLM contain
unique PubMed identifiers (PMIDs) that were also found in
the TREC-CDS target document collection, thereby facili-
tating merging of the two datasets and avoiding duplication
of efforts.

On parsing the TREC-CDS target document collection, we
found that 46, 648 articles (6.36% of the total documents in
the collection) did not mention PMIDs, and hence could not
be linked to the MetaMapped Medline Baseline corpus. We
further analyzed these articles. Most of these articles belong
to one of three categories, viz. “abstracts” (42.09%), “book-
reviews” (23.45%), or “corrections” (10.53%). Only 3, 566
(7.64%) articles were labeled as“research articles”. Based on
the analysis of the distribution of article types in the target
collection and qrel files conducted by Gobeill et al. [5], we
found that articles that belonged to the types “abstracts”,
“book-reviews”, and“corrections”consist of less than 4.8% of
files found in the qrel file, while research articles accounted
for 52.2% of files. This finding also agrees with our intuition

1https://skr.nlm.nih.gov/resource/MetaMappedBaselineInfo.shtml

that the articles of the former three types are generally short
and less likely to be found relevant for answering clinical
questions. Hence, we decided to only process the missing
articles that were classified as “research articles” and ignore
the remaining types.

In addition to articles that did not have PMIDs, we also
found 30, 282 articles with PMIDs in the target document
collection that were not found in our snapshot of MetaMapped
Medline Baseline corpus. Those, when added to the 3, 564
“research abstracts” identified above, gave us a set of 33, 848
articles with missing MetaMap information. We extracted
the titles and abstracts from these articles and ran MetaMap
on this set.

3.2 Parsing
Once we collected the MetaMapped results for all docu-
ments in the target collection, the next task was to parse the
MetaMap output. For each article, the MetaMap Machine
Output2 contains an ‘utterance’ field, which is a sequence of
tokens into which the input text was chunked. Each utter-
ance is followed by one or more sequences of the following
three sub-components:

1. phrase: A sub-sequence of the utterance’s tokens,
along with its syntax. A phrase always appears with
corresponding candidates and mappings objects.

2. candidates: A possibly empty list of UMLS candidate
concepts identified in the phrase.

3. mappings: A possibly empty list of MetaMap’s final
mappings and a subset of the candidate set. The map-
ping list is empty only if the candidates list is empty.

For each candidate object, we collected the following three
fields:

1. NegScore: The negative mapping score
2. CUI: The concept unique identifier
3. String: The string representation of the concept as it

appears in the utterance

3.3 Indexing Text and Concepts
We built two kinds of indexes using the Indri search en-
gine3, viz. a free-text inverted index and several UMLS CUI
indexes. For the free-text index, we used Indri’s built-in
XML parser directly to parse and index the article text. For
the UMLS CUI indexes, however, some additional process-
ing was required.

MetaMap assigns score to each concept identified in the text.
Perfect matches get a score of 1000, and other matches with
ambiguities get lower scores. Our previous experiments with
MetaMap scores show that scores above 700 are potentially
relevant while those above 800 are significant. We parse the
title and abstracts of all articles and construct three versions
of concept documents – one with all concepts identified in
the input text, and two other versions where only concepts
with scores over 700 and over 800 are retained. We will refer
to these three versions as UMLS-CUI-all, UMLS-CUI-700,
and UMLS-CUI-800, respectively. As the threshold value is
increased, the concept documents have progressively lesser

2https://metamap.nlm.nih.gov/Docs/2012 MMO.pdf
3http://www.lemurproject.org/indri.php

number of concepts in them.

We also experimented with the granularity of the documents
themselves. Instead of treating the title and abstract as one
document, we split the abstract into multiple sentences and
treated each sentence as its own document. This approach
increases the number of documents in the index, but each
document (a sentence) was short and had fewer relevant con-
cepts. We constructed a fourth set of concept documents
this way, and retained all concepts identified within each
sentence (i.e. we did not filter based on the concept scores).
We will refer to this version as UMLS-CUI-sen.

Once the four versions of the concept documents are ob-
tained, we build the four corresponding UMLS-CUI indexes
using Indri.

3.4 Query Modification
Next, in the query modification stage, we constructed ef-
fective queries based on the “summaries” narrative and the
query type. Since we built two kinds of indexes, we con-
structed two kinds of queries, correspondingly.

3.4.1 Queries for free-text index
We investigated and evaluated several approaches and con-
figurations to construct keyword queries for the free-text in-
dex. First, using the Indri query language construct #syn to
indicate synonyms, we expanded the question types thus:

• Diagnosis ⇒ #syn(Diagnosis, Dx)
• Test ⇒ #syn(Test, Examination)
• Treatment ⇒ #syn(Treatment, Drug, Therapy)

Next, we looked at the “summary” narratives in the given
case reports. We constructed one query based on just the
summary and another query after removing common stop-
words. Finally, the queries were shown to a domain expert,
who provided us useful recommendations and highlighted
important terms in each case report. This input guided us
to construct a set of manual queries.

3.4.2 Queries for UMLS-CUI indexes
We created three versions of queries for UMLS-CUI indexes
as follows:

1. A query with summary words and the type informa-
tion.

2. Based on the inputs from the domain expert who high-
lighted important terms in the summaries, we con-
structed queries using the CUIs of the highlighted terms
as well as the MetaMapped type information.

3. We used an in-house repository of empirical synonyms
for medical concepts. This synonym set was collected
based on frequent query rewrites in EMERSE, an Elec-
tronic Medical Record Search Engine. [13]. We iden-
tified key terms in summaries and expand their CUIs
automatically using the empirical synonym set.

We ran the generated queries generated against different In-
dri indexes to get an ensemble of single ranked list results.

3.5 Retrieval

In the retrieval phase, we explored different configurations of
pseudo-relevance feedback and parameter settings for whether
to include the query type information and whether to re-
move stopwords. We tested and evaluated the default set-
ting of pseudo-relevance feedback and tuned three parame-
ters, viz. the number of feedback documents (fbDocs), the
number of feedback terms added to the query (fbTerms),
and the weight assigned to the original query in contrast to
the feedback terms (fbOrigWeight). This way, we created
twelve individual ranking configurations that are listed in
Table 1.

3.6 Learning to Rank Model
Once the individual ranked lists were available, we set forth
to combine them using a Learning to Rank framework. Learn-
ing to Rank refers to a set of machine learning techniques
using to train a model to combine an ensemble of ranked
lists to improve the overall ranking performance [6]. Since
the TREC 2015 CDS track was similar to the previous year’s
track, we could utilize the annotated list of relevant doc-
uments (in the qrel file) to design and learn a supervised
learning to rank model and determine the weights of differ-
ent retrieval configurations. We used the RankLib library4

to train a learning to rank model. RankLib is part of the
Lemur project and supports eight popular machine learning
algorithms, implements many retrieval metrics, and provides
multiple ways to carry out the evaluation. We first split
the case reports of each type from TREC 2014 CDS track
randomly into training and test sets, and compared several
models using different learning algorithms. Some of the tech-
niques we tried included Multiple Additive Regression Trees
(MART), also known as Gradient boosted regression trees,
AdaRank, LambdaMART, and Random Forest. The perfor-
mance of Random Forest was found to be slightly better and
more robust when evaluated using 5-fold cross-validation ex-
periments. We chose Random Forests to implement our final
learning to rank model.

The goal of the second task (Task B) was to investigate
if availability of the diagnosis information can help retrieve
more relevant articles in the test and treatment related queries.
Unlike the first task, the second task was new and, hence,
did not have any training data to train learning to rank
models. However, we observed that most diagnosis infor-
mation only contained one or two words. So, we assumed
that adding diagnosis terms would not significantly affect
the weights for the learning to rank models trained for the
first task. Hence, although we constructed new queries using
the diagnosis information, we used the same set of individ-
ual ranker configurations for both tasks and did not update
the learning to rank models.

4. RESULTS AND DISCUSSION
We now describe and discuss the performance of our six
submitted runs over the two tasks, along with additional
analysis of the best performing retrieval configurations.

4.1 Description of submission runs
Each participating team was allowed to submit at most three
runs to each of the two tasks. All our submissions except the
last submission for Task B were based on the same Random
4http://www.lemurproject.org/ranklib.php

Table 1: Individual Ranking Configurations

RunID Source1 TypeInfo
Pseudo Relevance Feedback2 Stopword

Removal
Index

#Docs #Terms Weight

1 Text 0 summary Yes 20 10 0.5 No Text

2 Text 1 summary No 20 10 0.5 No Text

3 Text 2 summary No 20 10 0.5 Yes Text

4 Text 3 summary Yes 20 10 0.5 Yes Text

5 Manual 0 highlighted terms Yes 10 5 0.5 Yes Text

6 Manual 1 highlighted terms Yes 10 5 0.67 Yes Text

7 MetaMap 0 EMERSE Yes 10 5 0.5 Yes UMLS-CUI-700

8 MetaMap 1 EMERSE Yes 10 5 0.5 Yes UMLS-CUI-all

9 MetaMap sent EMERSE Yes 10 5 0.5 Yes UMLS-CUI-sen

10 MetaMap Manual 0 highlighted CUIs Yes 10 5 0.5 Yes UMLS-CUI-700

11 MetaMap Manual 1 highlighted CUIs Yes 10 5 0.5 Yes UMLS-CUI-all

12 MetaMap Manual sen highlighted CUIs Yes 10 5 0.5 Yes UMLS-CUI-sen

1 summary: summary field of a topic; highlighted terms: terms highlighted by a domain expert; EMERSE: CUIs suggested by
an Electronic Medical Record Search Engine; highlighted CUIs: CUIs of terms highlighted by a domain expert.
2 #Docs: the number of feedback documents (fbDocs); #Terms: the number of feedback terms added to the query (fbTerms);
Weight: the weight assigned to the original query terms (fbOrigWeight).

Forest re-ranking model; and the submissions differed in the
subset of ranking lists used in the learning to rank model
ensembles.

The detailed descriptions of our official submissions are listed
below. The numbers refer to the row numbers in Table 1.

Task A

1. FusionAuto: This submission run ensembles all indi-
vidual ranking lists that are automatically produced;
specifically #1–4 (Text 0/1/2/3) and #7–9 (MetaMap
0/1/sen).

2. FusionManual : This submission run ensembles all
individual ranking lists that involved some manual in-
put, and two automatically produced ranked list; specif-
ically #3–4 (Text 2/3), #5–6 (Manual 0/1), and #10–
12 (MetaMap Manual 0/1/sen).

3. FusionMAll : This submission ensembles all individ-
ual ranking lists we created (#1–12).

Task B

1. FusionAutoB : This submission run is generated based
on the FusionAuto run of Task A. We add the text and
UMLS-CUIs of diagnosis results into test and treat-
ment queries, and apply the same learning to rank
model to create the final ranking list. The submission
run ensembles all individual ranking lists that are auto-
matically produced; specifically #1–4 (Text 0/1/2/3)
and #7–9 (MetaMap 0/1/sen).

2. FusionManB : This submission run is generated based
on the FusionManual run of Task A. We add the text
and UMLS-CUIs of diagnosis results into test and treat-
ment queries, and apply the same learning to rank

model to create the final ranking list. The submis-
sion run ensembles all individual ranking lists that in-
volved manual input, and two automatically produced
ranked lists; specifically #3–4 (Text 2/3), #5–6 (Man-
ual 0/1), and #10–12 (MetaMap Manual 0/1/sen).

3. FusionAdv : This submission run is generated based
on the intuition that adding diagnosis results into test
and treatment queries may lead to the results being
more relevant to answering diagnosis clinical question.
So, we constructed three different ranking lists: first,
the FusionManB run; second, the Notype run, an en-
semble of all individual ranking lists that did not in-
clude the type information; and third, the Diagnosis
run, generated by changing all type information to Di-
agnosis and then merging the ranked lists.
Every article in the three ranking lists was assigned
a ranking score, formulated as score = 1001 − rank,
based on the article’s rank in that ranking list. In other
words, the top ranked article got a score of 1000, the
next ranked article a score of 999, and so on. Articles
that did not show up in a ranking list received a score
of 0 for that list. The final score was computed as:

score = 0.8× scoreFusionManB + 0.4× scoreNotype

− 0.2× scoreDiagnosis

4.2 Results and Discussion
The performance evaluations of our runs and the median
results among submitted TREC runs in Tasks A and B are
shown in Table 2 and Table 3, respectively. The best values
for each of the four metrics (viz. infAP, infNDCG, R-prec,
and Precision@10) are highlighted in boldface. In addition
to the submitted runs, we also evaluated the performance
of the individual rankers used in the two tasks. The re-

Table 2: Performance evaluation of Task A

infAP infNDCG R-prec P@10

FusionAuto 0.0641 0.2445 0.1937 0.3733
FusionManual 0.0738 0.2815 0.2256 0.46
FusionMAll 0.0816 0.2954 0.2246 0.47

Median(Auto) 0.0414 0.2038 0.1615 0.3433
Median(Manual) 0.0499 0.2402 0.1735 0.3833

BIR-Text 0.0726 0.2614 0.2021 0.4
BIR-Manual 0.0787 0.2867 0.2205 0.4367
BIR-MetaMap 0.0244 0.1197 0.0996 0.1833

sult tables also show the best performance obtained by the
individual rankers of the following three types:

• BIR-Text: The best individual ranking configuration
among the automatically generated ones using only the
text information; specifically #1–4 (Text 0/1/2/3)

• BIR-Manual: The best individual ranking configura-
tion among those that use only the text information,
but involve some manual input from the domain ex-
pert; specifically #5–6 (Manual 0/1)

• BIR-MetaMap: The best individual ranking config-
uration among those that are automatically generated
using only MetaMap information; specifically #7–9
(MetaMap 0/1/sen)

From the performance evaluation of our submissions, we
found that our submissions are better than the median in
all four metrics, suggesting that our approaches of index im-
provement, query modification, and re-ranking with ensem-
bles are potentially useful in ranking articles for the clinical
decision support task. The comparison between our sub-
missions also verified some of our intuitions that the man-
ual inputs from domain expert would improve the results
significantly, and that including the diagnosis results could
improve the results of test and treatment related queries.

By comparing individual rankings, we found that the best
performing configurations all included the type information
and removed stopwords. We also noticed that the results
of best ranking configuration based on only the text infor-
mation, BIR-Text, outperformed the results of FusionAuto
and FusionAutoB, while the best ranking configuration us-
ing MetaMap, BIR-MetaMap, performed relatively poorly.
This suggests that further investigation is required on the
fusion algorithm to incorporate the MetaMap information
more effectively.

4.3 Future work
We would like to develop a clinical decision support system
that could retrieve relevant information in a fully automated
fashion. In the submitted runs, we used inputs from a do-
main expert to alter the queries and it helped improve our
results significantly. Our next step is to generate a set of
rules to select keywords automatically, based on analyzing
the nature of input we received from the domain expert.
We want to explore the ReQ-ReC double loop system de-
veloped by Li et al. [7] as a potential framework to do so.
Further, on comparing the results of FusionManB and Fu-

Table 3: Performance evaluation of Task B

infAP infNDCG R-prec P@10

FusionAutoB 0.0841 0.3298 0.2538 0.4633
FusionManB 0.0955 0.3535 0.2767 0.5233
FusionAdv 0.0951 0.3473 0.2731 0.53

Median(Auto) 0.0633 0.2794 0.2123 0.45
Median(Manual) 0.0666 0.2899 0.2035 0.4733

BIR-Text 0.0945 0.3453 0.2589 0.5
BIR-Manual 0.0985 0.3516 0.2618 0.51
BIR-MetaMap 0.0327 0.1505 0.1213 0.2333

sionAdv, we found the results are comparable after adding
the ranked lists for Notype and Diagnosis, even with man-
ually set combination weights in FusionAdv. This suggests
that additional research is needed to understand the type-
specific ranking and learn the optimal combination weights.

5. CONCLUSION
In this paper, we described the participation of the Univer-
sity of Michigan in the TREC 2015 Clinical Decision Support
track. We built an information retrieval system to retrieve
biomedical articles for clinical decision support queries and
investigated three major approaches to improve the retrieval
performance, namely improving indexes, modifying queries,
and re-ranking ensembles of ranked list results. The perfor-
mance evaluations indicated that our submissions performed
significantly better than the reported median performance.
In future, we plan to continue our investigation on query
modifications and re-ranking ensembles to improve clinical
decision support and enable improved patient care.

6. ACKNOWLEDGMENTS
The authors acknowledge the timely contributions and as-
sistance of the domain expert, Hanqi Tang, from Tsinghua
University, during our participation in the TREC 2015 Clin-
ical Decision Support track.

7. REFERENCES
[1] Javed A Aslam and Mark Montague. Models for

metasearch. In Proceedings of the 24th international
ACM SIGIR conference on research and development
in information retrieval, pages 276–284, 2001.

[2] Leo Breiman. Random forests. Machine Learning,
45(1):5–32, 2001.

[3] Sungbin Choi and Jinwook Choi. SNUMedinfo at
TREC CDS track 2014: Medical case-based retrieval
task. In Proceedings of the 23rd Text REtrieval
Conference Proceedings (TREC), 2015.

[4] Jean I. Garcia-Gathright, Frank Meng, and William
Hsu. UCLA at TREC 2014 clinical decision support
track: Exploring language models, query expansion,
and boosting. In Proceedings of the 23rd Text
REtrieval Conference Proceedings (TREC), 2015.

[5] J. Gobeill, A. Gaudinat, E. Pasche, and P. Ruch.
Full-texts representation with Medical Subject
Headings, and co-citations network re-ranking
strategies for TREC 2014 clinical decision support
track. In Proceedings of the 23rd Text REtrieval
Conference Proceedings (TREC), 2015.

[6] Li Hang. A short introduction to learning to rank.
IEEE Transactions on Information and Systems,
94(10):1854–1862, 2011.

[7] Cheng Li, Yue Wang, Paul Resnick, and Qiaozhu Mei.
ReQ-ReC: High recall retrieval with query pooling and
interactive classification. In Proceedings of the 37th
international ACM SIGIR conference on research and
development in information retrieval, pages 163–172,
2014.

[8] André Mourao, Flávio Martins, and Joao Magalhaes.
NovaSearch at TREC 2014 clinical decision support
track. In Proceedings of the 23rd Text REtrieval
Conference Proceedings (TREC), 2015.

[9] Kaveh Safavi and Rick Ratliff. Healthcare IT Trends.
Accenture Healthcare Technology Vision, 2015.
https://www.accenture.com/us-en/insight-healthcare-
technology-vision-2015.aspx Last accessed January 31,
2016.

[10] Kaveh Safavi, Rick Ratliff, and Kip Webb. Healthcare
IT Pain and Progress. Accenture Doctors Survey, 2015.
https://www.accenture.com/us-en/insight-accenture-
doctors-survey-2015-healthcare-it-pain-progress.aspx
Last accessed January 31, 2016.

[11] Luca Soldaini, Arman Cohan, Andrew Yates, Nazli
Goharian, and Ophir Frieder. Query reformulation for
clinical decision support search. In Proceedings of the
23rd Text REtrieval Conference Proceedings (TREC),
2015.

[12] Raymond Wan, Jannifer Hiu-Kwan Man, and
Ting-Fung Chan. Query modification through external
sources to support clinical decisions. In Proceedings of
the 23rd Text REtrieval Conference Proceedings
(TREC), 2015.

[13] Danny T.Y. Wu, David A. Hanauer, Lei Yang, Kai
Zheng, and Qiaozhu Mei. Towards intelligent and
socially oriented query recommendation for electronic
health records retrieval. In Proceedings of the ACM
SIGIR workshop on Health Search and Discovery
(HSD), 2013.

[14] Tan Xu, Paul McNamee, and Douglas W Oard.
HLTCOE at TREC 2014: Microblog and clinical
decision support. In Proceedings of the 23rd Text
REtrieval Conference Proceedings (TREC), 2015.

