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Abstract. In this paper, we present our approach for the Contextual
Suggestion track of 2015 Text REtrieval Conference (TREC). The task
aims at providing recommendations on points of attraction for different
kind of users and a varying context. Our group DPLAB_IITBHU tries
to address the problem from the perspective of how relevant the attrac-
tions are based on user profiles and rank them based on two similarity
measures— wup similarity and another similarity measure proposed by
us.

1 Introduction

The Contextual Suggestion track investigates search techniques for complex in-
formation needs that are highly dependent on context and user interests. The
task is to provide suggestions to users based on their personal interests as well
as their contexts. To tackle this problem, we propose to rank candidate sug-
gestions based on their similarity to the personal profile to the contexts (i.e.,
geographic and temporal information etc.). The ranking function is computed
based on the similarity between a suggestion and the places that the user like
and the dis-similarity between the suggestion and the places disliked by the user.
The similarities are computed based on the description of the suggestions. The
paper describes the first participation of Indian Institute of Technology (BHU)
in 2015 TREC Contextual Suggestion track. The descriptions for suggestions
were gathered from the urls provided in the collection. We got two runs for the
final results based on two similarity measures. The details of our recommenda-
tion model include data pre-processing, rating and finally ranking the candidate
suggestions.

2 Model

In this section we describe the methodology used to generate the suggestion list
for users based on their profiles and the given context. It is to be noted that



we used a similar method to generate the recommendation list, the difference
being the technique used to calculate similarity between the attractions. The
work-flow is as follows:

— Step 1: Eztracting description of the attractions provided in the batch ex-
periment candidate suggestions and pre-processing them (30 for each user)

(i)
(i)

First of all, we used a script written to extract information from the url
of each attraction provided in the candidate suggestion list.

For attractions (and its corresponding wrls) for which the above script
couldn’t pull the required information due to page redirection or other
accessibility issues, we used the Foursquare API'. Using this API we
extracted the category of the attraction in question along with the user
reviews mentioned there. Henceforth, we will refer to the information
extracted from wurls as ‘description’ unless otherwise mentioned.

Next we pre-processed the descriptions by removing sentences which
contained irrelevant and garbled words.

The stop words and special characters (I@#$% "etc.) were removed and
only intelligible words were retained.

The filtered descriptions were then tagged using a Parts-of-Speech (POS)
tagger [1] in order to keep only nouns, verbs, adverbs and adjectives while
discarding the rest.

— Step 2: Finding the tags of each candidate suggestion:
Our whole procedure depends on matching user provided tags with attrac-
tion description. Hence, this step is of prime importance, as we try to capture
the essential elements from the descriptions in terms of tags.

(i)
(i)

(iii)

We generated a list for_similarity_list which contained tags provided with
TREC 2015 Contextual Suggestion track dataset and processed it.
From observation we found out that some tags were very specific while
others were pretty generic. To distinguish between them, we marked
each tag as either 0 or 1. If the tag is marked with 0, it implies that the
tag has to be matched directly with the attraction description. On the
other hand, if it is marked with 1, then instead of directly using the tags
we expand it using synsets from Wordnet[2] and then used for matching
with the descriptions. This step is done so as to encompass related terms
such as ‘cuisine’ with ‘food’ etc. For bi-gram tags, each word in the tag
was expanded using synset before matching.

In cases of suggestions for which tags weren’t explicitly provided, we
extracted the description from the url and matched them across the list
of all tags. The most similar ones were used as tags for that particular
attraction. The similarity matching was done using wup_similarity [3]
with a threshold of 0.95.

! https://developer.foursquare.com/



(iv) Finally, all the tags were matched against candidate suggestion descrip-
tions and the matching ones were appended in a list of that particular
suggestion.

— Step 3: Assigning rating to each candidate suggestion:

Approach 1 (RUN 1): The complete process discussed below is carried

out for each user profile.

(a) A dictionary D; is prepared from all the rated attractions with each
entry having the highest rated attraction tags first, followed by next
highest rated attraction tags and so on. The outline of such a dictionary
is provided in Table 1.

Table 1. Dictionary of Tags with Ratings

lRating[ Tags ‘
4 | (tags from attraction zv) (tags from attraction yv)
3 |(tags from attraction zz) (tags from attraction yz) ...
2 | (tags from attraction zy) (tags from attraction yy) ...
1 | (tags from attraction zz) (tags from attraction yz)
0 |(tags from attraction zu) (tags from attraction yu) ...
-1 |(tags from attraction zw) (tags from attraction yw) ...

(b) Now each candidate suggestion description was matched against this dic-
tionary D;. This was done to rate the particular attraction with a rating
having maximum number of matching tags. So, suppose a suggestion
description was matched against the dictionary and the following result
came out (Table 2):

Then the candidate suggestion is assigned a rating of 3 since there are

Table 2. Result of matching a candidate suggestion against the dictionary

lRating‘Number of matched tags in a list

4 5
3 6
2 6
1 2
0 3
-1 1

6 matched tags. In case of a tie, the highest rating among the choices is
assigned.

(c) Similarly, for the rest of the 29 candidate suggestions a list of (Rating,
No. of Matched tags) is prepared. The list was sorted first on the basis



of rating and then further within each rank on the basis of number of
tags matched.

(d) If the matching of a candidate suggestion’s description with tags returned
0, then it wasn’t included in the list. This is the prime reason why in the
evaluation our approach failed to retrieve any suggestion for few profiles.

Approach 2 (RUN 2): Similar to Approach 1, this process is carried out

for each profile as well.

(a) A dictionary was prepared containing a list for each rating. Each element
in this list represent the count of tags with rating X where X varies
from 4 to -1. E.g., for a rated attraction if the rating was 3, then in list
corresponding to rating 3, the count of tags was incremented by 1.

(b) Once all the rated attractions were processed, the list corresponding
to each rating was normalized , i.e., count of each tag is divided by
total number of count in that rating. Now, sum of count of all tags in a
particular rating equals to 1.

(¢c) Now each candidate suggestion tags were matched to each rating list and
the corresponding score of each tag was added to give the total score of
that suggestion. F.g if tags a, b, d occurs in a candidate suggestion, for
each rating, their corresponding scores were added and the rating with
maximum score was assigned to that suggestion.

(d) If no matching tags were found for a particular suggestion, it wasn’t
added to our list. In case of collision the highest rating was assigned.

(e) The list was sorted first on the basis of rating and then within each rank
on the basis of total score obtained.

3 Discussion

We employed two techniques for matching tags with candidate suggestion de-
scriptions to find the best possible suggestion for a particular context. These
suggestions were then ranked according to the user preferences as provided in
the profiles. Among the two approaches, Approach 2 performed better than Ap-
proach 1. This can be attributed to the fact that the ranking system in Approach
was more fine-grained with each tag carrying its own weight unlike in Approach
1 where either the tags were considered or rejected. So, the number of retrieved
suggestions were generally greater in Approach 2. Since, we weren’t provided
with the evaluation results of other teams, we can’t perform a comparative as-
sessment. But, speaking in terms of improvement our approaches perform better
than the median results as listed in Table 3.
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