
CLIP at TREC 2015: Microblog and LiveQA

Mossaab Bagdouri
Department of Computer Science

University of Maryland
College Park, MD, USA
mossaab@umd.edu

Douglas W. Oard
iSchool and UMIACS
University of Maryland
College Park, MD, USA

oard@umd.edu

ABSTRACT
The Computational Linguistics and Information Processing
lab at the University of Maryland participated in two TREC
tracks this year. The Microblog Real-Time Filtering and the
LiveQA tasks both involve information processing in real
time. We submitted nine runs in total, achieving relatively
good results. This paper describes the architecture and con-
figuration of the systems behind those runs.

1. INTRODUCTION
We participated in Microblog Real-Time Filtering and the

LiveQA TREC 2015 tracks. Efficiency was taken in con-
sideration, as the topics of both of these tasks are time-
sensitive. We describe the systems for these tasks in the
following two sections.

2. MICROBLOG REAL TIME FILTERING
The TRECMicroblog track is concerned this year with the

task of real-time filtering.1 A user has an interest in some
broad topic, and wants to stay up to date in that topic using
a stream of microblog posts. The setup is operationalized in
two scenarios. In the push notifications scenario (Scenario
A), a system should notify the user with novel and rele-
vant tweets within a short time after they are first posted.
However, the user should not be bombarded with too many
notifications. A limit of 10 notifications per day is therefore
enforced. In the email digest scenario (Scenario B), a sys-
tem filters the tweets of a particular day, few hours after the
end of that day, to retrieve a ranked list of 100 potentially
relevant and novel tweets.
The track ran for 10 days from July 20 to 29, 2016 (UTC),

and was based on Twitter’s sample stream (i.e., a random
1% sample of all public tweets). We submitted six automatic
runs, three for each scenario.

1https://github.com/lintool/twitter-tools/wiki/
TREC-2015-Track-Guidelines

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
TREC’15, November 18–20, 2015, Gaithersburg, Maryland USA.
Copyright is held by the authors.

2.1 Components
Most of the components we built are shared between the

systems that we designed for Scenarios A and B, with some
adaptation (Figure 1). We describe those components in
this section.

2.1.1 Relevance Model
A topic is represented as a triple of a title that contains

few keywords, a description that summarizes the topic in
one sentence, and a narrative that consists of a paragraph
that gives more details. In all of our systems, we restricted
ourselves to the title and description fields. Hence, we do
not refer to the narrative field henceforth. We stem the topic
fields with Porter stemmer as implemented in Lucene 5.3,2

using its default list of stopwords. We use regular expres-
sions to normalize all the tweets by removing emoticons,
user mentions, URLs, RT indicators, and punctuation, be-
fore stemming them.

Our relevance model is based on Okapi BM25 term weights
and title expansion using word embeddings and probabilis-
tic structured queries. We use 1.6B English tweets from a
corpus covering about 4 years of a Twitter sample stream,
accessible from the Internet Archive3 to train a word2vec
model [4] and to estimate the document frequency (DF) of
each term. The word2vec model is used to expand the title
query stems with additional similar stems using the Euclid-
ian distance over 200-dimensional vectors.

Let ti be a stemmed query term in the title, ti,j one of
the top J stemmed terms similar to, but different from, ti,
with a similarity value of Pi,j ; and d an incoming tweet. The
score of the expanded title query is computed as:

Score(d,QTitle,exp) =
∑

i

BM25(TF (ti,exp, d), DF (ti,exp)),

where the expanded term frequency is estimated as:

TF (ti,exp, d) = TF (ti, d) +
∑

j

Pi,jTF (ti,j , d),

and the expanded document frequency as:

DF (ti,exp) = DF (ti) +
∑

j

Pi,jDF (ti,j).

The score for the description field is simply the BM25
model. That is,
2http://apache.lucene.org
3https://archive.org/details/twitterstream

Figure 1: General architecture of the real-time filtering systems.

Score(d,QDesc) = BM25(TF (ti, d), DF (ti)).

Finally, the relevance score of a tweet d for a topic Q is
defined with respect to its title and description as:

Score(d,Q) = Score(d,QTitle,exp) + α× Score(d,QDesc).

We tune the parameters using a grid search on the TREC
2014 Microblog track topics. We set k1 = 0.09, b = 0.5 and
average document length = 21 for BM25, J = 5 and α = 0.3.
For Scenario B only, we eliminate tweets that are not

ranked among the top 10,000 tweets at the end of this stage.
The remaining tweets go to the rescoring stage, for both sce-
narios.

2.1.2 Tweet Rescoring
To refine the scores of the relevant tweets, we use the

SVMrank package [2] to train a learning-to-rank model based
on the TREC 2014 Microblog track topics, using the rele-
vance score of the previous stage (Section 2.1.1), in addition
to the following features:

• Sender feature: log of the ratio of the number of
followers to the number of friends.

• Tweet features: count of stems, count of stems that
are not stopwords, ratio of the previous two features,
count of characters in the stemmed tweet, count of
URLs, count of hashtags, and count of user mentions.

• Tweet - query similarity features: the two vari-
ants of the Jaccard similarity between the tweet and
the description of the topic proposed by Magdy et al.
[3], the BM25 similarity score between the expanded
title and the tweet as explained in Section 2.1.1, and
the cosine similarity between the doc2vec vector (i.e.,
the sum of the word2vec vectors) of the stemmed terms

of the tweet and the doc2vec vector for the description
field of the topic.

For Scenario A only, tweets that have a (re-scored) score
less than a threshold β are eliminated at the end of this
stage. The remaining tweets go to the novelty detection
phase, for both scenarios.

2.1.3 Novelty Detection
According to the task definition, a tweet is not considered

interesting when the information it conveys has already been
reported in an antecedent tweet that was present in the 1%
public sample. We implement novelty detection with on-
line single-link clustering based on the Jaccard similarity
between the stemmed tweets. For each incoming tweet for
topic Q (other than those removed by scenario-specific pro-
cessing following the relevance or rescoring stage), we assign
the tweet to the cluster containing the most similar tweet, if
the similarity exceeds certain threshold τ . Otherwise, a new
cluster is created and the incoming tweet is assigned to it.
We maintain the same set of clusters for the entire 10 days of
the live experiment since we don’t want to return a relevant
tweet if a similar one was returned even in a previous day.

In the case of Scenario A, the tweet is pushed to the user
as soon as a new cluster is created. In the case of Scenario
B, at the end of every (UTC) day, the tweet with the high-
est reranking score from each cluster from which no tweet
has been reported on a prior day is selected and added to
the ranked list for that day. In either scenario, that cluster
is then marked so that it won’t be used to suggest inter-
esting tweets to the user (although it will keep gathering
similar tweets, so that no new cluster with similar content
is created).

2.2 Configurations of Submitted Runs
We submitted three runs for each scenario:

• CLIP-A-5.0-0.5 and CLIP-A-5.0-0.6 are two runs
for Scenario A, where the score threshold (after rescor-

Table 1: Results for Scenario A of the Microblog Task.

System ELG nCG

CLIP-A-DYN-0.5 0.1753 0.2426
CLIP-A-5.0-0.6 0.1543 0.2221
CLIP-A-5.0-0.5 0.1552 0.2193

Table 2: Results for Scenario B of the Microblog Task.

System nDCG

CLIP-B-0.4 0.2117
CLIP-B-0.5 0.2420
CLIP-B-0.6 0.2491

ing) was set for all topics to be β = 5. The clustering
similarity score was set as τ = 0.5 or τ = 0.6 respec-
tively.

• CLIP-A-DYN-0.5 is a run for Scenario A, where the
clustering similarity score was set to τ = 0.5. However,
the score threshold (after rescoring) was set per topic,
and was tuned with a grid search, so that each topic
had about 10 interesting tweets on July 18, 2015 (i.e.,
two days before the evaluation period).

• CLIP-B-0.4, CLIP-B-0.5 andCLIP-B-0.6 are three
runs for Scenario B, where the clustering similarity
score threshold was set to τ = 0.4, τ = 0.5 or τ = 0.6
respectively.

2.3 Results
The runs in Scenario A were evaluated using two metrics,

each is based on gain and latency discount. The gain of a
tweet G(t) is a graded relevance score of 0 (not relevant),
0.5 (relevant) or 1 (highly relevant). A latency discount of
max(0, (100 − d)/100) is then applied to every tweet with
a delay d in minutes (rounded down).4 The first metric is
the expected latency-discounted gain (ELG), where the sum
of the gains is divided by the number of tweets returned.
The second metric is the normalized cumulative gain (nCG),
where the same sum of gains is divided by the maximum
possible gain.
Table 1 shows the results from our systems for this sce-

nario. It appears that setting the relevance score threshold
β dynamically per topic was a good approach. Our best sys-
tem (CLIP-A-DYN-0.5) ranked 21st out of 30 automatic
runs based on ELG, but 3rd based on nCG. This suggests
that our relevance model, perhaps, performed well. But we
were penalized for attempting to return about 10 tweets a
day per topic, while many fewer than that were typically
actually relevant. It appears that a higher relevance score
threshold could have led to a higher ELG score.
The runs of Scenario B were evaluated using nDCG@10.

Table 2 shows the results from our systems for this scenario.
It appears that setting a high clustering similarity thresh-
old τ has a positive impact, on average. Our best system
(CLIP-B-0.6) ranked 1st out of 36 automatic runs.

4Every tweet was processed in about one second. Thus, our
gains were not impacted by the latency discount.

Computers & Internet Hardware Laptops & Notebooks

Which Computer (Laptop) is the best for
gaming?
I am getting a new computer and wondering which computer I should get. I found 3
laptops I liked but don't know which one to buy. Please someone give me advice
(consider price as well) by the way this is all Australian Dollars.
1. Toshiba L50-A013 15 inch Notebook $880
15.6" Intel Core i7-3630M 3.4Ghz CPU, NVIDIA GeForce GT740M 2GB with Optimus
+ Intel HD4000 Graphics, Windows 8, 4GB RAM, 750GB HDD, 4 cell battery, USB
3.0, HD Webcam, Wi-f-+Bluetooth 4.0, HDM 1, DVD

2. HP Envy TS D-J02ITX Notebook $1040
intel 17-4700MQ 2.4GHz
NVIDIA 2GB Dedicated graphics, Bluetooth, 8GB RAM, 1TB HDD

3. Alienware (yes I know this is the best but it is pretty expensive if. Would it worth
buying it?)
Price: $1385

3rd Gen i7, 8GB RAM, 1TB HDD, 32GB Solstice drive, Video GT 650, 3GB Dedicated
Graphics

Figure 2: Question asked under the category of Computers
& Internet.

3. LIVEQA
The TREC LiveQA track5 is a new task that loosely fol-

lows earlier TREC QA tracks, but with several substantial
design changes. In this new track, the questions come in real
time from real users, as posted on Yahoo! Answers.6 This
results in more natural and more diverse topics then was the
case with earlier QA tracks in which the questions are devel-
oped by assessors or selected from query logs. LiveQA also
incorporates an efficiency challenge, as the answers have to
be provided in near-real time (specifically, in no more than
one minute). A third challenge is that no document collec-
tion is provided, so participants must assemble any online
or offline resources on which their systems will base their
answers. These changes make the task more realistic and
challenging.

Only one answer per question is judged for each partici-
pating system, using a relevance scale from 1 to 4.

This year, the LiveQA track focuses on eight categories,
namely Arts & Humanities, Beauty & Style, Computers &
Internet, Health, Home & Garden, Pets, Sports, and Travel.
Figure 2 shows the example of a question7 asked under the
category Computers & Internet. We submitted three runs:
one using old questions and answers from Yahoo! Answers
(Section 3.1), and two using tweets (Section 3.2).

Figure 3 shows the general architecture of our LiveQA
systems.

3.1 Answering with Old Yahoo! Answers
A study by Shtok et al. [5] has shown that about 25%

of the titles of the questions posted on Yahoo! Answers in
a 3-month period had occurred in a similar form (i.e., with
a cosine similarity above 0.9) in a prior 11-month period.
This suggests that it may often be possible to find similar
questions that have previously been asked. Assuming that
similar questions will have similar answers (which is not nec-
essarily true, for instance, for generic or experience-based

5https://sites.google.com/site/trecliveqa2015
6https://answers.yahoo.com
7https://answers.yahoo.com/question/index?qid=
20130827015155AAwtYLQ

Figure 3: General architecture of the LiveQA systems.

questions), then a natural baseline system is one that simply
does a search in old questions and answers for each incoming
question. This section describes our process for crawling old
questions and answers from Yahoo! Answers, and how we
used the resulting collection to answer new questions (Fig-
ure 2).

3.1.1 Crawling Old Questions and Answers
To build a system that answers new incoming questions

with the knowledge already existing in Yahoo! Answers, we
decided to crawl all of the questions and answers that have
ever been published on this platform, and that are still ac-
cessible (i.e., they did not get deleted). We do so in four
steps:

1. Crawl all of the categories pages of the the main web-
site, in addition to its 22 localized versions8 to gather
a fairly large set of question identifiers, and add them
to a set Q. Each webpage shows up to 1,000 of the
most recent questions.

2. Let Q∗ be the subset of questions in Q that have not
been crawled yet. Crawl the webpages of questions in
Q∗ to obtain the questions, their answers, and the user
identifiers of those asking and answering the questions.
Add the user identifiers to a set U .

3. Let U∗ be the subset of users in U that have not been
crawled yet. Crawl the webpages of users in U∗ to
acquire the identifiers of the questions they asked or
responded to, which we add to the set Q, and to ac-

8e.g., https://es.answers.yahoo.com

quire the user identifiers for their friends and followers,
which we add to the set U .

4. If either of Q∗ and U∗ is not empty, then go back to
Step 2.

While this process has allowed us to gather a large set
of 226M questions, 1.3B answers and 43M users, it is not
guaranteed that we have obtained all of the data available in
the website. This is the case for at least two reasons. First,
the privacy settings of some users may be configured to hide
the identifiers of the questions they asked or answered or
the identifiers of their friends and followers. Second, some
groups of users (especially the least active ones) might form
an isolated clique that is not accessible by following links
(based on questions or users) from the seed questions.
Once crawling is complete, we index the questions and the

best answers found on the main Yahoo! Answers website, af-
ter stemming with the Porter stemmer. Crawling the other
(localized) systems allows us to identify additional users,
who may have also posted questions or answers to the main
website, but we did not index the questions or answers from
those localized websites because we do not expect many use-
ful matches to be found there.

3.1.2 Selecting Answers
With a large corpus of prior questions and answers, we

have several fields we can use for retrieval. Here we consider
only the following six possibilities. For the incoming ques-
tion, we use the title, but we also optionally concatenate
it with the description. For the old questions, we consider
searching in the title only, in the concatenation of the title
and the description, or in only the best answer. When we
search in old questions, we return its corresponding best an-
swer. When we search in old best answers, we just return
the best answer that we find. Because we did not have any
ground truth for selecting among these alternatives in the
first year of the track, we instantiated a small crowdsourcing
task on CrowdFlower,9 in which we showed the annotators
questions from the final dry run, with up to six answers from
the six retrieval configurations (when two or more methods
returned the same answer, we would show fewer than six
options). We allowed them to check-mark any answer they
thought does indeed answer the question. Using annotations
for 61 questions assessed by at least three trusted annota-
tors for which at least one of them checked at least one of
the answers, we trained a classifier to predict which configu-
ration would be best for an incoming question. As features,
we used the number of words and characters in the title and
description fields in their stemmed and unstemmed versions,
the category of the question, and the Jaccard similarity be-
tween the stemmed title and the stemmed description. We
trained the cost-sensitive multiclass classifier of VowpalWab-
bit10 using these features. Formally, for a training document
assessed byN annotators, let vi,n be the binary value implic-
itly indicated by annotator n for one of the I = 6 retrieval
configurations i. The cost ci associated with predicting the
configuration i is:

ci = 1−
N∑

n=1

vi,n
/ I∑

i′=1

N∑

n=1

vi′,n.

9http://crowdflower.com
10https://github.com/JohnLangford/vowpal_wabbit

In other words, we assign a high cost for errors on ques-
tions for which all of the annotators agreed on the same an-
swer, and a low cost for questions that have multiple good
answers marked or high disagreement amongst the annota-
tors. When a new question is received, we apply the trained
model to choose which one of the six configurations to use
to answer that question.

The guidelines limit answers to 1,000 characters. If the
answer exceeds 1,000 characters, we split it into sentences
based on periods and retain the first and last sentence, and
as many of the sentences with the highest Jaccard similar-
ity to the title of the question as possible until the 1,000-
character limit would be exceeded by adding an additional
sentence. This summarizes our submitted system CLIP-
YA.

3.2 Answering with Tweets
Twitter, like several other popular social media websites,

constitutes an enormous resource for information and opin-
ions that are continuously produced by people around the
globe. This makes it a potential place to find answers to
questions asked on Yahoo! Answers. In this section we de-
scribe our approach to collecting tweets, and to using them
as a basis for question answering.

3.2.1 A Large Corpus of Random Tweets
We consider Twitter as a resource for finding answers. As

we do not have access to all of the tweets that have ever been
posted, we need to find ways for increasing our chances of
gathering tweets that will be useful to the expected ques-
tions. For this, we use two groups of collections. The first
is a collection of tweets maintained by the Internet Archive
Team since 2011 (Section 2.1.1). It consists of most of the
JSON objects grabbed from a sample of about 1% of Twit-
ter’s public tweets. Because of some technical difficulties,
tweets sent on some days are missing from this collection.
Hence, we only have tweets from 1,215 days from the pe-
riod September 27, 2011 to June 30, 2015. We added to
this a collection of tweets that we streamed between July
27, 2015 and August 27, 2015. We denote this collection by
PublicStream.

3.2.2 A Small Corpus of Selected Tweets
The Twitter API allows us to track11 a set of up to 400

keywords.12 When doing so, the API returns the tweets
that contain at least one of these keywords, subject to the
1% limit computed over all tweets. For each of the eight
categories, we think that selecting some keywords that rep-
resent its core vocabulary and then tracking Twitter content
containing at least one of those keywords might give us a set
of tweets that is richer (in terms of relevance to the potential
questions) than the ones we would get by relying solely on
the public stream.

We construct these eight core vocabularies following Fung
et al. [1]. Formally, let a document in Yahoo! Answers be a
question, its description or one of its answers. we denote by
DF (wG) the document frequency of a word w in the set of
documents G. We then scale DF (wG) to a value between 0
and 1 as:

11https://dev.twitter.com/streaming/overview/
request-parameters#track

12https://dev.twitter.com/streaming/reference/post/
statuses/filter

Table 3: Words in the core vocabulary of each category.

Arts & Computers Beauty Home
Humanities & Internet & Style & Garden

book computer hair plant
books windows wear paint
poem laptop color wood
novel download skin walls
writing pc makeup plants
author software dress garden
story install style wall

twilight click furniture
characters files depot
authors program soil

(13 more) (11 more) (65 more)

Health Sports Pets Travel
doctor team dog travel
weight football dogs city
diet players vet trip

exercise win pet hotel
body teams cat airport
fat fan cats flight

muscle player breed hotels
pain wwe puppy cities
eating pets tourist
calories animals places
(5 more) (13 more) (14 more)

df(wG) =
DF (wG)− min

w′∈G
DF (w′

G)

max
w′∈G

DF (w′
G)− min

w′∈G
DF (w′

G)
.

Finally, for a given category i, we denote by Hi the value

Hi(w) = df(wC)− df(wC),

where C is the set of documents that belong to the category
i, and C is the set of documents that do not belong to that
category.
This value gives higher credit to words that are more fre-

quent within the category i than within all the other cate-
gories. In other words Hi defines a ranking of words by their
relevance to the questions and answers of the category i.
We observe that using the top 400 keywords for each cat-

egory causes the Twitter API to send warnings for hitting
the 1% maximum. Thus, we heuristically set the number
of keywords, for every category, so that their filter matches
about 1% of all the posted tweets. The final set of keywords
for these eight categories is described in Table 3. We tracked
these eight sets of keywords using eight Twitter accounts for
three weeks (from August 7 to 27, 2015.) We denote each of
the eight corresponding collections by TrackedWordsi, while
i corresponds to the name of the category.
Finally, when we receive a question of category i, we

search in the union of PublicStream and TrackedWordsi,
which we henceforth refer to as the search space Corpusi.

3.2.3 Preprocessing
We normalize all the tweets by removing emoticons, user

mentions, URLs, RT indicators, and punctuation before stem-
ming them with the Porter stemmer.

All of the questions have a title and most of them have
a description as well. As both of these fields can be long,
running the query as-is risks generating a high I/O load,
and thus exceeding the limit of one minute per question. To
mitigate this limitation we heuristically select the words of
the query following these steps after stemming both the title
and the description with Porter stemmer:

1. If the stemmed title has more than seven terms, we
remove from them a list of 74 terms that we had man-
ually selected from the most 100 frequent stemmed
terms in the corpus of old questions and answers in
Yahoo! Answers (Section 3.1).

2. We issue the preprocessed title as a query to an Indri13

index corresponding to the category of the question,
using the Okapi BM25 retrieval model.

3. We use the retrieved documents as a backup if the next
stage does not complete within the allowed time limit.

4. We concatenate the processed title to the description
field (processed in a similar manner), and issue the
combined query to Indri.

3.2.4 Finding Answers
By matching dry-run questions against the tweets in our

corpora, we observed that several of the retrieved tweets are
themselves actually questions. Such questions should not be
returned as answers to the original question. This led us to
make the distinction between two conceptual types of tweets:
those that contain a question, and others (because those
that do not contain a question might contain an answer).
To implement this distinction, we extract two subsets from
Corpusi for each category i:

• Corpusi,q is the subset of tweets that contain a ques-
tion mark and are also detected to be questions seek-
ing an answer (using a classifier that has an accu-
racy of 79% trained on normalized and stemmed 1-3-
grams from tweets released by Zhao and Mei [6]). For
Corpusi,q, we start with the top 20 retrieved tweets.
We then scrape their Twitter web pages to get all of
their replies. We return the reply that is the most simi-
lar to the title of the incoming question, using the Jac-
card similarity coefficient, and after processing them
as described in Section 3.2.3. This is our submitted
run CLIP-TW-Q.

• Corpusi,a is the subset of tweets that do not contain
a question mark and that are also not detected (by
that same classifier) to be questions seeking an answer.
For Corpusi,a, we simply return the tweet with the
highest BM25 relevance score. This is our submitted
run CLIP-TW-A.

3.3 Results
According to the guidelines, each system-submitted an-

swer was given a score of -2 by the NIST annotator if the
answer is unreadable. Otherwise, the annotator assigned it
a score between 1 (bad) and 4 (excellent). The following
performance measures are reported:

13http://www.lemurproject.org/indri.php

Table 4: Performance of participating systems in the LiveQA task.

System score (0-3) succ@1+ succ@2+ succ@3+ succ@4+ prec@2+ prec@3+ prec@4+

CLIP-YA 0.615 0.993 0.326 0.204 0.086 0.328 0.206 0.086
CLIP-TW-Q 0.081 0.977 0.065 0.019 0.007 0.067 0.020 0.008
CLIP-TW-A 0.144 0.741 0.102 0.034 0.008 0.138 0.046 0.011
All runs 0.465 0.925 0.262 0.146 0.060 0.284 0.159 0.065

• score (0-3) is the average score over all questions after
transferring 1-4 level scores to 0-3, and giving unread-
able answers a score of 0.

• succ@i+ is the number of questions with a score of at
least i, divided by the total number of answered and
unanswered questions.

• prec@i+ is the number of questions with a score of at
least i, divided by the number of answered questions.

Table 4 shows the results for each of our three systems.
For reference, the “all runs” row shows the mean score over
all systems that participated in this task. Clearly, CLIP-
YA performs, on average, better than both of the Twitter
based systems CLIP-TW-Q and CLIP-TW-A. Compar-
ing the two Twitter-based systems, it appears that the ap-
proach that returns a tweet that is not detected to be a
question (i.e., CLIP-TW-A), is performing better by most
measures than the approach where the returned tweet is a
reply to a tweet that is detected to be a question similar to
the incoming question (i.e., CLIP-TW-Q).
In the remainder of this section, we look at the results

from different perspectives.

3.3.1 Scores per Category
Table 5 shows the scores of our systems for each category.

Health accounts for about 1/3 of all questions. This is also
the category for which CLIP-YA performs the best. Travel
is the category for which CLIP-YA performs the worst.
But it contains less than 6% of the questions. Interestingly,
this is the only category where the scores of CLIP-YA and
CLIP-TW-A are somewhat comparable.
Due to a corruption in the index of the Computers &

Internet category, CLIP-TW-A did not answer any of the
questions in that category.

Table 5: Number of questions answered by each system for
every category, with the corresponding score.

CLIP-YA CLIP-TW-Q CLIP-TW-A
Score # Score # Score #

Arts & Huma. 0.64 118 0.06 115 0.16 111
Health 0.77 327 0.08 325 0.20 293
Beauty & Style 0.50 119 0.13 116 0.21 107
Sports 0.51 122 0.13 120 0.23 115
Home & Garden 0.60 47 0.02 47 0.09 44
Pets 0.65 94 0.02 94 0.17 82
Travel 0.29 58 0.15 57 0.25 53
Comp. & Inter. 0.60 194 0.15 192 - 0

3.3.2 Using the Body of the Question
Our systems have different strategies to decide whether

to use the terms that appear in the body of the question

Table 6: Number of questions answered by each system
with(out) using the body, with the corresponding score.

CLIP-YA CLIP-TW-Q CLIP-TW-A
Score # Score # Score #

Body used 0.82 11 0.10 199 0.37 65
Body not used 0.62 1068 0.09 867 0.18 740
- body empty 0.50 387 0.09 380 0.20 267
- timeout - 0 0.09 461 0.15 395
- risk timeout 0.68 681 0.08 26 0.19 98

for retrieving answers (Section 3.1.2). For CLIP-YA, we
delegate this decision to a classifier. This classifier chose to
use the body of the question in only 11 out of 1,079 questions
(Table 6). The average score over these questions (0.82) is
higher than the average score over the questions where only
the terms of the title were used (0.62).

For both CLIP-TW-Q and CLIP-TW-A, the answer
retrieval for a substantial number of questions using the
body timed out (461 or 395, respectively). In some addi-
tional cases (26 or 98, respectively), the retrieval using only
the title of the question took over half of the allowed re-
sponse period. These two systems do not even attempt to
use the body of the question when this happens. As we
have observed for CLIP-YA, the questions for which the
body was used got an average score higher than those for
which only the title was used, although for CLIP-TW-Q
the difference is quite small.

3.3.3 Retrieval Field for Old Yahoo! Answers
The classifier used by the CLIP-YA system chooses be-

tween three configurations for the fields to be searched in
the old answers. As shown in Table 7, in most cases (784
of 1,079), the decision was to match the incoming question
against the content of the old answers. Questions for which
this configuration was selected had an average score higher
than those for which the classifier chose to search in the
content of the old questions.

Table 7: Number of questions answered by CLIP-YA de-
pending on the retrieval field, with the corresponding score.

CLIP-YA
Score Count

Question title 0.43 109
Question title and body 0.54 186
Answer 0.67 784

3.3.4 Best CLIP-YA Configuration
Combining these insights, we might speculate that the

best configuration of our CLIP-YA system would be one

Table 8: Number of questions answered by each system for
each corpus, with the corresponding score.

CLIP-TW-Q CLIP-TW-A
Score Count Score Count

Selected tweets (small) 0.11 158 0.46 24
Random tweets (large) 0.09 908 0.19 781

that uses the title and the body of the incoming question
as a query (Section 3.3.2), and the index of old answers for
retrieval (Section 3.3.3). As it happens, only three questions
were run using both of those conditions together; their av-
erage score is 1.67. Although based on too little data for us
to draw any firm conclusion, that average is certainly high
enough to get our attention.

3.3.5 Effect of Twitter Retrieval Corpus
Our retrieval of answers from Twitter uses the union of

two disjoint corpora, a large corpus of random tweets and
a smaller focused corpus of selected tweets. For every ques-
tion, we can thus look at the origin of the returned tweet
(the small or the large corpus). As Table 8 shows, when
an answer is found in the smaller focused corpus, the aver-
age score is higher. This suggests that a larger (i.e., longer)
focused crawl of tweets that are expected to match the ex-
pected question categories might be worthwhile.

4. CONCLUSION
We have presented the general architecture and the im-

plementation details for the six runs we submitted for the
Microblog Real-Time Filtering task, and the three systems
we built for the LiveQA task. The results suggest that a
per-topic rescoring threshold and a high clustering similar-
ity threshold can each improve the performance of our Mi-
croblog systems. We are satisfied with the recall of our rel-
evance model, but we want to focus more on precision (i.e.,
returning tweets only when there is high enough confidence
in their relevance).

The results of the LiveQA track show that a system re-
turning answers based on old questions and answers from
Yahoo! Answers performs better on average than two sys-
tems that return tweets as answers, but that a tweet-based
system may be useful for answering some difficult questions
(e.g., those in the Travel category). In the future, we plan
to tune our systems to use the body of the new questions
and the content of old answers more frequently. We also
plan to track the words related to the categories of interest
over a longer period in order to gather a richer collection of
potentially useful tweets.

ACKNOWLEDGMENT
This work was made possible by NPRP grant# NPRP 6-
1377-1-257 from the Qatar National Research Fund (a mem-
ber of Qatar Foundation). The statements made herein are
solely the responsibility of the authors.

5. REFERENCES
[1] G. P. C. Fung, J. X. Yu, H. Lu, and P. S. Yu. Text

classification without negative examples revisit. IEEE
Transactions on Knowledge and Data Engineering,
18(1), 2006.

[2] T. Joachims. Training linear SVMs in linear time. In
KDD ’06, pages 217–226, 2006.

[3] W. Magdy, W. Gao, T. Elganainy, and Z. Wei. QCRI
at TREC 2014: Applying the KISS principle for the
TTG task in the Microblog track. In TREC, 2014.

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean.
Efficient estimation of word representations in vector
space. In Workshop at ICLR, 2013.

[5] A. Shtok, G. Dror, Y. Maarek, and I. Szpektor.
Learning from the past: Answering new questions with
past answers. In WWW, pages 759–768, 2012.

[6] Z. Zhao and Q. Mei. Questions about questions: An
empirical analysis of information needs on Twitter. In
WWW, pages 1545–1556, 2013.

